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PoLyNOMIAL RINGS

DEFINITION

Suppose that R is a ring. We define the ring of polynomials in the
variable x as

d
Rx] ={D)_anx" | a,€R}.
n=0
Addition and multiplication are defined as follows
o Zglzo a,x" + ZZZ:O byx" = ZT:ag(dl,dz)(an + by)x".

di d> d
(Z a,,x"> X <Z b,,x”> Z Z apbpx™TM
n=0

n=0 n=0 m=0
di+d> n
= Z Z a,-b,,_,- x"
n=0 j=0
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NOTE

® R — R[x]. This copy of R in R[x] is called the constant
polynomials.

® R[x] is a ring with Og[, = Or.

® If R is commutative then so is R[x].

O if R has an identity 1g then R[x] has an identity 1z, = 1k

@ If f(x) = 3.9 , and a4 # Og, then d is said to be the degree
of f(x) and ay is said to be the leading coefficient. We will

leave the degree of the 0 polynomial undefined but take the
leading coefficient to be Og.
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PROPOSITION

Let R be an integral domain and let p(x), q(x) € R[x] be nonzero.
Then,

® deg(pq) = deg(p) + deg(q).
@ the units of R[x| are jus the units of R.

® R[x] is an integral domain.
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MATRIX RINGS

Suppose that R is a ring and that 0 < n € Z. Then we define
M,(R) to be the set of n x n matrices with coefficients in R. We

define addition component wise as usual and define multiplication
as for M,(R).
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MATRIX RINGS

DEFINITION

Suppose that R is a ring and that 0 < n € Z. Then we define
M,(R) to be the set of n x n matrices with coefficients in R. We

define addition component wise as usual and define multiplication
as for Mp(R).

| A

NOTE

© If R is nontrivial, then M,(R) is non-commutative.

® If R is nontrivial, then M,(R) has zero divisors.

® Note that R <— M,(R) as scalar matrices.

@ The scalar matrices commute if and only if R is commutative.

® If R has an identity, then the matrix with 1z in each diagonal
entry and Og elsewhere is an identity for M,(R).

® In the case that R has an identity, we define
GLn(R) = Mp(R)*
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GROUP RINGS

DEFINITION

Suppose that R is a commutative ring with identity and that
G ={g1,...,8n} is any finite group with group operation written
multiplicatively. Define the group ring RG of G with coefficients in
R as follows
RG = {Zf:lajgj | ajeR g€ G},
where the sums are formal sums.
Addition is defined componentwise:
> =138 + > 1 bigg = 221 (a + by)gj-
Multiplication: We define (agj)(bg;) = (ab)(gigj) where the first
product is in R and the second is in G.
We extend the multiplication to RG as

(Zrs i) * (X5 bii) = X (Zgngrss 2mbn) &

Kevin James Polynomial Rings, Matrix Rings and Group Rings



@ If R and G are as above then RG is a ring.

® It is not necessary for R to be commutative.
® RG is commutative if and only if R and G are.
® R — RG.

® The elements of R commute with the elements of RG
assuming commutativity of R.

® lgc = 1rle.
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