RING HOMOMORPHISMS AND QUOTIENT RINGS

Kevin James

Kevin James Ring Homomorphisms and Quotient Rings

臣

DEFINITION

Let R and S be rings.

() A ring homomorphism is a map $\phi: R \to S$ satisfying

- 2 The kernel ker(ϕ) of ϕ is defined as ker(ϕ) = { $r \in R \mid \phi(r) = 0_S$ }.

8 A bijective ring homomorphism is called a ring isomorphism.

・ 同 ト ・ ヨ ト ・ ヨ ト …

DEFINITION

Let R and S be rings.

1 A ring homomorphism is a map $\phi : R \to S$ satisfying

- 2 The kernel ker(ϕ) of ϕ is defined as ker(ϕ) = { $r \in R \mid \phi(r) = 0_S$ }.

8 A bijective ring homomorphism is called a ring isomorphism.

PROPOSITION

Let R and S be rings and let $\phi : R \to S$ be a homomorphism.

- **1** The imabe of ϕ is a subring of S.
- ≥ ker(φ) is a subring of R with the additional property that for all r ∈ ker(φ) and a ∈ R, ra, ar ∈ ker(φ).

イロト イヨト イヨト イヨト

DEFINITION

Let *R* be a ring, let $I \subseteq R$ and let $r \in R$.

1
$$rI = \{ra \mid a \in I\}$$
 and $Ir = \{ar \mid a \in I\}$.

2 A subset I of R is a <u>left ideal</u> or R if

1 I is a subring of R, and

2 $rI \subseteq I$ for all $r \in R$.

(3) A subset I of R is a right ideal or R if

1 *I* is a subring of *R*, and

2 $Ir \subseteq I$ for all $r \in R$.

(1) A subset *I* that is both a left ideal and right ideal is called an <u>ideal</u>. In this case, we write $I \leq R$.

伺 ト イヨト イヨト

PROPOSITION

Let R be a ring and let $I \leq R$. Then the quotient group R/I is a ring under the addition and multiplication operations

$$(r+I) + (s+I) = (r+s) + I$$
, $(r+I)(s+I) = (rs) + I$,

for all $r, s \in R$. Conversely if I is any subgroup sh that the above operation are well-defined, then $I \leq R$.

通 ト イ ヨ ト イ ヨ ト

PROPOSITION

Let R be a ring and let $I \leq R$. Then the quotient group R/I is a ring under the addition and multiplication operations

(r+I) + (s+I) = (r+s) + I, (r+I)(s+I) = (rs) + I,

for all $r, s \in R$. Conversely if I is any subgroup sh that the above operation are well-defined, then $I \leq R$.

DEFINITION

If R is a ring and $I \le R$, then R/I with operations as in the above proposition is called the quotient ring of R by I.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem

- **1** (The First Isomorphism Theorem) If $\phi : R \to S$ is a homomorphism of rings, then ker $(\phi) \leq R$ and $\phi(R)$ is a subring of S and $R / \text{ker}(\phi) \cong \phi(R)$.
- If I is any ideal of R, then the map π : R → R/I defined by π(r) = r + I is a surjective ring homomorphism with ker(π) = I. (π is called the natural projection of R onto R/I.)

・ 同 ト ・ ヨ ト ・ ヨ ト