SYLOW'S THEOREM

Kevin James

DEFINITION

Let G be a group and let p be a prime.

1 A group of order p^{α} for some $\alpha \geq 1$ is called a <u>p-group</u>. Subgroups of G which are p-groups re called p-subgroups.

DEFINITION

Let G be a group and let p be a prime.

- **1** A group of order p^{α} for some $\alpha \geq 1$ is called a <u>p-group</u>. Subgroups of G which are p-groups re called p-subgroups.
- 2 If $|G| = p^{\alpha}m$ where p is prime and $p \nmid m$, then a subgroup of order p^{α} is called a Sylow p-subgroup of G.

DEFINITION

Let G be a group and let p be a prime.

- **1** A group of order p^{α} for some $\alpha \geq 1$ is called a <u>p-group</u>. Subgroups of G which are p-groups re called p-subgroups.
- 2 If $|G| = p^{\alpha}m$ where p is prime and $p \nmid m$, then a subgroup of order p^{α} is called a Sylow p-subgroup of G.
- **3** The set of Sylow *p*-subgroups of *G* will be denoted $Syl_p(G)$ and the number of Sylow *p*-subgroups of *G* will be denoted $n_p(G)$.

THEOREM (SYLOW'S THEOREM)

Let G be a group of order $p^{\alpha}m$ where p is prime and $p \nmid m$.

- 2) If P is a Sylow p-subgroup of G and Q is any p-subgroup of G, then $\exists g \in G$ such that $Q \leq gPg^{-1}$. In particular, any two Sylow p-subgroups are conjugate in G.
- **3** We have that $n_p \equiv 1 \pmod{p}$. Also, $n_p = [G : N_G(P)]$ for any Sylow p-subgroup P. Thus $n_p \mid m$.

LEMMA

Let $P \in Syl_p(G)$. If Q is any p-subgroup of G, then $Q \cap N_G(P) = Q \cap P$.

LEMMA

Let $P \in Syl_p(G)$. If Q is any p-subgroup of G, then $Q \cap N_G(P) = Q \cap P$.

Corollary

Let $P \in Syl_p(G)$. Then the following are equivalent.

- **1** P is the unique Sylow p-subgroup of G (-i.e. $n_p = 1$)
- $P \subseteq G$.
- 3 PcharG.
- **1** If $X \subseteq G$ has the property that $x \in X \Rightarrow |x| = p^m$ for some m, then < X > is a p-group.

Proposition

If |G| = 60 and if $n_5(G) > 1$ then G is simple.

Proposition

If |G| = 60 and if $n_5(G) > 1$ then G is simple.

COROLLARY

 A_5 is simple.

Proposition

If |G| = 60 and if $n_5(G) > 1$ then G is simple.

COROLLARY

 A_5 is simple.

PROPOSITION

If G is a simple group of order 60, then $G \cong A_5$.

