DIRECT PRODUCTS

Kevin James

DEFINITION

1 Suppose that G_1, \ldots, G_n are groups with operations $*_1, *_2, \ldots, *_n$. Then their direct product $G_1 \times \cdots \times G_n$ has a binary operation defined componentwise. That is,

$$(g_1,\ldots,g_n)(h_1,\ldots,h_n)=(g_1*_1h_1,\ldots,g_n*_nh_n).$$

2 Suppose that G_1, G_2, \ldots are groups with operations $*_1, *_2, \ldots$ Then the direct product of these groups has an operation defined componentwise as above.

DEFINITION

1 Suppose that G_1, \ldots, G_n are groups with operations $*_1, *_2, \ldots, *_n$. Then their direct product $G_1 \times \cdots \times G_n$ has a binary operation defined componentwise. That is,

$$(g_1,\ldots,g_n)(h_1,\ldots,h_n)=(g_1*_1h_1,\ldots,g_n*_nh_n).$$

2 Suppose that G_1, G_2, \ldots are groups with operations $*_1, *_2, \ldots$ Then the direct product of these groups has an operation defined componentwise as above.

Proposition

If G_1, \ldots, G) n are groups, their direct product is a group of order $|G_1| \cdot |G_2| \ldots |G_n|$. Likewise if G_1, G_2, \ldots are groups then their direct product is a group.

Proposition

Let G_1, \ldots, G_n be groups and let $G = G_1 \times \cdots \times G_n$ be their direct product.

1 For each $1 \le i \le n$, we define

$$G_i = \{(1_{G_1}, \dots, 1_{G_{i-1}}, g, 1_{G_{i+1}}, \dots 1_{G_n}) \mid g \in G_i\}.$$

We have that $G_i \cong \mathcal{G}_i$ which is a subgroup of G and identifying G_i with \mathcal{G}_i , we have that $G_i \subseteq G$ and that $G/G_i \cong G_1 \times \cdots \times G_{i-1} \times G_{i+1} \times \cdots \times G_n$.

② For each $1 \leq i \leq n$, define $\pi_i : G \to G_i$ by $\pi((g_1, \ldots, g_n)) = g_i$. Then, π_i is a surjective homomorphism with

$$\ker(\pi_i) = \{(g_1, \dots, g_{i-1}, 1_{G_i}, g_{i+1}, \dots, g_n) \mid g_j \in G_j\}$$

$$\cong G_1 \times \dots \times G_{i-1} \times G_{i+1} \times \dots \times G_n.$$

3 Under these identifications if $x \in G_i$ and $y \in G_j$ and $i \neq j$, then xy = yx.