FUNDAMENTAL THEOREM OF FINITELY GENERATED ABELIAN GROUPS

Kevin James

Definition

- **1** A group G is finitely generated if there is a finite subset $A \subseteq G$ such that $G = \langle A \rangle$.
- Por each 0 ≤ r ∈ Z, let Z^r = Z × ··· × Z be the direct product of r copies of Z, where we take Z⁰ = 1. The group Z^r is a free abelian group of rank r.

THEOREM (FUNDAMENTAL THEOREM OF FINITELY GENERATED ABELIAN GROUPS)

Let G be a finitely generated Abelian group. Then,

1 $G \cong \mathbb{Z}^r \times Z_{n_1} \times \cdots \times Z_{n_s}$ for some integers r, n_1, \ldots, n_s satisfying the following conditions.

•
$$r \ge 0$$
 and $n_j \ge 2$ for $1 \le j \le s$, and

2
$$n_{i+1}|n_i \text{ for } 1 \leq i \leq (s-1)$$

2 The expression above is unique.

DEFINITION

The integer r in the above Theorem is called the <u>free rank</u> or <u>Betti number</u> of G and the integers n_i are called the <u>invariant factors</u> of G. The description of G in the Theorem is called the invariant factor decomposition of G.

Note

- Two finitely generated Abelian groups are isomorphic if and only if they have the same free rank and the same invariant factors.
- 2 All finite Abelian groups are finitely generated.
- **3** A finitely generated Abelian group is finite if and only if its free rank is 0.
- **1** The finite Abelian groups are given up to isomorphism by the various $Z_{n_1} \times \cdots \times Z_{n_s}$ where

1
$$n_j \ge 2$$
,
2 $n_{i+1}|n_i$,
3 $n_1 \cdot n_2 \cdot \cdots \cdot n_s = n$.
4 Every prime divisor of n must divide n_1

COROLLARY

If n is the product of distinct primes and G is an Abelian group of order n, then $G \cong Z_n$.

Theorem

Let G be an abelian group of order n > 1 and let the unique factorization of n into distinct prime powers be given by $n = p_1^{a_1} \dots p_k^{a_k}$. Then, **1** $G \cong A_1 \times \cdots \times A_k$, where $|A_i| = p_i^{a_i}$ **2** for each $A \in \{A_1, \ldots, A_k\}$ with $|A| = p^a$, $A \cong Z_{p^{b_1}} \times \cdots \times Z_{p^{b_t}}$ with $b_1 > b_2 > \cdots > b_t$ and $b_1 + \cdots + b_t = a$ The decomposition given above is unique. 8

Definition

The integers p^{b_i} described in the preceding theorem are called the elementary divisors of *G*. The description of *G* in the first parts of the theorem is called the elementary divisor decomposition of *G*.

Note

- The A_i are the Sylow *p*-subgroups of *G*. Thus a finite Abelian group is the direct product of its Sylow *p*-subgroups.
- 2 The decomposition of A_i appearing in the 2nd part of the theorem is the invariant factor decomposition of A_i. So the elementary divisors of G are the invariant factors of the Sylow p-subgroups as p varies over all primes dividing |G|.

PROPOSITION

Let $0 < m, n \in \mathbb{Z}$.

1
$$Z_m \times Z_n \cong Z_{mn}$$
 if and only if $(m, n) = 1$.

2 If
$$n = p_1^{a_1} \dots p_k^{a_k}$$
, then $Z_n \cong Z_{p_1^{a_1}} \times \dots \times Z_{p_k^{a_k}}$.

DEFINITION

- **1** If G is a finite abelian group of type (n_1, \ldots, n_t) , the integer t is called the <u>rank</u> of G.
- If G is any group, the exponent of G is the smallest positive integer n such that xⁿ = 1, ∀x ∈ G. If no such n exists we say that the exponent is ∞.