EUCLIDEAN DOMAINS

Kevin James

DEFINITION

Suppose that R is an integral domain. Any function $N: R \to \mathbb{N} \cup \{0\}$ with N(0) = 0 is a <u>norm</u>. If N(a) > 0, $\forall a \in R \setminus \{0_R\}$, then N is called a <u>positive norm</u>.

DEFINITION

An integral domain R is called a <u>Euclidean Domain</u> if R has a division algorithm. That is, if there is a norm N of R such that for any $a,b\in R$ with $b\neq 0_R$ there exists $q,r\in R$ satisfying:

- **2** $r = 0_R$ or N(r) < N(b).

For such $q, r \in R$, q is called a <u>quotient</u> and r is called a <u>remainder</u> upon divison of a by b.

Note

The existence of a division algorithm for a ring R allows employment of the Euclidean Algorithm in R for computation of greatest common divisors.

PROPOSITION

If R is a Euclidean Domain, then every ideal is principal. More precisely, if $I \subseteq R$, then I = (d) where d is any element of I of minimum norm.

EXAMPLE

- $\mathbb Z$ is a Euclidean domain and thus all ideals of $\mathbb Z$ are principal.
- $\mathbb{Q}[x]$ is a Euclidean domain.
- $\mathbb{Z}[x]$ is not a Euclidean domain since one can check that (3,x) is not principal.

DEFINITION

Let R be a commutative ring and let $a, b \in R$ with $b \neq 0_R$.

- ① We say that a is a multiple of b if there is $c \in R$ such that a = bc. We also say that b divides a and write b|a.
- 2 A greatest common divisor of a and b (if it exists) is an element $d \in R$ satisfying
 - $\mathbf{0}$ d|a and d|b, and
 - 2) if $d' \in R$, d'|a and d'|b then d'|d also.

Proposition

If $a, b \in R$ and (a, b) = (d) then d is a greatest common divisor of a and b.

PROPOSITION

Suppose that R is an integral domain and that $d, d' \in R$. If (d) = (d'), then there is a unit $u \in R^{\times}$ such that d = ud'. In particular, if d and d' are greatest common divisors of a and b then d = ud' for some $u \in R^{\times}$.

THEOREM

Let R be a Euclidean domain and let $a, b \in R$ be non-zero. Let $d = r_n$ be the final non-zero remainder in the Euclidean Algorithm.

- 1 d is a greatest common divisor of a and b, and
- **2** (a,b)=(d). In particular, d is an R-linear combination of a and b. That is there are $x,y\in R$ such that d=ax+by.

DEFINITION

Suppose that R is an integral domain. Denote by $\tilde{R}=R^\times\cup\{0_R\}$. We say that $u\in R\setminus \tilde{R}$ is a <u>universal side divisor</u> if $\forall x\in R, \exists z\in \tilde{R}$ such that u divides x-z. That is, there is $q\in R$ and $z\in \tilde{R}$ such that x=qu+z.

Proposition

Let R be an integral domain that is not a field. If R is a Euclidean domain then R has universal side divisors.

Example

 $R=\mathbb{Z}\left[rac{\left(1+\sqrt{-19}
ight)}{2}
ight]$ is an integral domain which has no universal side divisors and is therefore not a Euclidean domain.

