IRREDUCIBILITY CRITERION

Kevin James

PROPOSITION

Let F be a field and let $p \in F[x]$. Then p(x) has a factor of degree one if and only if p(x has a root in F.

PROPOSITION

A polynomial of degree 2 or 3 over a field F is reducible if and only if it has a root in F.

PROPOSITION

Suppose that $p(x) = \sum_{k=0}^{n} p_n x^n \in \mathbb{Q}[x]$. If $r/s \in \mathbb{Q}$ is in lowest terms and is a root of p then r divides p_0 and s divides p_n .

PROPOSITION

Suppose that R is an ID and $I \subseteq R$. Let $p \in R[x]$ be nonconstant and monic. If the image of p in (R/I)[x] cannot be factored into to polynomials of lower degree, then (R/I)[x] then p(x) is irreducible in R[x].

PROPOSITION (EISENSTIN'S CRITERION)

Let P be a prime ideal of an integral domain R and let $f(x) = x^n + \sum_{n=0}^{n-1} f_n x^n \in R[x] \ (n \ge 1)$. Suppose $f_{n-1}, \ldots, f_1, f_0 \in P$, and $f_0 \notin P^2$. Then f(x) is irreducible in R[x].

COROLLARY (EISENSTEIN'S CRITERION FOR $\mathbb{Z}[x]$)

Let $p \in \mathbb{Z}$ be prime and let $f(x) = x^n + \sum_{n=0}^{n-1} f_n x^n \in \mathbb{Z}[x]$ with $n \ge 1$. Suppose that $p|f_i$ for $1 \le i \le (n-1)$ and that $p^2 \nmid f_0$. Then f(x) is irreducible in $\mathbb{Z}[x]$ and in $\mathbb{Q}[x]$.