AUTOMORPHISMS

Kevin James

DEFINITION

For G a group, an isomorphism from G to itself is called an automorphsim.

FACT

For a group G, the set $\operatorname{Aut}(G)$ of automorphisms of G is a group under composition of functions. In fact, $\operatorname{Aut}(G) \leq S_G$.

Proposition

Let $H \subseteq G$. Then G acts by conjugation on H as automorphisms of H.

More specifically, the action of G on H by conjugation is defined for each $g \in G$ by $h \mapsto ghg^{-1}$ for all $h \in H$. For each $g \in G$, conjugation by g is an automorphism of H. The permutation representation afforded by this action is a homomorphism of G into $\operatorname{Aut}(H)$ with kernel $C_G(H)$.

In particular, $G/C_G(H)$ is isomorphic to a subgroup of Aut(H).

COROLLARY

If $K \leq G$ and $g \in G$, then $K \cong gKg^{-1}$. Conjugate elements and conjugate subgroups have the same order.

COROLLARY

If $H \leq G$ then $N_G(H)/C_G(H)$ is isomorphic to a subgroup of $\operatorname{Aut}(H)$.

In particular, G/Z(G) is isomorphic to a subgroup of Aut(G).

DEFINITION

Suppose that G is a group and that $g \in G$. Conjugation by g is called an <u>inner automorphism</u> of G and the subgroup of $\operatorname{Aut}(G)$ consisting of all inner automorphisms is denoted $\operatorname{Inn}(G)$.

Note

- 2 By the previous corollary, $Inn(G) \cong G/Z(G)$.
- **3** If $H \subseteq G$, then conjugation by $g \in G \setminus H$ yields an automorphism of H which may not be in Inn(H). (-e.g. consider (1,2,3) in S_4 acting by conjugation on A_4 .)

DEFINITION

Suppose that G is a group. A subgroup $H \leq G$ is called characteristic in G denoted H char G, if $\forall \sigma \in \operatorname{Aut}(G)$, $\sigma(H) = H$.

FACT

- 1 Characteristic subgroups are normal.
- 2 If H is the unique subgroup of G of a given order, then H is characteristic in G.
- **3** If K char H and $H \subseteq G$, then $K \subseteq G$.