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DISCRETE BERNOULLI CONVOLUTIONS: AN ALGORITHMIC

APPROACH TOWARD BOUND IMPROVEMENT
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JOBBY JACOB, AND KEVIN JAMES

(Communicated by Matthew A. Papanikolas)

Abstract. In this paper we consider a discrete version of the Bernoulli con-
volution problem traditionally studied via functional analysis. We develop
an algorithm which bounds the Bernoulli sequences, and we give a significant
improvement on the best known bound.

1. Introduction

The classic Bernoulli convolution problem in analysis has an elegant discrete
analogue which we now describe. Consider the two maps dupn, shfn : Rn −→ R

3n

defined by

dupn : (a1, a2, ..., an−1, an) �−→ (a1, a1, a2, a2, ..., an−1, an−1, an, an,

n times
︷ ︸︸ ︷

0, ..., 0)(1.1)

shfn : (a1, a2, ..., an−1, an) �−→ (

n times
︷ ︸︸ ︷

0, ..., 0, a1, a1, a2, a2, ..., an−1, an−1, an, an).(1.2)

The names “dup” and “shf” reference the duplication and shifting of the coor-
dinates. Consider the finite sequences of increasing length recursively given by
B0 = (1) and Bn+1 = dupn(Bn)+ shfn(Bn). We call Bn the Bernoulli sequence on
level n. Likewise, we refer to the map (dupn +shfn) : R

n −→ R
3n seen in (1.1) and

(1.2) as the process of duplicate, shift, add or DSA for short.
Figure 1 shows the first few levels of the Bernoulli sequence.
In this paper, we are interested in the rate at which the maximum mn :=

max(Bn) is growing with n. It is easy to see that the mean μ(Bn) = (4/3)n

[2]. The major question to be asked is if mn also grows like (4/3)n. We develop
an algorithm which allows one to bound mn. Upon adjusting the parameter of our
algorithm, we achieve the best known bound mn = O((1.33997599)n).

This problem is equivalent to an unsolved problem in the theory of Bernoulli
convolutions. A Bernoulli convolution is obtained as an infinite convolution of
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Figure 1. This shows the process of DSA at three low levels. The
figure demonstrates computation of the Bernoulli sequence on level
n+1 from the Bernoulli sequence on level n for n = 0, 1 and 2 using
the definition.

Bernoulli measures. The Bernoulli measure, denoted by b(X), is the measure cor-
responding to the discrete probability density function on the real line with value
1/2 at 1 and −1. The Bernoulli convolution with parameter q for 0 < q < 1 is the
measure

μq(X) = b(X) ∗ b(X/q) ∗ b(X/q2) ∗ ... .
A different perspective on Bernoulli convolutions is obtained through a functional
equation. For 0 < q < 1, consider the functional equation

(1.3) F (t) =
1

2
F

(

t− 1

q

)

+
1

2
F

(

t+ 1

q

)

for t on the interval Iq := [−1/(1 − q), 1/(1 − q)]. Here Fq(t) is the distribution
function of μq, that is, Fq(t) = μq((−∞, t]). Jessen and Winter, in [3], showed
that Fq(t) is either absolutely continuous or purely singular. The major question
regarding the solutions of (1.3) is to determine the values of q that make Fq(t)
absolutely continuous. The only value of q for which it is shown that Fq(t) is
absolutely continuous is q = 1/2. In this paper, we investigate this question for
q = 2/3. Note that Fq(t) is absolutely continuous at q = 2/3 if and only if mn =
O((4/3)n). For a detailed introduction and motivation on the discrete analogue of
Bernoulli convolutions, see [2].

For an in-depth report on Bernoulli convolutions, refer to Sixty years of Bernoulli
convolutions [4]. A good introduction on the computational aspects of the problem
is found in Chapter 5 of [1].

2. Bounding Bernoulli

2.1. Preliminaries. Since Bn has length 3n, we index it by the first 3n nonnegative
integers. It is advantageous to normalize the indexing in such a way that each index
is in the interval [0, 1]. We simply take the image of k ∈ {0, 1, 2, ..., 3n − 1} under
the map k �→ k/3n to normalize the index. For a subset S ⊂ [0, 1], we define

Γn(S) = max
x∈S̄

gn(x)

where S̄ = S ∩ {0, 1/3n, 2/3n, ..., (3n − 1)/3n} and gn(x) denotes the value corre-
sponding to x in the nth level Bernoulli sequence where now x ∈ [0, 1]. In other
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words,

(2.1) gn

(

k

3n

)

= bk for k = 0, 1, ..., 3n − 1.

Consider the two maps predup and preshf : [0, 1] ∪ {∅} −→ [0, 1] ∪ {∅} defined by

predup : x �−→
{

(3/2)x if x ∈ [0, 2/3],
∅ otherwise,

preshf : x �−→
{

(3/2)(x− 1/3) if x ∈ [1/3, 1],
∅ otherwise.

Furthermore, define predup(∅) = ∅ and preshf(∅) = ∅.
For a given entry gn(x) on the nth level, gn(x) can be written as a sum of two

entries on level n−1, provided x is in the middle third. If x is in the first third or the
last third, then gn(x) only comes from one entry on the previous level. The maps
predup and preshf give the preimage of the index x on the duplicated copy of the
(n− 1)th level and the shifted copy of the (n− 1)th level, respectively. These maps
reflect the behavior of the indices in the duplication process and shifting. Indeed,
in this new setting the process of duplicate, shift, add translates to the equation

(2.2) gn+1(x) = gn(predup(x)) + gn(preshf(x))

where gn(∅) = 0.

2.2. Description of the algorithm. We wish to give a reasonable bound on the
growth of Γn := Γn([0, 1]) in terms of n. Note that Γn is equal to mn, which
is defined in Section 1. The following procedure gives a method for computing a
positive real number θ so that Γn = O(θn). The exact number θ will depend on
several factors discussed in the remarks in Section 2.4.

(1) Write the interval [0, 1] as a union

(2.3) [0, 1] =
w
⋃

j=1

Dj

where each Dj is a closed interval.
(2) Fix an index j and let D = Dj . Consider the image of D under predup and

preshf. We “pull D back” one level to obtain the two intervals predup(D)
and preshf(D). Note that one of predup(D) or preshf(D) may be empty,
but this poses no problem. Pulling D back two levels, we are left with the
four intervals

(predup(predup(D))), (preshf(predup(D))),

(predup(preshf(D))), (preshf(preshf(D))).

Continuing in this manner, we are left with 2r intervals after considering
the image of D under all pullbacks to level n − r. Call these intervals
E1, E2, ..., E2r .

(3) For each i = 1, 2, ..., 2r, consider the interval Ei. If Ei is empty, we disregard
Ei. Also, if Ei only contains 0 or 1, we disregard it. The reason for this
is that Γn({0}) = 1 and Γn({1}) = 0. Hence intervals will contribute
nothing—this is explained in the proof. Otherwise there exists a y ∈ Ei

so that |y − 1/2| ≤ |z − 1/2| for all other z ∈ Ei. In other words, we
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select the element from Ei that is closest to 1/2. If y > 1/2, replace y with
1− y ∈ (0, 1/2] in the following step.

(4) Consider the sequence of rationals a0, a1, a2, ... where

ak =
1

2

(

2

3

)k

.

We see that ak → 0 as k → ∞; hence there exists k = ki so that ak+1 ≤
y < ak.

(5) For this index i, define the monomial moni(X) := Xn−r−ki ∈ R[X]. If
Ei = ∅, {0}, or {1}, then set moni(X) = 0. Recall that D = Dj and
consider

(2.4) fj(X) = Xn −
2r
∑

i=1

moni(X).

Note that fj is not necessarily a polynomial. If n is small, then the powers
n− r − ki of X may turn out to be negative. However, we assume that n
is large enough so that fj is indeed a polynomial. Increasing the value of n
only increases the multiplicity of the root at X = 0. For each j = 1, 2, ..., w,
let θj be the greatest real root of fj(X).

(6) Let θ = maxj θj .

After computing θ, we have Γn = O(θn).

2.3. Verification of the algorithm. After first reading the above algorithm, it is
not clear how or even why it works. We now prove that this algorithm does indeed
provide a bound for Γn.

Theorem 2.1. Suppose θ is found by using the above method. Then ΓN = O(θN)
for all positive integers N .

Proof. We proceed by induction on N . Whenever N is small, ΓN is a bounded
integer. Hence ΓN < CθN for a large enough constant C. This establishes the base
case; moreover it establishes the bound for any N less than some fixed positive
integer. Before we begin the inductive step, we revisit our algorithm. We will see
that the above algorithm is essentially the computation involved in the inductive
step.

Using the aforementioned notation, we see that in step (1) we have

Γn = max
j∈{1,...,w}

Γn(Dj).

Now using the properties of the functions predup and preshf as in (2.2), in step (2)
we obtain the estimate

Γn(D) ≤
2r
∑

i=1

Γn−r(Ei).

Consider the sequence gh(x) on some level h. There is very little we know regarding
the location of the maximum. However, one very trivial statement we can make is
that the maximum occurs on [1/3, 2/3]; in the process of duplicate, shift, add the
first third of gh(x) is simply the first half of gh−1(x). By extending this inductively,
if x ∈ [0, (1/2)(2/3)k], then gh(x) can be realized as a term of the (h − k)th level.
A similar argument applies for x ∈ [1− (1/2)(2/3)k, 1]. For such x, we obtain that

gh(x) ≤ Γh−k.
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In step (3), we are determining the y ∈ Ei that is closest to 1/2. In step (4), we
compute the largest value of k so that every x ∈ Ei satisfies either x ≤ (1/2)(2/3)k

or x ≥ 1− (1/2)(2/3)k. This gives the estimate

Γn−r(Ei) ≤ Γn−r−ki
.

Putting these two inequalities together, we obtain

Γn(D) ≤
2r
∑

i=1

Γn−r−ki
.

We now tackle the inductive step in the proof. Assume that Γn < Cθn for all
n < N . We wish to show that ΓN < CθN .

ΓN = max
j

ΓN (Dj)

≤ max
j

2r
∑

i=1

ΓN−r−ki

< max
j

2r
∑

i=1

CθN−r−ki

= Cmax
j

(

θN − fj(θ)
)

where the last equality comes from (2.4). Since fj(X) is a monic polynomial,
fj(X) → ∞ as X → ∞. In particular, fj(X) ≥ 0 for all X ≥ θj , where θj is the
largest real root of fj(X). Since θ ≥ θj for all j, it follows that fj(θ) ≥ 0 for all j.
Hence

Cmax
j

(

θN − fj(θ)
)

≤ Cmax
j

θN = CθN . �

2.4. Remarks on the algorithm and its implementation. We can improve
the efficiency of this algorithm as follows. In step (1) of the outline, we only need
to consider breaking up the interval [1/3, 1/2] in (2.3) as a union of closed intervals
because the maximum is guaranteed to occur on this interval. Also, steps (3) and
(4) could be omitted from the algorithm at the expense of obtaining a weaker
bound. In this case, we set moni(X) = Xn−r if Ei 
= ∅ and moni(X) = 0 if Ei = ∅.

We implemented the algorithm in Python. The code can easily be broken up
and run at many computing nodes; indeed this is how we implemented step (1).
We have found that the majority of the running time is spent in steps (3) and (4).
Specifically, for a given interval D, steps (3) and (4) must be repeated at most 2r

times. Since some of the intervals Ei become empty under repeated applications
of predup and preshf, the number of nonempty Ei will not be quite this high.
However, the number of nonempty intervals still grows exponentially.

There are two independent parameters that we control when running this algo-
rithm. We are able to choose exactly how we break up the interval [1/3, 1/2] in
(2.3), and we choose the pullback number r defined in step (2). There is a com-
putational trade-off when setting these two values—it is hard to make both large
at once. After testing various ways of breaking up [1/3, 1/2] in (2.3) and various
pullback numbers r, we find that a small increase in r will yield a better bound
than a finer partition in (2.3).
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2.5. Data. We ran many jobs using the high-throughput computing facilities of
Condor at Clemson University. Before implementing this algorithm, the best known
bound onmn was O((

√
2)n) [2]. We succeeded in significantly improving the bound.

The best bound we were able to achieve is mn = O(θn) where θ = 1.33997599527.
Specifically θ is the largest real root of the polynomial

X33 − 752X8 − 520X7 − 319X6 − 231X5 − 141X4 − 101X3 − 54X2 − 50X − 83.

This polynomial was obtained using r = 25 and w = 300.
We conclude this paper with the following conjecture.

Conjecture 2.1. mn = O((4/3)n).
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