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Abstract. The Sato-Tate conjecture asserts that given an elliptic curve without complex multi-
plication, the primes whose Frobenius elements have their trace in a given interval (2α

√
p, 2β

√
p)

have density given by 2
π

R β

α

√
1− t2 dt. We prove that this conjecture is true on average in a

more general setting.

1. Introduction

Given an elliptic curve E/Fp, let E(Fp) denote the Mordell-Weil group, which consists of the

Fp-rational points on the curve along with an identity at infinity. A simple heuristic shows that

the normal order of E(Fp) is p+ 1. If letting

aE (p) := p+ 1− |E(Fp)|,

Hasse’s Theorem asserts that

|aE (p)| < 2
√
p. (1.1)

It follows from Deuring’s Theorem (see [2] or [4]) that (1.1) is best possible in the sense that,

given a prime p, and an integer r ∈ (−2
√
p, 2

√
p), there exists an elliptic curve E/Fp such that

aE (p) = r.

Let
aE (p)
2
√
p

= cos θE (p), θE (p) ∈ [0, π]1.

Then for a particular curve E/Q, it is quite natural to ask how θE (p) varies with p.

When E has complex multiplication, the answer turns out to be easy. In this case, asymp-

totically, half of primes p satisfy aE (p) = 0. Apart from these supersingular primes, the primes

p with θE (p) in a fixed range are those given by p = f(u, v), where f(u, v) is a certain positive

definite binary quadratic form, with |u|/p in the corresponding range. The distribution of such
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1We remark that, in some literatures, it is defined

−a
E

(p)

2
√

p
= cos θE (p). This however does not change the

statement of the Sato-Tate Conjecture.
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primes, with a certain uniformity, is known to us and can be traced back to Hecke’s famous

work [7, 8].

When E does not have complex multiplication, the problem is much more difficult. With

the experimental support of Sato, Tate [10] has given theoretical evidence for the following

conjecture (for further discussion see [2, 5, 9]).

Sato-Tate Conjecture: Suppose E is an elliptic curve over Q which does not admit complex

multiplication. For any 0 ≤ θ1 ≤ θ2 ≤ π, and x > 1, let

πE

(θ1,θ2)(x) := #{p ≤ x : θ1 ≤ θE (p) ≤ θ2},

then

lim
x→∞

πE
(θ1,θ2)(x)
π(x)

=
2
π

∫ θ2

θ1

sin2 θdθ,

where π(x) is the number of primes up to x.

For −1 ≤ α ≤ β ≤ 1, and x > 1 let

πE (α, β;x) := #
{
p ≤ x : α ≤ aE (p)

2
√
p
≤ β

}
.

Then by a simple change of variables, we see that, the Sato-Tate Conjecture is equivalent to

lim
x→∞

πE (α, β;x)
π(x)

=
2
π

∫ β

α

√
1− t2dt.

In [2], using the Selberg trace formula, Birch proved that, for any positive integer k, one has

mean|aE (p)|2k ∼ 2k!pk

k!(k + 1)!

as p→∞. Here the mean is taken subject to E varying over all elliptic curves over Fp. Birch’s

result essentially implies that the Sato-Tate Conjecture for elliptic curves is true on average.

Suppose S is a subset of Z which is not too sparse. For −1 ≤ α ≤ β ≤ 1, and x > 1, let

πE (α, β,S;x) be the number of primes p ≤ x satisfying

α ≤ aE (p)
2
√
p
≤ β, aE (p) ∈ S.

From the probabilistic point of view, there should be an asymptotic formula for πE (α, β,S;x)

as x → ∞ if S is not too sparse and is uniformly distributed. It is then natural to ask how

πE (α, β,S;x) may depend on S.

We can show that, when S is nice enough, π
E(a,b)

(α, β,S;x) has an asymptotic formula for

almost all elliptic curves E(a, b) with a, b varying in certain ranges depending on x, where E(a, b)
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is given by the equation

E(a, b) : y2 = x3 + ax+ b.

This gives a heuristic for the relation of πE (α, β,S;x) and S.

Due to symmetry, we may consider only the average behavior of

πE (α,S;x) := πE (0, α,S;x)

for a given S and α ∈ [0, 1]. Without loss of generality, S may be taken as a subset of Z≥0.

It will be clear from our treatment that S is nice for our purpose provided that, for large N ,

the exponential sum ∑
n∈S∩[1,N ]

e(n2λ)

can be well approximated when λ is on major arcs (which are reasonably large in terms of N)

in applying the Hardy-Littlewood circle method. From this, experts who are familiar with the

Hardy-Littlewood method may have noted that S can be chosen, for example, to be an arithmetic

progression, the set of k-th powers, smooth numbers, values of an integer-valued polynomial at

primes, or even the set of integers which are sums of a fixed number of exponentials (powers of

2, for instance).

In this paper, we shall only consider the case that S is the set of all k-th powers. The results

for various cases listed above may follow from similar proofs. Henceforth, K will denote the set

of all k-th powers for a fixed k ∈ N.

For 0 < α < 1, and positive real numbers U , V , A, B, X, let

Sα(U, V,A,B;K;X) =
1
AB

∑
U<a≤U+A
V <b≤V +B

π
E(a,b)

(α,K;X).

The function Sα(U, V,A,B;K;X) measures, in a certain range, the average number of primes up

to X with aE (p) ∈ K and θE (p) belonging to a given interval [arccosα, π/2). We will investigate

the asymptotic behavior of Sα(U, V,A,B;K;X) when A and B are large enough in comparison

with X, as X →∞.

Theorem 1. Let 0 < α < 1 be fixed and let U and V be any real numbers. For any given ε > 0

and X sufficiently large, if A,B > X logX, then we have

Sα(U, V,A,B;K;X) ∼ ck(α)πk(X),

where

πk(X) =
∫ X

2

t
1
2k
− 1

2

log t
dt =

(
1 +O((logX)−1)

) 2k
k + 1

X
1
2
+ 1

2k

logX
,
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and

ck(α) =
(

1
3

+
2
3
δ(k)

)
2

1
k

kπ

∫ α

0
|t|

1
k
−1

√
1− t2dt,

where δ(k) is given by

δ(k) =
{

1 if k = 1,
0 if k > 1. (1.2)

Note that, taking k = 1, Theorem (1) yields that the Sato-Tate Conjecture holds on aver-

age. With a little extra effort, we can show that ck(α)πk(X) is actually the normal order of

πE (α,K;X).

Theorem 2. Let 0 < α < 1 be fixed, and let U, V ∈ R. Suppose that A, B, X are sufficiently

large real numbers and that A,B > (X logX)2. Then we have

1
AB

∑
U<a≤U+A
V <b≤V +B

∣∣∣∣πE(a,b)
(α,K;X)− ck(α)πk(X)

∣∣∣∣2 = o
(
(πk(X))2

)
.

We also note that under our assumptions on A and B, the contribution to Sα(U, V,A,B;K;X)

by curves E(a, b) with complex multiplication is negligible. (There are only 13 j-invariants

associated with CM curves, hence, the total number of CM curves encountered is O(A+B) and

therefore the contribution of CM curves to Sα(U, V,A,B;K;X) is easily seen to be O(πk(X)( 1
A +

1
B )) which under our assumptions on A and B is o(1).) In view of this and Theorem 2, it seems

reasonable for us to make the following conjecture.

Conjecture 1. For a given elliptic curve E/Q without complex multiplication, and −1 < α <

β < 1,we have

πE (α, β,K;X) ∼ (ck(β)− ck(α))πk(X). (1.3)

We have not pursued uniformity in α in Theorems 1 and 2. Nevertheless, it is clear from our

proof that α can be related to X and the asymptotic formulas still hold as long as α is bounded

away from 0 and 1 by (logX)−c for any c > 0. This is essentially equivalent to the normal

order of πE (α, β;X) being (ck(β)− ck(α))πk(X) provided β−α > (logX)−c for any c > 0. The

(logX)−c can be further improved to exp(−c1
√

logX) for some c1 > 0 if, instead of directly

using the approximation (2.6) on major arcs, one separately discusses the cases for those q and

χ(modq) with L(s, χ) having a possible Siegel zero. However, this will not be the focus of this

paper.

The organization of this paper is as follows. We first employ the Hardy-Littlewood method in

section 2 to derive estimates on the number of representations of certain integers n as n = r2−4p.
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We then derive an estimate for a weighted average of special values of truncated Dirichlet L-

functions in section 3. We employ these estimates to prove the main theorem in section 4. In

section 5 we prove Theorem 2. Finally, we make some closing remarks in section 6.

2. A Problem of Representations

In this section we employ the Hardy-Littlewood method (see [11]) in order to give an as-

ymptotic formula for the number of representations of a negative integer n ≡ 0 or 1(mod4)

as

n = r2 − 4p,

subject to p ≤ X being a prime, and r ∈ K∩ [0, 2α
√
p], where 0 < α < 1. We give an asymptotic

main term for the number of representations which is large when some local conditions are

satisfied, and an error term which is small on average.

For convenience, we shall consider the following weighted number of representations.

R(n) =
∑
p≤X

r≤(2α
√

p)
1
k

r2k−4p=n

log p. (2.1)

Let P = (logX)2
2k+3

. For a positive integer m, let ord2(m) be the non-negative integer such

that 2ord2(m) ‖ m, and we write [m]o = 2−ord2(m)m for the odd part of m.

Theorem 3. With R(n) defined by (2.1), we have

R(n) = S(n, P )J(n) + E(n) +O
(
X

1
2k (logX)−3

)
, (2.2)

where

S(n, P ) =
∑
m≤P

µ([m]o)
φ([m]o)

F (2ord2(m), n)
∗∑

χ( mod [m]o)

χ2k=χ0

χ(n),

the ∗ means that the summation is over the primitive characters modulo [m]o, F (2ord2(m), n) is

given by (2.13) below,

J(n) =
∑

m≤X
s≤4α2m
s−4m=n

1
2k
s

1
2k
−1

and E(n) satisfies
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∑
−n≤4X

|E(n)|2 � X1+ 1
k

(logX)20
. (2.3)

In the following, we can suppose X(logX)−2k+2
< −n ≤ 4X, since it follows from considering

the ranges for p and r that R(n) is trivially bounded by the error term O(X
1
2k (logX)−3) in

(2.2) when −n ≤ X(logX)−2k+2
.

Let g = 1 + (logX)−5. To remove the dependence of r on p, we split the range of p into

subintervals (Xg−(l+1), Xg−l], l = 0, 1, 2, . . . , L, where L =
[

log
(

4X
−n

)
log g

]
� (logX)5 log logX.

Then we have

R(n) =
L∑

l=0

Rl(n), where Rl(n) =
∑

Xg−(l+1)<p≤Xg−l

r≤(2α
√

p)
1
k

r2k−4p=n

log p. (2.4)

Let

Rl
∗(n) =

∑
Xg−(l+1)<p≤Xg−l

r≤(2α
√

Xg−l)
1
k

r2k−4p=n

log p,

then it is clear that

0 ≤ Rl
∗(n)−Rl(n) ≤

∑
Xg−(l+1)<p≤Xg−l

(2α
√

p)
1
k <r≤(2α

√
Xg−l)

1
k

r2k−4p=n

log p� logX +
(
X

gl

) 1
2k

(logX)−4.

Note that, from the ranges of p and r in the above sum (and from the fact that α < 1), it follows

that there are at most Oα(1) values of l such that Rl
∗(n)−Rl(n) is non-zero, thus we have

R(n) =
L∑

l=0

Rl
∗(n) +O(X

1
2k (logX)−3). (2.5)

For a real number β, let

sl(β) =
∑

Xg−(l+1)<p≤Xg−l

e(pβ) log p and tl(β) =
∑

r≤(2α
√

Xg−l)
1
k

e(r2kβ).

We first note that

Rl
∗(n) =

∫ 1+PX−1

PX−1

tl(β)sl(−4β)e(−nβ)dβ.
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We divide the unit interval [PX−1, 1 + PX−1] into two parts: the major arcs

M =
⋃
q≤P

q⋃
a=1

(a,q)=1

M(q, a), where M(q, a) = {β : |β − a/q| ≤ PX−1},

and the minor arcs m = [PX−1, 1+PX−1]\M. It is clear that, for our choice of P , the M(q, a)’s

are disjoint.

Note that for l ≤ L, we have X(logX)−2k+2 � Xg−(l+1) � Xg−l � X. Thus from [11]

(Lemma 3.1), we see that, there exists a positive constant C such that whenever 1 ≤ a ≤ q ≤ P ,

(a, q) = 1, β ∈ M(q, a), we have

sl(−4β) =
µ(q/(4, q))
φ(q/(4, q))

ul(−4(β − a/q)) +O(X exp(−C
√

logX)), (2.6)

where

ul(λ) =
∑

Xg−(l+1)<m≤Xg−l

e(mλ).

For β ∈ M(q, a), from Theorem 4.1 of [11], we trivially have

tl(β) = q−1S2k(q, a)vl(β − a/q) +O(P
2
3 ), (2.7)

where

S2k(q, a) =
q∑

m=1

e(am2k/q) and vl(λ) =
∑

s≤4α2X/gl

1
2k
s

1
2k
−1e(sλ).

From [11, Lemma 2.8] we have

ul(λ) � min{Xg−l, ||λ||−1}, vl(λ) � min{(Xg−l)
1
2k , ||λ||−

1
2k }. (2.8)

Thus from (2.6), (2.7) and (2.8), we get

Rl
∗(n) =

∑
q≤P

µ(q/(4, q))
qφ(q/(4, q))

∑
a=1

(a,q)=1

S2k(q, a)e(−an/q)
∫ P/X

−P/X
ul(−4λ)vl(λ)e(−nλ)dλ+ El(n)

+O
(
X

1
2k exp

(
−C
2

√
logX

))
, (2.9)

where

El(n) =
∫

m
sl(−4β)tl(β)e(−nβ)dβ.

Let

S(n, P ) =
∑
q≤P

F (q, n) where F (q, n) =
µ(q/(4, q))
qφ(q/(4, q))

q∑
a=1

(a,q)=1

S2k(q, a)e(−an/q). (2.10)
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We note that F (q, n) is multiplicative. (While it is well-known that F (q, n) is multiplicative if

the (4, q) is not present, it is straightforward to check that the presence of (4, q) does not affect

the multiplicativity.)

For an odd prime p, we see that F (ph, n) = 0 if p | n or h ≥ 2. If p - 2n, we have

F (p, n) =
−1

p(p− 1)

p−1∑
a=1

e(−an/p)
p∑

m=1

e(am2k/p)

=
−1

p(p− 1)

p
 p∑

m=1
m2k≡n( mod p)

1

− p

 =
−1
p− 1

∑
χ (mod p)

χ2k=χ0

χ 6=χ0

χ(n). (2.11)

Thus

F (q, n) = F (2ord2(q), n) · µ([q]o)
φ([q]o)

∗∑
χ( mod [q]o)

χ2k=χ0

χ(n). (2.12)

It is easy to check that

F (2h, n) =


0 if h = 1 or h ≥ 4,
1 if h = 0 or h = 2,
−2χn(2) if h = 3 and n ≡ 1 (mod 4),
0 if h = 3, k = 1 and n ≡ 0 (mod 4),
−2 if h = 3, k > 1 and n ≡ 0 (mod 4).

(2.13)

From the estimates (2.8), we now have(∫ −P/X

− 1
2

+
∫ 1

2

P/X

)
ul(−4λ)vl(λ)e(−nλ)dλ�

∫ 1
2

P/X
λ−1− 1

2k dλ�
(
X

P

) 1
2k

.

From this and (2.9), and the fact that S(n, P ) � (logX)k−1, we have

Rl
∗(n) = S(n, P )

∫ 1
2

− 1
2

ul(−4λ)vl(λ)e(−nλ)dλ+ El(n) +O
(
X

1
2k (logX)k−1P−

1
2k

)
, (2.14)

where it is clear that X
1
2k (logX)k−1P−

1
2k � X

1
2k (logX)−16.

Let

Jl
∗(n) =

∫ 1
2

− 1
2

ul(−4λ)vl(λ)e(−nλ) dλ.

Then it is obvious that

Jl
∗(n) =

∑
Xg−(l+1)<m≤Xg−l

s≤4α2Xg−l

s−4m=n

1
2k
s

1
2k
−1.
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Similar to (2.5), we have

L∑
l=0

Jl
∗(n) = J(n) +O

(
X

1
2k (logX)−4

)
.

Let

E(n) =
L∑

l=0

El(n),

then we have proved (2.2). To prove (2.3), we first recall L ≤ log6X and observe that

∑
n

|E(n)|2 � (logX)12 max
0≤l≤L

∑
−n≤4X

|El(n)|2. (2.15)

By Bessel’s inequality, we have

∑
−n≤4X

|El(n)|2 �
∫

m
|sl(4β)tl(β)|2dβ. (2.16)

By Weyl’s inequality, we have

tl(β) � X
1
2kP−21−2k

logX � X
1
2k (logX)−15, β ∈ m.

Thus∫
m
|sl(4β)tl(β)|2dβ � X

1
k (logX)−30

∫ 1

0
|sl(β)|2dβ � X

1
k (logX)−28

(
X

gl
− X

gl+1

)
� X1+ 1

k

(logX)33
,

which, along with (2.15) and (2.16), implies (2.3).

3. A Weighted Sum

In this section we derive an estimate for a weighted sum of special values of truncated Dirichlet

L-functions. More precisely, letting L0(d) =
∑

n≤X2/3
χd(n)

n and

K0(X) =
1
2π

∑
p≤X

log p
∑

0<r≤(2α
√

p)
1
k

∑
r2k−4p=df2

f≤(log X)2

d≡0,1( mod 4)

√
|d|L0(d), (3.1)

we prove

Theorem 4. We have

K0(X) =
(

2k
3k + 1

ck(α) +O((logX)−2)
)
X

3
2
+ 1

2k . (3.2)
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From Theorem 3, we have

K0(X) =
1
2π

∑
f≤(log X)2

0<−df2≤4X
d≡0,1( mod 4)

√
|d|L0(d)

(
S(df2, P )J(df2) + E(df2) +O

(
X

1
2k (logX)−3

))
. (3.3)

Next, we note that

∑
f,d

√
|d||L0(d)E(df2)| � logX

√ ∑
−n≤4X

|n|τ2(|n|)
√ ∑
−n≤4X

|E(n)|2

� X(logX)
5
2

(
X1+ 1

k

(logX)20

) 1
2

� X
3
2
+ 1

2k

(logX)7
, (3.4)

and the contribution of the term O
(
X

1
2k (logX)−3

)
to (3.3) is O(X

3
2
+ 1

2k (logX)−2). Thus, we

have

K0(X) =
1
2π

∑
f≤(log X)2

0<−df2≤4X
d≡0,1( mod 4)

√
|d|L0(d)S(df2, P )J(df2) +O

(
X

3
2
+ 1

2k (logX)−2
)
. (3.5)

Now, if −df2 ≤ 4(1 − α2)X, then for each s ≤ −α2df2

1−α2 satisfying s ≡ df2(mod4) we have a

unique m = s−df2

4 ∈
[

s
4α2 , X

]
. If 4(1 − a2)X < −df2 ≤ 4X, then each s ≤ 4X + df2 congruent

to df2 modulo 4 gives a unique m = s−df2

4 ∈
[

s
4α2 , X

]
. Note that for any N > 0, h ∈ Z, we have

∑
s≤N

s≡h( mod 4)

1
2k
s

1
2k
−1 =

1
8k

∑
s≤N

s
1
2k
−1 +O(1) =

1
4
N

1
2k +O(1).

Thus,

J(df2) =


1
4

(
−α2df2

1−α2

) 1
2k +O(1) if − df2 ≤ 4(1− α2)X,

1
4(4X + df2)

1
2k +O(1) if 4(1− a2)X < −df2 ≤ 4X.

(3.6)

Let

K0
a(X) =

1
8π

(
α2

1− α2

) 1
2k ∑

f≤(log X)2

0<−df2≤4(1−α2)X
d≡0,1( mod 4)

|d|
1
2
+ 1

2k f
1
k

∑
n≤X2/3

χd(n)
n

∑
2jm≤P

µ(m)
φ(m)

F (2j , df2)
∗∑

χ( mod m)

χ2k=χ0

χ(df2),
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and

K0
b(X) =

1
8π

∑
f≤(log X)2

4(1−α2)X<−df2≤4X
d≡0,1( mod 4)

√
|d|(4X+df2)

1
2k

∑
n≤X2/3

χd(n)
n

∑
2jm≤P

µ(m)
φ(m)

F (2j , df2)
∗∑

χ( mod m)

χ2k=χ0

χ(df2),

where in both expressions, the second to last summation is subject to m being odd, j = 0, 2, 3

and F (2j , df2) being given by (2.13). Then we have

K0(X) = K0
a(X) +K0

b(X) +O
(
X

3
2
+ 1

2k (logX)−2
)
. (3.7)

Note that

21+ 1
k kα

1
k (1− α2)

3
2

(3k + 1)π
+

2
1
k

π

∫ α2

0
t

1
2k

√
1− tdt =

21+ 1
k

(3k + 1)π

∫ α

0
t

1
k
−1

√
1− t2dt.

(Both sides are equal to 0 at α = 0 and have the same derivatives with respect to α.) Then

Theorem 4 follows from the following lemma.

Lemma 3.1. We have

K0
a(X) =

(
1
3

+
2
3
δ(k)

)
21+ 1

k kα
1
k (1− α2)

3
2

(3k + 1)π
X

3
2
+ 1

2k +O

(
X

3
2
+ 1

2k

(logX)4

)
, (3.8)

and

K0
b(X) =

(
1
3

+
2
3
δ(k)

)
2

1
kX

3
2
+ 1

2k

π

∫ α2

0
t

1
2k

√
1− tdt+O

(
X

3
2
+ 1

2k

(logX)4

)
. (3.9)

The proofs of (3.8) and (3.9) are almost identical. In view of this, we will only give a proof

for (3.9). We first note that

K0
b(X) =

1
8π

∑
j,f,m,n

µ(m)
nφ(m)

∗∑
χ( mod m)

χ2k=χ0

∑
4(1−α2)X

f2 <−d≤ 4X
f2

d≡0,1( mod 4)

√
|d|(4X + df2)

1
2kχd(n)F (2j , df2)χ(df2),

where the summation over j, f,m, n is also subject to f ≤ (logX)2, 2jm ≤ P = (logX)2
2k+3

,

j = 0, 2, 3, n ≤ X2/3.

We split the sum into two parts: K0
be subject to d ≡ 0(mod4) and K0

bo subject to d ≡
1(mod4). Write d = 4D in K0

be, then we have

K0
be =

2
1
k

4π

∑
j,f,m,n
2-mn

µ(m)F (2j , 4)
nφ(m)

∗∑
χ( mod m)

χ2k=χ0

χ(4f2)
∑

(1−α2)X

f2 <−D≤ X
f2

√
|D|(X +Df2)

1
2kχD(n)χ(D),

11



where we have replaced F (2j , 4Df2) by F (2j , 4) in view of (2.13). If ψ = χ
( ·

n

)
6= χ0, then from

the Pólya-Vinogradov estimate, the innermost sum of K0
be is

= ψ(−1)
∫ X

f2

(1−α2)X

f2

√
t(X − f2t)

1
2k · d

dt

∑
s≤t

ψ(s)

 dt

� X
1
2
+ 1

2k
√
mn log (mn+ 1)

f
� X

5
6
+ 1

2kP

f
. (3.10)

It is then easy to see that the terms of K0
be with χ

( ·
n

)
6= χ0 contribute at most O

(
X1+ 1

2k

)
.

Now, we notice that χ
( ·

n

)
= χ0 only when χ =

( ·
m

)
(since χ( modm) is primitive) and n = mw2

for some w ∈ N. Thus, we have

K0
be =

2
1
k

4π

∑
j,f,m,w
(m,f)=1

2-mw

µ(m)F (2j , 4)
mφ(m)w2

∑
(1−α2)X

f2 <−D≤ X
f2

(D,mw)=1

√
|D|(X +Df2)

1
2k +O

(
X1+ 1

2k
)
, (3.11)

where the summation over j, f,m,w is also subject to f ≤ (logX)2, 2jm ≤ P = (logX)2
2k+3

,

j = 0, 2 or 3, and w ≤ X
1
3√
m

. Note that the inner sum is

∫ X
f2

(1−α2)X

f2

√
t(X − f2t)

1
2k d

∑
u≤t

(u,mw)=1

1 =
∫ X

f2

(1−α2)X

f2

√
t(X − f2t)

1
2k d

{
φ(mw)
mw

t+O(mw)
}

=
φ(mw)X

3
2
+ 1

2k

mwf3

∫ α2

0
t

1
2k

√
1− tdt+O

(
mwX

1
2
+ 1

2k

f

)
.(3.12)

From this and (3.11), we have

K0
be =

(
2

1
kX

3
2
+ 1

2k

4π

∫ α2

0
t

1
2k

√
1− tdt

) ∑
j,f,m,w
(m,f)=1

2-mw

µ(m)φ(mw)F (2j , 4)
m2φ(m)w3f3

+O
(
X1+ 1

2k
)
. (3.13)

Now we note that the sum over j, f,m,w is equal to

∑
2jm≤P

2-m

µ(m)F (2j , 4)
m2φ(m)

( ∞∑
f=1

(f,m)=1

1
f3

+O

(
1

(logX)4

))( ∞∑
w=1
2-w

φ(mw)
w3

+O

(
m

3
2

X1/3

))

=
∑

2jm≤P
2-m

µ(m)F (2j , 4)
m2φ(m)

∞∑
f=1

(f,m)=1

1
f3

∞∑
w=1
2-w

φ(mw)
w3

+O

(
1

(logX)4

)

=
16
7
δ(k)

∑
f,m,w
2-mwf

(f,m)=1

µ(m)φ(mw)
m2φ(m)w3f3

+O

(
1

(logX)4

)
, (3.14)

12



where in the last sum, the variables f,m, k range over the odd positive integers. (Here we have

factored out the powers of 2 in f , which yields the constant factor 1 + 2−3 + 2−6 + · · · = 8
7),

and it is easy to see that a factor 2δ(k) arises from summing up F (20, 4), F (22, 4) and F (23, 4)

according to (2.13).

Lemma 3.2. We have

C :=
∑

f,m,w
2-mwf

(f,m)=1

µ(m)φ(mw)
m2φ(m)w3f3

= 1.

Proof. We first note that

C =
∑
m,w
2-mw

µ(m)φ(mw)
m2φ(m)w3

ζ(3)
∏
l|2m

(
1− 1

l3

)

=
7
8
ζ(3)

∑
m,w
2-mw

µ(m)φ(mw)
m2φ(m)w3

∑
v|m

µ(v)
v3

=
7
8
ζ(3)

∞∑
K=1
2-K

φ(K)a(K)
K3

,

where

a(K) =
∑
m|K

µ(m)m
φ(m)

∑
v|m

µ(v)
v3

which is obviously a multiplicative function. Note that, for a prime l, a(l) = a(l2) = a(l3) = · · · .
Thus

C =
7
8
ζ(3)

∏
l>2

(
1 + a(l)

(
φ(l)
l3

+
φ(l2)
l6

+ · · ·
))

=
7
8
ζ(3)

∏
l>2

(
1 +

a(l)
l(l + 1)

)
. (3.15)

It is easy to see that

a(l) = 1 +
−l
l − 1

(
1− 1

l3
)

= − l + 1
l2

.

Thus, from this and (3.15), we have

C =
7
8
ζ(3)

∏
l>2

(
1− 1

l3

)
= 1,

which proves the lemma. �
13



From (3.13), (3.14) and Lemma 3.2, we have

K0
be =

22+ 1
kX

3
2
+ 1

2k

7π
δ(k)

∫ α2

0
t

1
2k

√
1− tdt+O

(
X

3
2
+ 1

2k

(logX)4

)
. (3.16)

Now we try to find an asymptotic formula for K0
bo. We first note that

K0
bo =

1
8π

∑
j,f,m,n

µ(m)
nφ(m)

∗∑
χ( mod m)

χ2k=χ0

χ(f2)
∑

4(1−α2)X

f2 <−d≤ 4X
f2

d≡1( mod 4)

√
|d|(4X + df2)

1
2kF (2j , df2)χd(n)χ(d).

We replace the restriction d ≡ 1(mod4) by introducing a characteristic function 1
2(χ4(d) +

χ−4(d)).

When j = 0 or 2, we have F (2j , df2) = 1. We note that χ−4(d)χd(n)χ(d) and, if χ
( ·

n

)
6= χ0,

χ4(d)χd(n)χ(d) are both non-principal characters modulo 4mn. Thus, with the same estimate

as (3.10), we see that the total contribution from the terms containing χ−4(d) and the terms

containing χ4(d) but with χ
( ·

n

)
6= χ0 is O

(
X1+ 1

2k

)
. We remark that χ

( ·
n

)
= χ0 if and only if

χ =
( ·

m

)
and n = mw2 for some w ∈ N.

When j = 3 and f is odd, we have F (2j , df2) = −2
(

2
d

)
. Note then

1
2
(χ4(d) + χ−4(d))χd(n)χ(d)F (23, df2) = −

((
2
d

)
+

(
−2
d

))
χ(d)

(d
n

)
. (3.17)

While the terms associated with non-principal characters contribute at most O
(
X1+ 1

2k

)
from the

Pólya-Vinogradov estimate, the only possible principal characters arise from χ =
( ·

m

)
. When

χ =
( ·

m

)
, apart from the factor −1, (3.17) is the sum of two non-principal characters modulo

8mn if mn is not twice a square. These terms again give a contribution O
(
X1+ 1

2k

)
to K0

bo with

the same estimate as (3.10). When n = 2mw2 for some integer w, (3.17) is simply equal to

−(1 + χ−4(d)). The terms containing χ−4(d) again contribute at most O
(
X1+ 1

2k

)
to K0

bo.

When j = 3 and f is even, we have F (2j , df2) = −2(1− δ(k)). Thus

1
2
(χ4(d) + χ−4(d))χd(n)χ(d)F (23, df2) = −(1− δ(k))

((
4
d

)
+

(
−4
d

))
χ(d)

(d
n

)
. (3.18)

It is clear that the only principal character arises from χ =
( ·

m

)
and n = mw2 for some w ∈ N,

in which case the term in (3.18) contributing to the main term is equal to −(1− δ(k)).
14



From the above discussion, we have

K0
bo =

1
16π

∑
j,f,m,w
j=0,2

(m,2f)=1

µ(m)
mφ(m)w2

∑
4(1−α2)X

f2 <−d≤ 4X
f2

(d,2mw)=1

√
|d|(4X + df2)

1
2k −

− 1
16π

∑
f,m,w

(m,f)=1
2-mf

µ(m)
mφ(m)w2

∑
4(1−α2)X

f2 <−d≤ 4X
f2

(d,2mw)=1

√
|d|(4X + df2)

1
2k −

−1− δ(k)
8π

∑
f,m,w

(m,2f)=1
2|f

µ(m)
mφ(m)w2

∑
4(1−α2)X

f2 <−d≤ 4X
f2

(d,2mw)=1

√
|d|(4X + df2)

1
2k

+O
(
X1+ 1

2k
)
, (3.19)

where in the first sum the summation over f,m,w is also subject to f ≤ (logX)2, 2jm ≤ P and

w ≤ X
1
3√

2jm
, and in the second and the third sums the summation over f,m,w is also subject to

f ≤ (logX)2, m ≤ P
8 , w ≤ X

1
3√

2m
and w ≤ X

1
3√
m

, respectively. Similar to (3.12), we see that the

innermost sums of the three sums in (3.19) are equal to

22+ 1
kφ(2mw)X

3
2
+ 1

2k

mwf3

∫ α2

0
t

1
2k

√
1− tdt+O

(
mwX

1
2
+ 1

2k

f

)
. (3.20)

From (3.19) and (3.20), and by an argument similar to (3.14), we get

K0
bo =

2
1
k cboX

3
2
+ 1

2k

4π

∫ α2

0
t

1
2k

√
1− tdt+O

(
X

3
2
+ 1

2k

(logX)4

)
, (3.21)

where

cbo = 2
∞∑

f,m,w=1
(m,2f)=1

µ(m)φ(2mw)
m2φ(m)w3f3

−
∞∑

f,m,w=1
(m,f)=1

2-mf

µ(m)φ(2mw)
m2φ(m)w3f3

− 2(1− δ(k))
∞∑

f,m,w=1
(m,2f)=1

2|f

µ(m)φ(2mw)
m2φ(m)w3f3

.

From Lemma 3.2, we see that

∞∑
f,m,w=1
(m,2f)=1

µ(m)φ(2mw)
m2φ(m)w3f3

=
8
7

∑
2-mf

(m,f)=1

µ(m)
m2φ(m)f3

∑
2-h

φ(mh)
h3

(
1 +

2
23

+
4
43

+
8
83

+ · · ·
)

=
32
21
C =

32
21
.

Similarly, we have
15



∞∑
f,m,w=1
(m,f)=1

2-mf

µ(m)φ(2mw)
m2φ(m)w3f3

=
4
3

and
∞∑

f,m,w=1
(m,2f)=1

2|f

µ(m)φ(2mw)
m2φ(m)w3f3

=
4
21
.

Combining these with (3.21) have,

K0
bo =

(
1
3

+
2
21
δ(k)

)
2

1
kX

3
2
+ 1

2k

π

∫ α2

0
t

1
2k

√
1− tdt+O

(
X

3
2
+ 1

2k

(logX)4

)
. (3.22)

From (3.16) and (3.22), we have proved (3.9).

4. Proof of Theorem 1

By Deuring’s theorem (see [2], [4]), we know that for a given prime p, and an integer r ∈
(−2

√
p, 2

√
p) the number N(p, r) of elliptic curves E(a, b) : y2 = x3 + ax+ b with a, b ∈ Fp and

ap(E(a, b)) = r, is given by

N(p, r) =
pH(r2 − 4p)

2
+O(p), (4.1)

where H(r2 − 4p) denotes the Kronecker class number which is given by

H(r2 − 4p) = 2
∑

r2−4p=df2

d≡0,1( mod 4)

h(d)
w(d)

. (4.2)

Here w(d) and h(d) respectively denote the number of units and the class number of the order

of discriminant d.

Proof of Theorem 1. Changing the order of summation in Sα(U, V,A,B;K;X) and recalling

(4.1), yields

Sα(U, V,A,B;X) =
1
AB

∑
p≤X

∑
0<r≤2α

√
p

r∈K

(
A

p
+O(1)

)(
B

p
+O(1)

)
N(p, r)

=
(
1 +O((logX)−1)

)
M(X) +O

(
X

1
2k

)
,

(4.3)

where

M(X) =
1
2

∑
p≤X

0<r≤2α
√

p
r∈K

H(r2 − 4p)
p

. (4.4)

Theorem 1 now follows from our next result.
16



Theorem 5. For fixed 0 < α < 1, and sufficiently large X, we have

M(X) ∼ ck(α)πk(X).

Proof. Using (4.2), we have

M(X) =
∑
p≤X

1
p

∑
0<r≤(2α

√
p)

1
k

∑
r2k−4p=df2

d≡0,1( mod 4)

h(d)
w(d)

. (4.5)

We note that in the sum d < 0, thus using Dirichlet’s class number formula and well known

estimates on L-functions, we have

h(d)
w(d)

=

√
|d|

2π
L(1, χd) �

√
|d| log(|d|+ 1), (4.6)

where χd is the Kronecker symbol. We see that the terms in the sum of (4.5) subject to

f > (logX)2 contribute at most

�
∑
p≤X

1
p

∑
r≤(2α

√
p)

1
k

∑
r2k−4p=df2

f>(log X)2

√
p log p
f

� logX
∑

(log X)2<f≤2
√

X

1
f

∑
r≤(2α

√
X)

1
k

∑
r2k

4
<p≤X

4p≡r2( mod f2)

1
√
p

� logX
∑

(log X)2<f≤2
√

X

1
f

∑
r≤(2α

√
X)

1
k

(√
X

f2
+

1
r2k

)

� X
1
2
+ 1

2k

(logX)3
. (4.7)

This, together with (4.5), gives

M(X) =
∑
p≤X

1
p

∑
0<r≤(2α

√
p)

1
k

∑
r2k−4p=df2

f≤(log X)2

d≡0,1( mod 4)

h(d)
w(d)

+O

(
X

1
2
+ 1

2k

(logX)3

)
. (4.8)

Since χd is non-principal, from the Pólya-Vinogradov Theorem, we have

L(1, χd) =
∑

n≤X2/3

χd(n)
n

+O

(√
|d| log |d|
X2/3

)

= L0(d) +O(|d|
1
2X−2/3 logX), say. (4.9)

17



Combining (4.6), (4.8) and (4.9) together, we get

M(X) = M0(X) +O

(
X

1
2
+ 1

2k

(logX)3

)
, (4.10)

where

M0(X) =
1
2π

∑
p≤X

1
p

∑
r≤(2α

√
p)

1
k

∑
r2k−4p=df2

f≤(log X)2

d≡0,1( mod 4)

√
|d|L0(d). (4.11)

Using Theorem 4 and partial summation, we have

M0(X) =
∫ X

2

1
t log t

dK0(t) = ck(α)πk(X) +O

(
X

1
2
+ 1

2k

(logX)3

)
.

Combining this with (4.10) proves Theorem 5.

5. Proof of Theorem 2

From Theorem 1, it is clear that Theorem 2 follows from

Fα(U, V,A,B;K;X) :=
1
AB

∑
U<a≤U+A
V <b≤V +B

π
E(a,b)

(α;K;X)2 = (1 + o(1))(ck(α)πk(X))2. (5.1)

Note that the left side of (5.1) is equal to

1
AB

∑
U<a≤U+A
V <b≤V +B

∑
p,q≤X

a
E(a,b)

(p)≤2α
√

p

a
E(a,b)

(q)≤2α
√

q

a
E(a,b)

(p),a
E(a,b)

(q)∈K

1. (5.2)

From Theorem (1), the terms with p = q in (5.2) contribute O(πk(X)). Thus we have

Fα(U, V,A,B;K;X) =
1
AB

∑
p6=q≤X

∑
r≤(2α

√
p)

1
k

s≤(2α
√

q)
1
k

∑
U<a≤U+A
V <b≤V +B

a
E(a,b)

(p)=rk

a
E(a,b)

(q)=sk

1 +O(πk(X)). (5.3)

From the Chinese Remainder Theorem, the inner sum of (5.3) is equal to(
A

pq
+O(1)

) (
B

pq
+O(1)

)
N(p, rk)N(q, sk). (5.4)

18



When A,B > (X logX)2, we see that the main term ABN(p,rk)N(q,sk)
p2q2 in (5.4) dominates the

error term by at least a factor (logX)2. Thus, from (5.3) and (5.4), we have

Fα(U, V,A,B;K;X) =
(

1 +O

(
1

(logX)2

)) ∑
p6=q≤X

∑
r≤(2α

√
p)

1
k

s≤(2α
√

q)
1
k

N(p, rk)
p2

N(q, sk)
q2

+O (πk(X))

=
1
4

(
1 +O

(
1

(logX)2

)) ∑
p6=q≤X

∑
r≤(2α

√
p)

1
k

s≤(2α
√

q)
1
k

H(r2k − 4p)
p

H(s2k − 4q)
q

+O (πk(X))

=
(

1 +O

(
1

(logX)2

))
M(X)2 +O(πk(X)). (5.5)

(2) then follows from Theorem 5.

6. Further Remarks

Following the work of Fouvry and Murty [3], David and Pappalardi [6] have considered average

Frobenius distributions of elliptic curves. More precisely, they showed

Theorem 6. Let r be an odd integer, A, B ≥ 1. Let

πr
E
(X) := #{p ≤ X : aE (p) = r}

and

π1/2(X) =
∫ X

2

dt

2
√
t log t

∼
√
X

logX
.

For every c > 0, we have

1
4AB

∑
|a|≤A
|b|≤B

πr
E(a,b)(X) = Crπ1/2(X) +O

((
1
A

+
1
B

)
X3/2 +

X5/2

AB
+

√
X

(logX)c

)
(6.1)

where

Cr =
2
π

∏
l|r

l2

l2 − 1

∏
l-r

l(l2 − l − 1)
(l − 1)(l2 − 1)

.

The O-constant depends on c and r.

Theorem 1 cannot be deduced from this since the result of Theorem 6 is not uniform in r. In

fact, (6.1) does not hold for large r. It is quite easy to show that, for t ≥ 1, one has∑
r≤t
2-r

Cr =
1
π
t+O(1)
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Let S be the set of all odd integers. If assuming that (6.1) were uniform, then for 0 < α < 1,

by partial summation, we have

avg.πE (α,S;X) ∼
∑

r≤2α
√

X
2-r

Cr(π1/2(X)− π1/2(r
2/(2α)2)) ∼ 1

π
απ(X).

This can not be true because, following our argument, it is easy to derive that

avg.πE (α,S;X) ∼
(

2
3π

∫ α

0

√
1− t2dt

)
π(X).

We would also like to point out that in Theorem 1, and in the main theorems of [1] and [6],

the minimal ranges of A and B can be reduced a little by estimating some exponential sums.

This is of independent interest but not our focus in this paper. So we have not done so.

The authors are very grateful to the anonymous referee for his/her careful reading of the

manuscript and helpful suggestions.
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