SEMIDIRECT PRODUCTS

Kevin James

DEFINITION

Suppose that H and K are groups and let $\phi : K \to \operatorname{Aut}(H)$ be a homomorphism. We may define an action of K on H as $k \cdot h = \phi(k)(h)$.

Then we define the semi-direct product $H \rtimes_{\phi} K$ of H and K with respect to ϕ as follows. As a set $H \rtimes_{\phi} K = H \times K$. The group operation of $H \rtimes_{\phi} K$ is defined by

$$(h_1, k_1)(h_2, k_2) = (h_1(k_1 \cdot h_1), k_1k_2)$$

= $(h_1\phi(k_1)(h_1), k_1k_2).$

THEOREM

Let H and K be groups and let $\phi: K \to \operatorname{Aut}(H)$ be a homomorphism. Then

- **1** $H \rtimes_{\phi} K$ is a group of order |H||K|.
- 2 Let $\tilde{H} = \{(h, 1_K) \mid h \in H\}$ and $\tilde{K} = \{(1_H, k) \mid k \in K\}$. Then $\tilde{H}, \tilde{K} \leq H \rtimes_{\phi} K$ with $\tilde{H} \cong H$ and $\tilde{K} \cong K$.
- **3** $H \subseteq H \rtimes_{\phi} K$.
- **4** $H \cap K = 1$.
- **6** $HK = H \rtimes_{\phi} K$.
- **6** \forall *h* ∈ *H* and *k* ∈ *K*, *khk*⁻¹ = *k* · *h* = ϕ (*k*)(*h*).

Proposition

Let H and K be groups and let $\phi: K \to \operatorname{Aut} H$ be a homomorphism. The following are equivalent.

- **1** The identity map between $H \rtimes K$ and $H \times K$ is a group homomorphism (and hence isomorphism).
- **2** ϕ is the trivial homomorphism from K into Aut(H).
- $\mathbf{8}$ $K \leq H \rtimes K$.

THEOREM

Suppose that G is a group and $H, K \leq G$ such that

- \bullet $H \subseteq G$, and
- **2** $H \cap K = 1$.

Let $\phi: K \to \operatorname{Aut}(H)$ be the homomorphism defined by $\phi(k)(h) = khk^{-1}$. Then, $HK \cong H \rtimes K$. In particular, if G = HK with H and K satisfying (1) and (2) above then G is the semidirect product of H and K.

DEFINITION

Let H be a subgroup of G. A subgroup K is called a <u>complement</u> of H in G if G = HK and $H \cap K = 1$.