p-groups, Nilpotent groups and Solvable groups

Kevin James

A <u>maximal subgroup</u> of a group G is a proper subgroup $M \le G$ such that there are no subgroups H with M < H < G.

A <u>maximal subgroup</u> of a group G is a proper subgroup $M \le G$ such that there are no subgroups H with M < H < G.

THEOREM (p-GROUPS)

Let p be a prime and let P be agroup of order p^a with $a \ge 1$. Then,

- **1** $Z(P) \neq 1$.
- **2** If $1 \neq H \leq P$ then $H \cap Z(P) \neq 1$. In particular, every normal subgroup of order p is contained in the center.
- **3** If $H \subseteq P$, then for each $p^b||H|$, $\exists K \leq H$ such that $K \subseteq P$. In particular, P has a normal subgroup of order p^b for $1 \leq b \leq a$.
- **4** If H < P then $H < N_P(H)$.
- **6** Every maximal subgroup of P is of index p and is normal in P.

1 For *G* a group we inductively define:

$$Z_0(G)=1, \qquad Z_1(G)=Z(G)$$

and $Z_{i+1}(G)$ is the subgroup of G containing $Z_i(G)$ such that

$$Z_{i+1}(G)/Z_i(G) = Z(G/Z_i(G))$$

The chain $Z_0(G) \leq Z_1(G) \leq Z_2(G) \leq \ldots$ is called the upper central series of G.

2 A group G is called <u>nilpotent</u> if $Z_c(G) = G$ for some $c \in \mathbb{Z}$. The smallest such c is called the nilpotence class of G.

Note

- **1** One can show (for homework) that $Z_i(G)$ char G, $\forall i$.
- 2 If $1 \neq G$ is Abelian then G is nilpotent of class 1.
- 3 For finite groups, the upper central series must stabilize.
- If two terms of the upper central series are the same then the series stabilize form that point onward.

Note

- **1** One can show (for homework) that $Z_i(G)$ char $G, \forall i$.
- 2 If $1 \neq G$ is Abelian then G is nilpotent of class 1.
- 3 For finite groups, the upper central series must stabilize.
- If two terms of the upper central series are the same then the series stabilize form that point onward.

PROPOSITION

Let p be aprime and let P be a group of order p^a . Then P is nilpotent of nilpotence class at most (a-1).

THEOREM

Let G be a finite group and let p_1, p_2, \ldots, p_s be the distince primes dividing |G| and let $P_i \in Syl_{p_i}(G)$, $1 \le i \le s$. Then the following are equivalent

- G is nilpotent.
- 2) If H < G then $H < N_G(H)$.
- **3** $P_i \subseteq G$ for $1 \le i \le s$.

THEOREM

Let G be a finite group and let p_1, p_2, \ldots, p_s be the distince primes dividing |G| and let $P_i \in Syl_{p_i}(G)$, $1 \le i \le s$. Then the following are equivalent

- G is nilpotent.
- 2) If H < G then $H < N_G(H)$.
- **3** $P_i \subseteq G$ for $1 \le i \le s$.

COROLLARY

A finite Abelian group is the direct product of its Sylow subgroups.

Proposition

If G is a finite group such that for all positive integers n dividing its order, G contains at most n elements x satisfying $x^n = 1$, then G is cyclic.

Proposition

If G is a finite group such that for all positive integers n dividing its order, G contains at most n elements x satisfying $x^n = 1$, then G is cyclic.

Proposition (Frattini's Argument)

Let G be a finite group, let H be a normal subgroup of G and let P be a Sylow p-subgroup of H. Then $G = HN_G(P)$ and [G : H] divides $|N_G(P)|$.

Proposition

If G is a finite group such that for all positive integers n dividing its order, G contains at most n elements x satisfying $x^n = 1$, then G is cyclic.

Proposition (Frattini's Argument)

Let G be a finite group, let H be a normal subgroup of G and let P be a Sylow p-subgroup of H. Then $G = HN_G(P)$ and [G : H] divides $|N_G(P)|$.

Proposition

A finite group is nilpotent if and only if every maximal subgroup is normal.

For any group *G* we inductively define:

$$G^0 = G$$
, $G^1 = [G, G]$, and $G^{i+1} = [G, G^i]$.

Then chain of groups $G^0 \ge G^1 \ge ...$ is called the lower central series of G.

For any group *G* we inductively define:

$$G^0 = G,$$
 $G^1 = [G, G],$ and $G^{i+1} = [G, G^i].$

Then chain of groups $G^0 \ge G^1 \ge ...$ is called the lower central series of G.

THEOREM

A group G is nilpotent if and only if $G^n=1$ for some $n\geq 0$. More precisely, G is nilpotent of class c if and only if c is the smallest nonnegative integer such that $G^c=1$. If G is nilpotent of class c then

$$Z_i(G) \le G^{c-i-1} \le Z_{i+1}(G)$$
 $0 \le i \le c-1$.

RECALL

A group G is said to be solvable if there is a series $1=H_0 \unlhd H_1 \unlhd \cdots \unlhd H_s=G$ such that H_{i+1}/H_i is Abelian.

RECALL

A group G is said to be solvable if there is a series $1 = H_0 \unlhd H_1 \unlhd \cdots \unlhd H_s = G$ such that H_{i+1}/H_i is Abelian.

Definition

For any group G we inductively define:

$$G^{(0)} = G, G^{(1)} = [G, G], \text{ and } G^{(i+1)} = [G^{(i)}, G^{(i)}] \text{ for all } i \ge 1.$$

This series of groups is called the <u>derived or commutator series</u> of G.

RECALL

A group G is said to be solvable if there is a series $1 = H_0 \trianglelefteq H_1 \trianglelefteq \cdots \trianglelefteq H_s = G$ such that H_{i+1}/H_i is Abelian.

DEFINITION

For any group *G* we inductively define:

$$G^{(0)} = G, G^{(1)} = [G, G], \text{ and } G^{(i+1)} = [G^{(i)}, G^{(i)}] \text{ for all } i \ge 1.$$

This series of groups is called the <u>derived or commutator series</u> of G.

Theorem

A group G is solvable if and only if $G^{(n)} = 1$ for some $n \ge 0$.

It G is solvable, the smallest nonnetative n for which $G^{(n)} = 1$ is called the solvable length of G.

It G is solvable, the smallest nonnetative n for which $G^{(n)}=1$ is called the solvable length of G.

Proposition

Let G and K be groups, let $H \leq G$ and let $\phi : G \to K$ be a surjective homomorphism.

- **1** $H^{(i)} \leq G^{(i)}$, $\forall i \geq 0$. In particular, if G is solvable then so is H and the solvable length of H is less than or equal to the solvable length of G.
- 2 $\phi(G^{(i)}) = K^{(i)}$. In particular, homomorphic images of quotient groups of solvable groups are solvable of solvable length less than or equal to that of the domain group.
- 3 If $N \subseteq G$ and both N and G/N are solvable then so is G.

THEOREM

BURNSIDE If $|G| = p^a q^b$ for some primes p and q, then G is solvable.

PHILIP HALL If for every prime p dividing |G|, we write $|G| = p^a m$ with (p, m) = 1, and G has a subgroup of order m, then G is solvable.

FEIT-THOMPSON If |G| is odd then G is solvable.

THOMPSON If for every pair of elements $x, y \in G$, $\langle x, y \rangle$ is solvable then so is G.