GROUP ACTIONS AND PERMUTATIONS REPRESENTATIONS

Kevin James

RECALL

- **1** If G is a group acting on a set A, then $\forall g \in G$ we have a map $\sigma_g : A \to A$ defined by $\sigma_g(a) = g \cdot a$.
- 2) The map $\phi: G \to S_A$ defined by $\phi(g) = \sigma_g$ is a homomorphism. The map ϕ is called the permutation representation associated to the group action of G on A.

DEFINITION

- **1** The <u>kernel</u> of the action is $\{g \in G \mid g \cdot a = a, \forall a \in A\}$.
- **2** For each $a \in A$, the <u>stabilizer</u> of a in G is $G_a = \{g \in G \mid g \cdot a = a\}$.
- 3 An action is said to be faithful if its kernel is the identity.

Note

- **1** If G acts on A and ϕ is the induced permutation representation the the kernel of the action is $ker(\phi)$.
- **2** So, g_1 and g_2 induce the same permutation on A if and only if $g_1 \ker(\phi) = g_2 \ker(\phi)$.
- **3** Thus the group action of G on A induces a faithful action of $G/\ker(\phi)$ on A.

Proposition

For any group G and any nonempty set A, there is a bijection between the actions of G on A and $Hom(G, S_A)$ the homomorphisms of G into S_A .

DEFINITION

If G is a group, a <u>permutation representation of G is any homomorphism of G into S_A for some non-empty set A. We shall say that a given action of G on A <u>affords</u> or <u>induces</u> the associated permutation representation of G.</u>

Proposition

Let G be a group acting on the nonempty set A. The relation on A defined by

 $a \sim b$ if and only if $a = g \cdot b$ for some $g \in G$.

is an equivalence relation. For each $a \in A$, $\#[a] = [G : G_a]$.

DEFINITION

Let G be a group acting on a nonempty set A.

- **1** The equivalence class $\{g \cdot a \mid g \in G\}$ is called the <u>orbit</u> of G containing a.
- 2) The action of G on A is called <u>transitive</u> if there is only one orbit.