GROUPS ACTING ON THEMSELVES BY CONJUGATION – THE CLASS EQUATION

Kevin James

Note

In this section we will consider the following action of G on itself which is called conjugation.

$$g \cdot a = gag^{-1}$$
.

Note that this is a well-defined group action.

DEFINITION

Two elements $a, b \in G$ are said to be <u>conjugate</u> if there is some $g \in G$ such that $a = gbg^{-1}$. That is, if they are in the same orbit of G acting on itself by conjugation. The orbits of G acting on itself by conjugation are called conjugacy classes.

Note

- **1** The action of conjugation is NOT transitive. In fact, $[1_G] = \{1_G\}$.
- Por any S ⊆ G, we can define gSg⁻¹ = {gsg⁻¹ | g ∈ G} and thus the action of conjugation can be extended to the power set 2^G of G.

Definition

Two subsets $T, S \subseteq G$ are said to be <u>conjugate</u> if $S = gTg^{-1}$ for some $g \in G$.

PROPOSITION

The number of conjugates of a subset $S \subseteq G$ is given by $[G : N_G(S)]$ In particular, $\#\{gsg^{-1} \mid g \in G\} = [G : C_G(s)].$

THEOREM (CLASS EQUATION)

Let G be a finite group and let g_1, \ldots, g_r be representatives of the distinct conjugacy classes of G not contained in Z(G). Then

$$|G| = |Z(G)| + \sum_{i=1}^{r} [G : C_G(g_i)].$$

Note

All summands on the right-hand side are divisors of |G|.

Theorem

If p is prime and P is a group of prime power order p^{α} with $\alpha \ge 1$, then P has a nontrivial center.

COROLLARY

If $|P| = p^2$ for some prime p, then P is Abelian. More precisely P is isomorphic to Z_{p^2} or $Z_p \times Z_p$.

Conjugacy in S_n

PROPOSITION

Let
$$\sigma, \tau \in S_n$$
 and suppose that
 $\sigma = (a_{1,1}, a_{1,2}, \ldots, a_{1,k_1})(a_{2,1}, \ldots, a_{2,k_2}) \ldots (a_{m,q}, \ldots a_{m,k_m})$
Then

$$\tau \sigma \tau^{-1} = (\tau(a_{1,1}), \tau(a_{1,2}), \dots, \tau(a_{1,k_1})) \qquad (\tau(a_{2,1}), \dots, \tau(a_{2,k_2})) \\ \dots \qquad (\tau(a_{m,q}), \dots, \tau(a_{m,k_m})).$$

DEFINITION

- 1 If $\sigma \in S_n$ is a product of disjoint cycles of lengths n_1, n_2, \ldots, n_r with $n_1 \leq n_2 \leq \cdots \leq n_r$ (including 1-cycles) then the above sequence of integers is called the cycle type of σ .
- If 0 < n ∈ Z, a partition of n is any nondecreasing sequence of positive integers whose sum is n.</p>

PROPOSITION

Two elements of S_n are conjugate in S_n if and only if they have the same cycle type. The number of conjugacy classes of S_n is equal to the number of partitions of n.

Note

If $H \trianglelefteq G$ then H is a union of conjugacy classes of G.

Theorem

 A_5 is a simple group.