AUTOMORPHISMS

Kevin James

(ロ) (四) (E) (E) (E)

DEFINITION

For G a group, an isomorphism from G to itself is called an automorphism.

・ロン ・回 と ・ 回 と ・ 回 と

Э.

DEFINITION

For G a group, an isomorphism from G to itself is called an automorphism.

Fact

For a group G, the set Aut(G) of automorphisms of G is a group under composition of functions. In fact, $Aut(G) \leq S_G$.

▲圖▶ ▲屋▶ ▲屋▶

æ

Definition

For G a group, an isomorphism from G to itself is called an automorphism.

Fact

For a group G, the set Aut(G) of automorphisms of G is a group under composition of functions. In fact, $Aut(G) \leq S_G$.

PROPOSITION

Let $H \trianglelefteq G$. Then G acts by conjugation on H as automorphisms of H.

Definition

For G a group, an isomorphism from G to itself is called an automorphism.

Fact

For a group G, the set Aut(G) of automorphisms of G is a group under composition of functions. In fact, $Aut(G) \leq S_G$.

PROPOSITION

Let $H \trianglelefteq G$. Then G acts by conjugation on H as automorphisms of H.

More specifically, the action of G on H by conjugation is defined for each $g \in G$ by $h \mapsto ghg^{-1}$ for all $h \in H$. For each $g \in G$, conjugation by g is an automorphism of H. The permutation representation afforded by this action is a homomorphism of G into Aut(H) with kernel $C_G(H)$.

Definition

For G a group, an isomorphism from G to itself is called an automorphism.

Fact

For a group G, the set Aut(G) of automorphisms of G is a group under composition of functions. In fact, $Aut(G) \leq S_G$.

PROPOSITION

Let $H \trianglelefteq G$. Then G acts by conjugation on H as automorphisms of H.

More specifically, the action of G on H by conjugation is defined for each $g \in G$ by $h \mapsto ghg^{-1}$ for all $h \in H$. For each $g \in G$, conjugation by g is an automorphism of H. The permutation representation afforded by this action is a homomorphism of G into $\operatorname{Aut}(H)$ with kernel $C_G(H)$. In particular, $G/C_G(H)$ is isomorphic to a subgroup of $\operatorname{Aut}(H)$.

If $K \leq G$ and $g \in G$, then $K \cong gKg^{-1}$. Conjugate elements and conjugate subgroups have the same order.

æ

If $K \leq G$ and $g \in G$, then $K \cong gKg^{-1}$. Conjugate elements and conjugate subgroups have the same order.

COROLLARY

If $H \leq G$ then $N_G(H)/C_G(H)$ is isomorphic to a subgroup of Aut(H).

- ★ 臣 ▶ - - 臣

Image: A □ > A

If $K \leq G$ and $g \in G$, then $K \cong gKg^{-1}$. Conjugate elements and conjugate subgroups have the same order.

COROLLARY

If $H \leq G$ then $N_G(H)/C_G(H)$ is isomorphic to a subgroup of Aut(H). In particular, G/Z(G) is isomorphic to a subgroup of Aut(G).

イロン イ部ン イヨン イヨン 三日

If $K \leq G$ and $g \in G$, then $K \cong gKg^{-1}$. Conjugate elements and conjugate subgroups have the same order.

COROLLARY

If $H \leq G$ then $N_G(H)/C_G(H)$ is isomorphic to a subgroup of Aut(H). In particular, G/Z(G) is isomorphic to a subgroup of Aut(G).

Definition

Suppose that G is a group and that $g \in G$. Conjugation by g is called an inner automorphism of G and the subgroup of Aut(G) consisting of all inner automorphisms is denoted Inn(G).

(ロ) (同) (E) (E) (E)

Note

1 $\operatorname{Inn}(G) \leq \operatorname{Aut}(G)$.

2 By the previous corollary, $Inn(G) \cong G/Z(G)$.

If H ≤ G, then conjugation by g ∈ G \ H yields an automorphism of H which may not be in lnn(H). (-e.g. consider (1,2,3) in S₄ acting by conjugation on A₄.)

Image: A □ > A

Note

- 1 $\operatorname{Inn}(G) \leq \operatorname{Aut}(G)$.
- **2** By the previous corollary, $Inn(G) \cong G/Z(G)$.
- If H ≤ G, then conjugation by g ∈ G \ H yields an automorphism of H which may not be in lnn(H). (-e.g. consider (1,2,3) in S₄ acting by conjugation on A₄.)

DEFINITION

Suppose that G is a group. A subgroup $H \leq G$ is called <u>characteristic</u> in G denoted H char G, if $\forall \sigma \in Aut(G), \sigma(H) = H$.

イロト イヨト イヨト イヨト

Note

- 1 $\operatorname{Inn}(G) \leq \operatorname{Aut}(G)$.
- **2** By the previous corollary, $Inn(G) \cong G/Z(G)$.
- If H ≤ G, then conjugation by g ∈ G \ H yields an automorphism of H which may not be in lnn(H). (-e.g. consider (1,2,3) in S₄ acting by conjugation on A₄.)

DEFINITION

Suppose that G is a group. A subgroup $H \leq G$ is called <u>characteristic</u> in G denoted H char G, if $\forall \sigma \in Aut(G), \sigma(H) = H$.

Fact

- 1 Characteristic subgroups are normal.
- 2 If H is the unique subgroup of G of a given order, then H is characteristic in G.
- **3** If K char H and $H \leq G$, then $K \leq G$.