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DEFINITION

@ A group G is finitely generated if there is a finite subset
A C G such that G =< A >.

® Foreach0<recZ let Z' =7 x --- X Z be the direct
product of r copies of Z, where we take Z° = 1. The group
Z" is a free abelian group of rank r.
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® Foreach0<recZ let Z' =7 x --- X Z be the direct
product of r copies of Z, where we take Z° = 1. The group
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THEOREM (FUNDAMENTAL THEOREM OF FINITELY

GENERATED ABELIAN GROUPS)

Let G be a finitely generated Abelian group. Then,
O G=Z" X Zp X -+ X Z, for some integers r,ny,...,Ns
satisfying the following conditions.
@ r>0andn >2frl<j<s, and
@ nii1ln forl1 < i< (s—1).

® The expression above is unique.
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The integer r in the above Theorem is called the free rank or
Betti number of G and the integers n; are called the
invariant factors of G. The description of G in the Theorem is

called the invariant factor decomposition of G.
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NOTE

@ Two finitely generated Abelian groups are isomorphic if and
only if they have the same free rank and the same invariant
factors.

® All finite Abelian groups are finitely generated.

® A finitely generated Abelian group is finite if and only if its
free rank is 0.
@ The finite Abelian groups are given up to isomorphism by the
various Zp, X -+ X Z,_ where
O n>2
O nii1|n;,
©n - ng = n.
@ Every prime divisor of n must divide nj.
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COROLLARY

If n is the product of distinct primes and G is an Abelian group of
order n, then G = Z,,.
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COROLLARY

If n is the product of distinct primes and G is an Abelian group of
order n, then G = Z,,.

THEOREM

| A

Let G be an abelian group of order n > 1 and let the unique
factorization of n into distinct prime powers be given by
n=p...p. Then,

O G = A x - x Ay, where |Aj| = p"
@ for each A € {A1,..., A} with |A] = p?,

A Zp X X Zop,

with by > b > ---> by and by +---+ by = a

® The decomposition given above is unique.
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The integers p? described in the preceding theorem are called the
elementary divisors of G. The description of G in the first parts of

the theorem is called the elementary divisor decomposition of G.
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DEFINITION

The integers p? described in the preceding theorem are called the
elementary divisors of G. The description of G in the first parts of
the theorem is called the elementary divisor decomposition of G.

| \

NOTE
@ The A; are the Sylow p-subgroups of G. Thus a finite Abelian
group is the direct product of its Sylow p-subgroups.
® The decomposition of A; appearing in the 2nd part of the
theorem is the invariant factor decomposition of A;. So the
elementary divisors of G are the invariant factors of the Sylow
p-subgroups as p varies over all primes dividing |G]|.
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PROPOSITION

Let 0 < m,n € Z.
@ Zy X Zy = Zpyp if and only if (m,n) = 1.
® Ifn=p'...pk, thenZ,,%Zpil x---prik.
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DEFINITION

| A\

© If G is a finite abelian group of type (n1,..., n:), the integer t
is called the rank of G.
® If G is any group, the exponent of G is the smallest positive

integer n such that x” =1, Vx € G. If no such n exists we say
that the exponent is oc.
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