RECOGNIZING DIRECT PRODUCTS

Kevin James

DEFINITION

Let G be a group and $x, y \in G$ and $\emptyset \neq A, B \subseteq G$.

- **1** Define the commutator of x and y to be $[x, y] = x^{-1}y^{-1}xy$.
- **2** Define $[A, B] = \langle \{[a, b] \mid a \in A; b \in B \} \rangle$.
- **8** Define the commutator subgroup of G to be G' = [G, G]

PROPOSITION

Let G be a group and let $x, y \in G$ and $G \leq G$. Then,

1
$$xy = yx[x, y]$$
. Thus $xy = yx \Leftrightarrow [x, y] = 1$.

- **2** $H \leq G$ if and only if $[H, G] \leq H$.
- **3** $\sigma[x, y] = [\sigma(x), \sigma(y)]$ fo any $\sigma \in Aut(G)$, G' char G and G/G' is Abelian.
- ④ G/G' is the largest Abelian quotient of G, that is if H ≤ G and G/H is Abelian then G' ≤ H. Conversely if G' ≤ H, then H ≤ G and G/H is Abelian.
- If φ : G → A is any homomorphism of G into an Abelian group A, then φ factors through G' (-i.e. G' ≤ ker(φ) and we have a commutative diagram....).

PROPOSITION

Let G be a group and $H, K \leq G$. The number of distinct ways of expressing a given element of HK as hk where $h \in H$ and $k \in K$ is $|H \cap K|$. In particular, if $H \cap K = 1$, then each element of HK can be written uniquely as hk for some $h \in H$ and $k \in K$.

Theorem

Suppose that G is a group and $H, K \leq G$ such that

- $\bullet H, K \trianglelefteq G \text{ and},$
- $\Theta H \cap K = 1.$

Then, $HK \cong H \times K$.

DEFINITION

Suppose that G is a group and $H, K \trianglelefteq G$ with $H \cap K = 1$, we call HK the internal direct product of H and K.

EXAMPLE

Let $0 < n \in \mathbb{Z}$ be odd. Then $D_{4n} \cong D_{2n} \times Z_2$. More precisely, if we take $H = < s, r^2 >$ and $K = < r^n >$. Then $H \cong D_{2n}, K \cong Z_2$ and $D_{4n} = HK \cong H \times K$.