Sylow's Theorem

Kevin James

DEFINITION

Let G be a group and let p be a prime.

- A group of order p^α for some α ≥ 1 is called a <u>p-group</u>. Subgroups of G which are p-groups re called p-subgroups.
- If |G| = p^αm where p is prime and p ∤ m, then a subgroup of order p^α is called a Sylow p-subgroup of G.
- **3** The set of Sylow *p*-subgroups of *G* will be denoted $Syl_p(G)$ and the number of Sylow *p*-subgroups of *G* will be denoted $\underline{n_p(G)}$.

THEOREM (SYLOW'S THEOREM)

- Let G be a group of order $p^{\alpha}m$ where p is prime and $p \nmid m$.
 - $I Syl_p(G) \neq \emptyset.$
 - If P is a Sylow p-subgroup of G and Q is any p-subgroup of G, then ∃g ∈ G such that Q ≤ gPg⁻¹. In particular, any two Sylow p-subgroups are conjugate in G.
 - **3** We have that $n_p \equiv 1 \pmod{p}$. Also, $n_p = [G : N_G(P)]$ for any Sylow p-subgroup P. Thus $n_p \mid m$.

Lemma

Let $P \in Syl_p(G)$. If Q is any p-subgroup of G, then $Q \cap N_G(P) = Q \cap P$.

COROLLARY

Let $P \in Syl_p(G)$. Then the following are equivalent.

- **1** P is the unique Sylow p-subgroup of G (-i.e. $n_p = 1$)
- $P \trianglelefteq G.$
- 8 PcharG.
- (a) If $X \subseteq G$ has the property that $x \in X \Rightarrow |x| = p^m$ for some *m*, then $\langle X \rangle$ is a p-group.

PROPOSITION

If |G| = 60 and if $n_5(G) > 1$ then G is simple.

Corollary

 A_5 is simple.

PROPOSITION

If G is a simple group of order 60, then $G \cong A_5$.