GROUPS ACTING ON THEMSELVES BY CONJUGATION – THE CLASS EQUATION

Kevin James

In this section we will consider the following action of G on itself which is called <u>conjugation</u>.

$$g \cdot a = gag^{-1}$$
.

Note that this is a well-defined group action.

In this section we will consider the following action of G on itself which is called <u>conjugation</u>.

$$g \cdot a = gag^{-1}$$
.

Note that this is a well-defined group action.

DEFINITION

Two elements $a, b \in G$ are said to be <u>conjugate</u> if there is some $g \in G$ such that $a = gbg^{-1}$. That is, if they are in the same orbit of G acting on itself by conjugation.

In this section we will consider the following action of G on itself which is called <u>conjugation</u>.

$$g \cdot a = gag^{-1}$$
.

Note that this is a well-defined group action.

Definition

Two elements $a, b \in G$ are said to be <u>conjugate</u> if there is some $g \in G$ such that $a = gbg^{-1}$. That is, if they are in the same orbit of G acting on itself by conjugation.

The orbits of G acting on itself by conjugation are called conjugacy classes.

① The action of conjugation is NOT transitive. In fact, $[1_G] = \{1_G\}$.

- ① The action of conjugation is NOT transitive. In fact, $[1_G] = \{1_G\}$.
- **2** For any $S \subseteq G$, we can define $gSg^{-1} = \{gsg^{-1} \mid g \in G\}$ and thus the action of conjugation can be extended to the power set 2^G of G.

- **1** The action of conjugation is NOT transitive. In fact, $[1_G] = \{1_G\}$.
- **2** For any $S \subseteq G$, we can define $gSg^{-1} = \{gsg^{-1} \mid g \in G\}$ and thus the action of conjugation can be extended to the power set 2^G of G.

DEFINITION

Two subsets $T, S \subseteq G$ are said to be <u>conjugate</u> if $S = gTg^{-1}$ for some $g \in G$.

- ① The action of conjugation is NOT transitive. In fact, $[1_G] = \{1_G\}$.
- **2** For any $S \subseteq G$, we can define $gSg^{-1} = \{gsg^{-1} \mid g \in G\}$ and thus the action of conjugation can be extended to the power set 2^G of G.

Definition

Two subsets $T, S \subseteq G$ are said to be <u>conjugate</u> if $S = gTg^{-1}$ for some $g \in G$.

Proposition

The number of conjugates of a subset $S \subseteq G$ is given by $[G:N_G(S)]$ In particular, $\#\{gsg^{-1} \mid g \in G\} = [G:C_G(s)]$.

THEOREM (CLASS EQUATION)

Let G be a finite group and let g_1, \ldots, g_r be representatives of the distinct conjugacy classes of G not contained in Z(G). Then

$$|G| = |Z(G)| + \sum_{i=1}^{r} [G : C_G(g_i)].$$

THEOREM (CLASS EQUATION)

Let G be a finite group and let g_1, \ldots, g_r be representatives of the distinct conjugacy classes of G not contained in Z(G). Then

$$|G| = |Z(G)| + \sum_{i=1}^{r} [G : C_G(g_i)].$$

Note

All summands on the right-hand side are divisors of |G|.

THEOREM

If p is prime and P is a group of prime power order p^{α} with $\alpha \geq 1$, then P has a nontrivial center.

THEOREM

If p is prime and P is a group of prime power order p^{α} with $\alpha \geq 1$, then P has a nontrivial center.

COROLLARY

If $|P| = p^2$ for some prime p, then P is Abelian. More precisely P is isomorphic to Z_{p^2} or $Z_p \times Z_p$.

Conjugacy in S_n

Proposition

Let $\sigma, \tau \in S_n$ and suppose that $\sigma = (a_{1,1}, a_{1,2}, \dots, a_{1,k_1})(a_{2,1}, \dots, a_{2,k_2}) \dots (a_{m,q}, \dots a_{m,k_m})$. Then

$$\tau \sigma \tau^{-1} = (\tau(a_{1,1}), \tau(a_{1,2}), \dots, \tau(a_{1,k_1})) \qquad (\tau(a_{2,1}), \dots, \tau(a_{2,k_2})) \\ \dots \qquad (\tau(a_{m,q}), \dots \tau(a_{m,k_m})).$$

Let $\sigma, \tau \in S_n$ and suppose that $\sigma = (a_{1,1}, a_{1,2}, \dots, a_{1,k_1})(a_{2,1}, \dots, a_{2,k_2}) \dots (a_{m,q}, \dots a_{m,k_m})$. Then

$$\tau \sigma \tau^{-1} = (\tau(a_{1,1}), \tau(a_{1,2}), \dots, \tau(a_{1,k_1})) \qquad (\tau(a_{2,1}), \dots, \tau(a_{2,k_2})) \\ \dots \qquad (\tau(a_{m,q}), \dots \tau(a_{m,k_m})).$$

DEFINITION

- If $\sigma \in S_n$ is a product of disjoint cycles of lengths n_1, n_2, \ldots, n_r with $n_1 \leq n_2 \leq \cdots \leq n_r$ (including 1-cycles) then the above sequence of integers is called the <u>cycle type</u> of σ .
- 2 If $0 < n \in \mathbb{Z}$, a <u>partition</u> of *n* is any nondecreasing sequence of positive integers whose sum is *n*.

Two elements of S_n are conjugate in S_n if and only if they have the same cycle type. The number of conjugacy classes of S_n is equal to the number of partitions of n.

Two elements of S_n are conjugate in S_n if and only if they have the same cycle type. The number of conjugacy classes of S_n is equal to the number of partitions of n.

Note

If $H \subseteq G$ then H is a union of conjugacy classes of G.

Two elements of S_n are conjugate in S_n if and only if they have the same cycle type. The number of conjugacy classes of S_n is equal to the number of partitions of n.

Note

If $H \subseteq G$ then H is a union of conjugacy classes of G.

THEOREM

 A_5 is a simple group.