RINGS: BASIC DEFINITIONS AND EXAMPLES

Kevin James

DEFINITION

- A ring is a set together with two binary operations called addition and multiplication satisfying the following axioms:
 - **1** (R, +) is an Abelian group.
 - $\mathbf{2}$ imes is associative
 - 8 The following distributive laws hold:

$$(a+b)c = ac + bc$$
 and $a(b+c) = ab + ac$.

- 2 The ring *R* is <u>commutative</u> if multiplication is commutative.
 3 The ring *R* is said to have an identity if there is an element
- B) The ring R is said to have an identity if there is an element $1_R \in R$ such that

$$1_R \times a = a = a \times 1_R \quad \forall a \in R.$$

DEFINITION

A ring with identity in which $0_R \neq 1_R$ is called a <u>division ring</u> if every $0_R \neq a \in R$ has a multiplicative inverse. A commutative division ring is called a <u>field</u>.

PROPOSITION

Let R be a ring. Then,

Definition

Let R be a ring.

- **1** An element $0_R \neq a \in R$ is called a <u>zero divisor</u> if there is $0_R \neq b \in R$ such that $ab = 0_R$ or $ba = 0_R$.
- Suppose that R has an identity 1_R ≠ 0_R. An element u ∈ R is called a <u>unit</u> in R if there is some v ∈ R such that uv = vu = 1_R.
- 3 The set of units of R is denoted R[×] or R^{*}. Thus fields contain no zero divisors.

Note

- R* is a group under multiplication referred to as the group of units.
- 2 A zero divisor can never be a unit.

DEFINITION

A commutative ring with identity $1_R \neq 0_R$ is called an integral domain if it has no zero divisors.

PROPOSITION

Suppose that $a, b, c \in R$ and that R has no zero divisors. If ab = ac then either $a = 0_R$ or b = c.

PROPOSITION

A finite integral domain is a field.

DEFINITION

A subring of a ring R is a subgroup of R that is closed under multiplication.