EUCLIDEAN DOMAINS

Kevin James

◆□ > ◆□ > ◆臣 > ◆臣 > ○

æ

Suppose that *R* is an integral domain. Any function $N : R \to \mathbb{N} \cup \{0\}$ with N(0) = 0 is a <u>norm</u>. If N(a) > 0, $\forall a \in R \setminus \{0_R\}$, then *N* is called a positive norm.

・ 同 ト ・ 臣 ト ・ 臣 ト

æ

Suppose that *R* is an integral domain. Any function $N : R \to \mathbb{N} \cup \{0\}$ with N(0) = 0 is a <u>norm</u>. If N(a) > 0, $\forall a \in R \setminus \{0_R\}$, then *N* is called a positive norm.

DEFINITION

An integral domain R is called a <u>Euclidean Domain</u> if R has a division algorithm. That is, if there is a norm N of R such that for any $a, b \in R$ with $b \neq 0_R$ there exists $q, r \in R$ satisfying:

$$1 a = bq + r, and$$

2
$$r = 0_R$$
 or $N(r) < N(b)$.

For such $q, r \in R$, q is called a <u>quotient</u> and r is called a <u>remainder</u> upon divison of a by b.

イロン イ部ン イヨン イヨン 三日

Note

The existence of a division algorithm for a ring R allows employment of the Euclidean Algorithm in R for computation of greatest common divisors.

- 4 同 ト 4 臣 ト 4 臣 ト

æ

Note

The existence of a division algorithm for a ring R allows employment of the Euclidean Algorithm in R for computation of greatest common divisors.

PROPOSITION

If R is a Euclidean Domain, then every ideal is principal. More precisely, if $I \leq R$, then I = (d) where d is any element of I of minimum norm.

Note

The existence of a division algorithm for a ring R allows employment of the Euclidean Algorithm in R for computation of greatest common divisors.

PROPOSITION

If R is a Euclidean Domain, then every ideal is principal. More precisely, if $I \leq R$, then I = (d) where d is any element of I of minimum norm.

EXAMPLE

- \mathbb{Z} is a Euclidean domain and thus all ideals of \mathbb{Z} are principal.
- $\mathbb{Q}[x]$ is a Euclidean domain.
- ℤ[x] is not a Euclidean domain since one can check that (3, x) is not principal.

Let *R* be a commutative ring and let $a, b \in R$ with $b \neq 0_R$.

- **1** We say that *a* is a multiple of *b* if there is $c \in R$ such that a = bc. We also say that *b* divides *a* and write b|a.
- 2 A greatest common divisor of a and b (if it exists) is an element $d \in R$ satisfying
 - 1 d|a and d|b, and
 - **2** if $d' \in R$, d'|a and d'|b then d'|d also.

Let *R* be a commutative ring and let $a, b \in R$ with $b \neq 0_R$.

- **1** We say that *a* is a multiple of *b* if there is $c \in R$ such that a = bc. We also say that b divides *a* and write b|a.
- 2 A greatest common divisor of a and b (if it exists) is an element $d \in R$ satisfying
 - 1 d|a and d|b, and
 - **2** if $d' \in R$, d'|a and d'|b then d'|d also.

PROPOSITION

If $a, b \in R$ and (a, b) = (d) then d is a greatest common divisor of a and b.

Let *R* be a commutative ring and let $a, b \in R$ with $b \neq 0_R$.

- We say that a is a multiple of b if there is $c \in R$ such that a = bc. We also say that b divides a and write b|a.
- 2 A greatest common divisor of a and b (if it exists) is an element $d \in R$ satisfying
 - 1 d|a and d|b, and
 - **2** if $d' \in R$, d'|a and d'|b then d'|d also.

PROPOSITION

If $a, b \in R$ and (a, b) = (d) then d is a greatest common divisor of a and b.

PROPOSITION

Suppose that R is an integral domain and that $d, d' \in R$. If (d) = (d'), then there is a unit $u \in R^{\times}$ such that d = ud'. In particular, if d and d' are greatest common divisors of a and b then d = ud' for some $u \in R^{\times}$.

Theorem

Let R be a Euclidean domain and let $a, b \in R$ be non-zero. Let $d = r_n$ be the final non-zero remainder in the Euclidean Algorithm.

1 d is a greatest common divisor of a and b, and

(a, b) = (d). In particular, d is an R-linear combination of a and b. That is there are x, y ∈ R such that d = ax + by.

Suppose that R is an integral domain. Denote by $\tilde{R} = R^{\times} \cup \{0_R\}$. We say that $u \in R \setminus \tilde{R}$ is a <u>universal side divisor</u> if $\forall x \in R$, $\exists z \in \tilde{R}$ such that u divides x - z. That is, there is $q \in R$ and $z \in \tilde{R}$ such that x = qu + z.

Definition

Suppose that R is an integral domain. Denote by $\tilde{R} = R^{\times} \cup \{0_R\}$. We say that $u \in R \setminus \tilde{R}$ is a <u>universal side divisor</u> if $\forall x \in R$, $\exists z \in \tilde{R}$ such that u divides x - z. That is, there is $q \in R$ and $z \in \tilde{R}$ such that x = qu + z.

PROPOSITION

Let R be an integral domain that is not a field. If R is a Euclidean domain then R has universal side divisors.

Definition

Suppose that R is an integral domain. Denote by $\tilde{R} = R^{\times} \cup \{0_R\}$. We say that $u \in R \setminus \tilde{R}$ is a <u>universal side divisor</u> if $\forall x \in R$, $\exists z \in \tilde{R}$ such that u divides x - z. That is, there is $q \in R$ and $z \in \tilde{R}$ such that x = qu + z.

PROPOSITION

Let R be an integral domain that is not a field. If R is a Euclidean domain then R has universal side divisors.

EXAMPLE

 $R = \mathbb{Z}\left[\frac{(1+\sqrt{-19})}{2}\right]$ is an integral domain which has no universal side divisors and is therefore not a Euclidean domain.

▲□→ ▲ □→ ▲ □→