Polynomial Rings especially over Fields

Kevin James

Kevin James Polynomial Rings especially over Fields

PROPOSITION

Let R be an integral domain. Then,

- 1 If $p(x), q(x) \in R[x]$ are nonzero, then $\deg(p(x)q(x)) = \deg(p(x)) + \deg(q(x)).$
- $(R[x])^{\times} = R^{\times}.$
- **3** *R*[*x*] *is an integral domain.*

PROPOSITION

Suppose that $I \trianglelefteq R$ and let (I) = I[x] denote the ideal of R[x] generated by I. Then,

 $R[x]/(I) \cong (R/I) [x].$

In particular, if I is a prime ideal of R, then (I) is a prime ideal of R[x].

DEFINITION

The polynomial ring in *n* variables with coefficients in *R* is defined inductively for $n \ge 2$ as

$$R[x_1, x_2, \ldots, x_n] = R[x_1, \ldots, x_{n-1}][x_n].$$

Note

For f ∈ R[x₁, x₂,..., x_n], f can be expressed as a finite sum of the form
 f(x₁, x₂,..., x_n) = ∑<sub>0≤m₁,m₂,...,m_n} a_{m₁,m₂,...,m_n}x₁^{m₁}x₂<sup>m₂</sub> ··· x_n^{m_n},
 where the a_m ∈ R.
 We define degree as follows:

 deg_i(a_{m₁,m₂,...,m_n}x₁^{m₁}x₂<sup>m₂</sub> ··· x_n^{m_n}) = m_i.
 deg(a_{m₁,m₂,...,m_n}x₁^{m₁}x₂<sup>m₂</sub> ··· x_n^{m_n}) = m_i.
 deg(a<sub>m₁,m₂,...,m_nx₁^{m₁}x₂<sup>m₂</sub> ··· x_n^{m_n}) = max_{1≤i≤n} (deg_i(a<sub>m₁,m₂,...,m_nx₁^{m₁}x₂<sup>m₂</sub> ··· x_n^{m_n}).

</sub></sup></sup></sup></sub></sup></sub></sup>

EXAMPLE

$$\deg(x^2y + xy^2) = 3.$$

Theorem

Let F be a field. The polynomial ring F[x] is a Euclidean Domain. Specifically if $a(x), b(x) \in F[x]$ with $0 \neq b(x)$, then there is a unique $q(x), r(x) \in F[x]$ such that

a(x) = b(x)q(x) + r(x) with r(x) = 0 or $\deg(r(x)) < \deg(b(x))$.

COROLLARY

If F is a field, then F[x] is a PID and a UFD.