TRANSPOSITIONS AND THE ALTERNATING GROUP

Kevin James

Kevin James Transpositions and the Alternating Group

回 と く ヨ と く ヨ と

In S_n any 2-cycle is called a transposition.

æ

In S_n any 2-cycle is called a transposition.

Note

 Recall that every permutation can be written as a product of disjoint cycles.

$$(a_1, \ldots, a_m) = (a_1, a_m)(a_1, a_{m-1})(a_1, a_{m-2}) \ldots (a_1, a_3)(a_1, a_2)$$

8 Every permutation can be written as a product of transpositions.

▲◎▶ ★ 国▶ ★ 国

$$\mathbf{1} \ \Delta_n = \prod_{1 \leq i < j \leq n} (x_i - x_j).$$

◆□ → ◆□ → ◆目 → ◆目 → ◆□ →

1
$$\Delta_n = \prod_{1 \le i < j \le n} (x_i - x_j).$$

2 For $\sigma \in S_n$, define $\sigma(\Delta_n) = \prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}).$

◆□ → ◆□ → ◆目 → ◆目 → ◆□ →

1
$$\Delta_n = \prod_{1 \le i < j \le n} (x_i - x_j).$$

2 For $\sigma \in S_n$, define $\sigma(\Delta_n) = \prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}).$

Note

For all $\sigma \in S_n$, $\sigma(\Delta_n) = \pm \Delta_n$.

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

æ

1
$$\Delta_n = \prod_{1 \le i < j \le n} (x_i - x_j).$$

2 For $\sigma \in S_n$, define $\sigma(\Delta_n) = \prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}).$

Note

For all
$$\sigma \in S_n$$
, $\sigma(\Delta_n) = \pm \Delta_n$.

DEFINITION

Suppose $\sigma \in S_n$. We define the following.

$$\bullet (\sigma) = \sigma(\Delta_n) / \Delta_n \quad \in \{\pm 1\}.$$

・ロト ・回ト ・ヨト ・ヨト

Э

1
$$\Delta_n = \prod_{1 \le i < j \le n} (x_i - x_j).$$

2 For $\sigma \in S_n$, define $\sigma(\Delta_n) = \prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}).$

Note

For all
$$\sigma \in S_n$$
, $\sigma(\Delta_n) = \pm \Delta_n$.

DEFINITION

Suppose $\sigma \in S_n$. We define the following.

$$\bullet (\sigma) = \sigma(\Delta_n) / \Delta_n \quad \in \{\pm 1\}$$

2
$$\epsilon(\sigma)$$
 is called the sign of σ .

・ロン ・回 と ・ ヨン ・ ヨン

æ

1
$$\Delta_n = \prod_{1 \le i < j \le n} (x_i - x_j).$$

2 For $\sigma \in S_n$, define $\sigma(\Delta_n) = \prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}).$

Note

For all
$$\sigma \in S_n$$
, $\sigma(\Delta_n) = \pm \Delta_n$.

DEFINITION

Suppose $\sigma \in S_n$. We define the following.

$$\bullet (\sigma) = \sigma(\Delta_n) / \Delta_n \quad \in \{\pm 1\}.$$

2 $\epsilon(\sigma)$ is called the sign of σ .

3 σ is called an <u>even</u> permutation if $\epsilon(\sigma) = 1$ and an <u>odd</u> permutation if $\epsilon(\sigma) = -1$.

(日)
 (日)

The map $\epsilon: S_n \to \{\pm 1\}$ is a homomorphism.

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

The map $\epsilon: S_n \to \{\pm 1\}$ is a homomorphism.

PROPOSITION

Transpositions are all odd permutations and ϵ is a surjective homomorphism.

ヘロン 人間 とくほど くほとう

3

The map $\epsilon: S_n \to \{\pm 1\}$ is a homomorphism.

PROPOSITION

Transpositions are all odd permutations and ϵ is a surjective homomorphism.

DEFINITION

The Alternating Group is defined as $A_n = \text{ker}(\epsilon)$. That is, the Alternating group is the set of even permutations.

・ロン ・回と ・ヨン ・ヨン

The map $\epsilon: S_n \to \{\pm 1\}$ is a homomorphism.

PROPOSITION

Transpositions are all odd permutations and ϵ is a surjective homomorphism.

DEFINITION

The Alternating Group is defined as $A_n = \text{ker}(\epsilon)$. That is, the Alternating group is the set of even permutations.

Note

Note that
$$S_n/A_n \cong \{\pm 1\}$$
. Thus $|A_n| = |S_n|/2 = \frac{n!}{2}$.

・ロト ・回ト ・ヨト ・ヨト

The map $\epsilon: S_n \to \{\pm 1\}$ is a homomorphism.

PROPOSITION

Transpositions are all odd permutations and ϵ is a surjective homomorphism.

DEFINITION

The Alternating Group is defined as $A_n = \text{ker}(\epsilon)$. That is, the Alternating group is the set of even permutations.

Note

Note that
$$S_n/A_n \cong \{\pm 1\}$$
. Thus $|A_n| = |S_n|/2 = \frac{n!}{2}$.

Fact

 A_n is a non-Abelian simple group for all $n \ge 5$.