UNIQUE FACTORIZATION DOMAINS

Kevin James

Kevin James Unique Factorization Domains

・ロト ・回ト ・ヨト

→ 프 ▶ - 프

Definition

Let R be an integral domain.

- Suppose r ∈ R is a nonzero non-unit. The r is said to be <u>irreducible</u> in R if whenever r = ab with a, b ∈ R, at least one of a and b must be a unit in R. Otherwise, r is said to be <u>reducible</u>.
- 2 A nonzero element $p \in R$ is called <u>prime</u> in R if the ideal (p) is a prime ideal.
- 3 Two elements a, b ∈ R are said to be <u>associates</u> in R if there is u ∈ R[×] with a = bu.

DEFINITION

Let R be an integral domain.

- Suppose r ∈ R is a nonzero non-unit. The r is said to be <u>irreducible</u> in R if whenever r = ab with a, b ∈ R, at least one of a and b must be a unit in R. Otherwise, r is said to be <u>reducible</u>.
- 2 A nonzero element $p \in R$ is called <u>prime</u> in R if the ideal (p) is a prime ideal.
- 3 Two elements a, b ∈ R are said to be <u>associates</u> in R if there is u ∈ R[×] with a = bu.

PROPOSITION

In an integral domain a prime element is irreducible.

DEFINITION

Let R be an integral domain.

- Suppose r ∈ R is a nonzero non-unit. The r is said to be <u>irreducible</u> in R if whenever r = ab with a, b ∈ R, at least one of a and b must be a unit in R. Otherwise, r is said to be <u>reducible</u>.
- 2 A nonzero element $p \in R$ is called <u>prime</u> in R if the ideal (p) is a prime ideal.
- 3 Two elements a, b ∈ R are said to be <u>associates</u> in R if there is u ∈ R[×] with a = bu.

Proposition

In an integral domain a prime element is irreducible.

PROPOSITION

In a PID, a nonzero element is prime if and only if it is irreducible.

・ロン ・回と ・ヨン ・ヨン

3

Definition

A Unique Factorization Domain (UFD) is an integral domain R in which every nonzero element $r \in R$ which is not a unit has the following properties.

- **1** *r* can be written as a finite product of irreducibles $p_i \in R$, that is $r = p_1 p_2 \cdots p_n$ and
- 2 the decomposition above is unique up to associates and rearrangement, that is if r = q₁q₂ ··· q_m is another factorization of r into irreducibles q_i ∈ R, then m = n and for each 1 ≤ i ≤ n, ∃!1 ≤ j ≤ n; u ∈ R[×] such that q_i = up_j.

Definition

A Unique Factorization Domain (UFD) is an integral domain R in which every nonzero element $r \in R$ which is not a unit has the following properties.

- **1** *r* can be written as a finite product of irreducibles $p_i \in R$, that is $r = p_1 p_2 \cdots p_n$ and
- 2 the decomposition above is unique up to associates and rearrangement, that is if r = q₁q₂ ··· q_m is another factorization of r into irreducibles q_i ∈ R, then m = n and for each 1 ≤ i ≤ n, ∃!1 ≤ j ≤ n; u ∈ R[×] such that q_i = up_j.

PROPOSITION

In a UFD a nonzero element is prime if and only if it is irreducible.

イロト イポト イヨト イヨト

PROPOSITION

Let R be a UFD and let $a, b \in R$ be non-zero elements. Suppose that

$$a = u p_1^{e_1} p_2^{e_2} \cdots p_n^{e_n}$$
, and $b = v p_1^{f_1} p_2^{f_2} \cdots p_n^{f_n}$

are prime factorizations for a and b, where $u, v \in R^{\times}$, the primes p_1, \ldots, p_n are distinct and the exponents $e_i, f_i \ge 0$. Then the element

$$d = p_1^{\min(e_1, f_1)} p_2^{\min(e_2, f_2)} \cdots p_n^{\min(e_n, f_n)}$$

is a greatest common divisor of a and b.

PROPOSITION

Let R be a UFD and let $a, b \in R$ be non-zero elements. Suppose that

$$a = u p_1^{e_1} p_2^{e_2} \cdots p_n^{e_n}$$
, and $b = v p_1^{f_1} p_2^{f_2} \cdots p_n^{f_n}$

are prime factorizations for a and b, where $u, v \in R^{\times}$, the primes p_1, \ldots, p_n are distinct and the exponents $e_i, f_i \ge 0$. Then the element

$$d = p_1^{\min(e_1, f_1)} p_2^{\min(e_2, f_2)} \cdots p_n^{\min(e_n, f_n)}$$

is a greatest common divisor of a and b.

Theorem

Every PID is a UFD. In particular, every Euclidean Domain is a PID and a UFD.

イロン イヨン イヨン イヨン

COROLLARY (FUNDAMENTAL THEOREM OF ARITHMETIC)

 \mathbb{Z} is a UFD.

Kevin James Unique Factorization Domains

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

COROLLARY (FUNDAMENTAL THEOREM OF ARITHMETIC)

 $\mathbb Z$ is a UFD.

COROLLARY

Let R be a PID. Then there exists a multiplicative Dedekind-Hasse norm on R.

(ロ) (同) (E) (E) (E)