DIRECT PRODUCTS

Kevin James

DEFINITION

Suppose that G₁,..., G_n are groups with operations
*₁, *₂,..., *_n. Then their direct product G₁ × ··· × G_n has a binary operation defined componentwise. That is,

$$(g_1,\ldots,g_n)(h_1,\ldots,h_n) = (g_1 *_1 h_1,\ldots,g_n *_n h_n).$$

Suppose that G₁, G₂,... are groups with operations
*1, *2,.... Then the direct product of these groups has an operation defined componentwise as above.

PROPOSITION

If G_1, \ldots, G_n are groups, their direct product is a group of order $|G_1| \cdot |G_2| \cdot \cdots \cdot |G_n|$.

Proposition

Let G_1, G_2, \ldots, G_n be groups and let $G = G_1 \times \cdots \times G_n$ be their direct product.

1 For each $1 \le i \le n$ we define

$$\mathfrak{G}_i = \{ (1_{G_1}, \dots, 1_{G_{i-1}}, g, 1_{G_{i+1}}, \dots, 1_{G_n}) \mid g \in G_i \}.$$

We have that $G_i \cong \mathfrak{G}_i$ is a subgroup of G and identifying G_i with \mathfrak{G}_i , we have that $G_i \trianglelefteq G$ and that $G/G_i \cong G_1/G_i \times \cdots \times G_{i-1}/G_i \times G_{i+1}/G_i, \times \cdots \times G_n/G_i.$

- ② For each $1 \le i \le n$, define $\pi_i : G \to G_i$ by $\pi_i((g_1, ..., g_n)) = g_i$. Then π is a surjective homomorphism with ker = { $(g_1, ..., g_{i-1}, 1_{G_i}, g_{i+1}, ..., g_n)$ | $g_j \in G_j$ } ≅ $G_1 \times \cdots \times G_{i-1} \times G_{i+1} \times \cdots \times G_n$.
- **3** Under these identifications if $x \in G_i$ and $y \in G_j$ with $i \neq j$, then xy = yx.