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Abstract. In this paper we consider a discrete version of the Bernoulli convolution problem tra-
ditionally studied via functional analysis. We discuss several innovative algorithms for computing
the sequences with this new approach. In particular, these algorithms assist us in gathering data
regarding the maximum values. By looking at a family of associated polynomials, we gain insight
on the local behavior of the sequence itself. This work was completed as part of the Clemson
University REU, an NSF funded program1.

1. Introduction

The classic Bernoulli convolution problem in analysis has an elegant discrete analogue as follows.
Define two maps dupn, shfn : Rn −→ R3n defined by

dupn : (a1, a2, ..., an−1, an) 7−→ (a1, a1, a2, a2, ..., an−1, an−1, an, an,

n︷ ︸︸ ︷
0, ..., 0) (1)

shfn : (a1, a2, ..., an−1, an) 7−→ (
n︷ ︸︸ ︷

0, ..., 0, a1, a1, a2, a2, ..., an−1, an−1, an, an). (2)
Consider the finite sequences recursively given by B0 = (1) and Bn+1 = dupn(Bn) + shfn(Bn). Bn

is called the nth level Bernoulli sequence. The names “dup” and “shf” reference the duplication
and shifting of the coordinates.

In this paper, we are primarily interested in the rate at which the maximum value of Bn is growing
with n. We develop two independent algorithms to do this. The first gives a recursive method for
computing the entire sequence Bn when n is small. By encoding the sequence as coefficients of a
polynomial, the second gives a method for computing specified entries of Bn when n is larger. In
addition, we provide numerical data concerning Bn.

1.1. Motivation. Classically, Bernoulli convolutions have been studied as a problem in functional
analysis. A Bernoulli convolution is obtained as an infinite convolution of Bernoulli measures [1].
The Bernoulli measure, denoted by b(X), is the measure corresponding to the discrete probability
density function on the real line with value 1/2 at 1 and −1. The Bernoulli convolution with
parameter q for 0 < q < 1 is the measure

µq(X) = b(X) ∗ b(X/q) ∗ b(X/q2) ∗ ... .
This measure was first studied by Jessen and Wintner [4]. They showed that µq is continuous for
any q.

A different perspective on Bernoulli convolutions is obtained through a functional equation. For
0 < q < 1, consider the functional equation

F (t) =
1
2
F

(
t− 1
q

)
+

1
2
F

(
t+ 1
q

)
(3)
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for t on the interval Iq := [−1/(1− q), 1/(1− q)]. It can be shown that there is a unique bounded
solution Fq(t) to the above equation. Moreover, Fq(t) is the distribution function of µq, that is
Fq(t) = µq((−∞, t]). For an introduction to this, refer to Chapter 5 in Experimental Mathematics
in Action [1]. For a more in depth analysis, refer to Sixty years of Bernoulli convolutions [6].

Jessen and Winter, in [4], showed that Fq(t) is either absolutely continuous or purely singular.
The major question regarding the solutions of (3) is to determine the values of q which make Fq(t)
absolutely continuous. If Fq(t) is absolutely continuous, rather than considering the function Fq(t),
one may consider its derivative fq(t) := F ′q(t). Upon differentiating, the functional equation for
Fq(t) yields the following equation:

f(t) =
1
2q
f

(
t− 1
q

)
+

1
2q
f

(
t+ 1
q

)
. (4)

The existence of an absolutely continuous solution Fq(t) to (3) is equivalent to the the existence of
an L1(Iq) solution fq(t) to (4).

When 0 < q < 1/2, Kershner and Wintner [5] proved that Fq(t) is always singular. For these
values of q, the solution Fq(t) is an example of a Cantor function, a function that is constant almost
everywhere. It can be shown that if q = 1/2, then the solution Fq(t) is absolutely continuous.

The case when q > 1/2, however, is significantly harder and more interesting. In 1939, Erdős [3]
showed that Fq(t) is again singular for q of the form q = 1/θ with θ a Pisot number. There is little
else that is known for other values of q > 1/2. One interesting result due to Solomyak [7] is that
almost every q > 1/2 yields a solution Fq(t) that is absolutely continuous. Hence it is surprising
that no actual example of such a q is known. Specifically, the case when q = 2/3 remains a mystery.

In [1], Girgensohn asks the question of computing fq(t) for various values of q. The author starts
an arbitrary initial function f0(t) ∈ L1(Iq) and iterates the transform

Tq : f(t) 7−→ 1
2q
f

(
t− 1
q

)
+

1
2q
f

(
t+ 1
q

)
(5)

to gain a sequence of functions f0, f1, f2, .... He shows that if this sequence of functions converges
to a bounded function, then it converges to the unique solution of (4).

Calkin [2] specifically looked at the above process for q = 2/3. Rather than working on the
interval Iq, we shift the entire interval to [0, 1] for simplicity. The transform Tq now becomes the
map T : L1([0, 1]) −→ L1([0, 1]) where

T : f(x) 7−→ 3
4
f

(
3x
2

)
+

3
4
f

(
3x− 1

2

)
. (6)

Geometrically, this transform (6) takes two scaled copies of f(x): one on the interval [0, 2/3] and
the other on [1/3, 1], and adds them. The scaling factor of 3/4 gives us that∫ 1

0
f(x)dx =

∫ 1

0
Tf(x)dx.

In other words, the average value of Tf(x) equals that of f(x). In this setting, the question
now reads: starting with the constant function f0(x) = 1, does the iteration determined by the
transform in (6) converge to a bounded function?

1.2. Discrete version. Rather than viewing T as a transform on [0, 1], we consider the discrete
analogue mentioned earlier. The sequences dup(Bn) and shf(Bn) defined in (1) and (2) are analo-
gous to the two shifted copies of the function on [0, 1] in (6). We start with the sequence B0 = (1).
We recursively generate sequences given by

Bn+1 = dupn(Bn) + shfn(Bn). (7)
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We are interested in the global behavior of Bn. In particular, we investigate the growth rate of the
maximum element of Bn as n grows large.

Before we discuss our results, we present some notations that are useful throughout this paper.
We call Bn the Bernoulli sequence on level n. We refer to the map (dupn + shfn) : Rn −→ R3n

seen in (7) as the process of duplicate, shift, add or DSA for short. We usually write the nth level
Bernoulli sequence as Bn = (b0, b1, ..., bt) where t = 3n−1. The fact that Bn has a total of 3n terms
follows directly from the definition of dupn and shfn in (1) and (2). We define mn := max(Bn).

1      1 1
           1 1
        1 2 1

1 2 1      1 1 2 2 1 1
                       1 1 2 2 1 1
              1 1 2 3 2 3 2 1 1  

1 1 2 3 2 3 2 1 1      1 1 1 1 2 2 3 3 2 2 3 3 2 2 1 1 1 1 
                                                           1 1 1 1 2 2 3 3 2 2 3 3 2 2 1 1 1 1
                                1 1 1 1 2 2 3 3 2 3 4 4 3 4 3 4 4 3 2 3 3 2 2 1 1 1 1 

Figure 1. This shows the process of DSA at three low levels. The figure demon-
strates computation of the Bernoulli sequence on level n + 1 from the Bernoulli
sequence on level n for n = 0, 1 and 2 using the definition.

It is immediate from the definition that the maximum value of Bn must occur on the middle
third of the Bernoulli sequence. Furthermore, because the sequence is palindromic, the maximum
must occur on the first half of the middle third.

The following observation can be proved using induction on n and the definition of Bn in (7).

Observation 1.1. The mean of the elements of Bn is (4/3)n.

The major question that we considered is whether mn also grows like (4/3)n. A positive result
here is equivalent to the existence of a bounded solution to the functional equation (4) for q = 2/3.
In turn, this is equivalent to the solution Fq(t) of (3) being absolutely continuous for q = 2/3.
Beginning with a computational approach, we address this and other related questions throughout
this paper.

2. Recursive attempts at computing the Bernoulli sequence

2.1. The naive method: DSA. The process of duplicate, shift, add gives a naive method for
computing Bernoulli sequences. Despite the simplicity in describing this process, DSA is not
computationally feasible for large values of n. The primary shortfall of the DSA method is that
each Bernoulli level Bn has 3n terms—each successive computation takes roughly three times as
long as the previous. Likewise, at each successive level we must keep track of three times as many
entries as on the previous level. Using the DSA method without modifications, we have been able
to compute Bn for n = 1, 2, ..., 20. However, the fact that one must know all 3n entries of level n
to compute level n+ 1 limits the practicality of this algorithm.
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Figure 2. This shows some of the low level Bernoulli sequences generated using
DSA. In the above plots, the horizontal axis gives the index and the vertical axis
gives the entry corresponding to that index in the Bernoulli sequence. Moving
clockwise from the top left, we see Bn for n = 5, 7, 11 and 9.

2.2. The improvement: DEM. We now consider an alternate approach that addresses some of
the issues arising from the DSA algorithm. The process we call double, enlarge, merge, abbreviated
DEM, is a way of encoding the Bernoulli sequence Bn as a sequence of length 2(2n − 1). The
advantage with DEM is that this auxiliary sequence is in the order of 2n as opposed to the 3n

size increase required for the DSA process. The DEM algorithm is based on the observation that
in a given Bernoulli sequence, many individual entries are consecutively repeated. Rather than
keeping consecutive repeats, we only keep the index where the Bernoulli sequence either increases
or decreases. For this encoding to be meaningful, it is important to note that when comparing
two consecutive entries in a Bernoulli sequence, the difference between these entries will never be
greater than one in absolute value. This can be proved inductively from the definition in (7).

Given the Bernoulli sequence Bn = (b0, b1, ..., bt) with t = 3n − 1, the DEM representation
is (d1, ..., dr) where di is the index of the ith jump in Bn up to a sign (by jump, we mean two
consecutive entries which are not equal). Suppose the ith jump occurs at index j in Bn, so bj and
bj+1 are different. Then

di =
{

j + 1 if bj < bj+1

−(j + 1) if bj > bj+1.

For example, the DEM representation of B2 = (1, 1, 2, 3, 2, 3, 2, 1, 1) is (2, 3,−4, 5,−6,−7).
We now describe how to translate the DSA method to this new representation. The process of

duplicate becomes double: each element from the original list is multiplied by two. The process
of shift becomes enlarge: each element from the doubled list is modified by 3n as follows: if the
element is positive, we add 3n, for negative elements we subtract 3n. The process of add translates
to merge: we discard the original sequence and consider the new lists attained in the double and
enlarge processes. We then add two additional elements 3n and −2(3n) to these lists, respectively.
Finally, we merge sort the elements of the two lists according to their absolute value to obtain the
DEM representation of the next Bernoulli level.
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2.3. Data. Using the DEM method, we are able to compute the Bernoulli sequence Bn up to
level n = 27. For each of these levels, the maximum value is of particular interest. Typically, the
maximum is attained many times on a given level. Although we found no clear pattern regarding the
location of the maximum values, we do see obvious patterns in the convergence of the maximums
themselves. Below we provide a table detailing the data we collected using the DSA and DEM
algorithms.

Level n Maximum Value mn mn(3/4)n Level n Maximum Value mn mn(3/4)n

0 1 1 14 99 1.763976853
1 2 1.5 15 131 1.750613395
2 3 1.6875 16 176 1.763976853
3 4 1.6875 17 232 1.743931662
4 6 1.8984375 18 309 1.742052425
5 8 1.8984375 19 410 1.733595860
6 11 1.957763672 20 545 1.728310507
7 14 1.868774414 21 728 1.731481719
8 18 1.802032471 22 962 1.716022061
9 25 1.877117157 23 1283 1.716468012
10 33 1.858345985 24 1705 1.710782128
11 43 1.816110849 25 2266 1.705263476
12 56 1.773875713 26 3024 1.706768563
13 75 1.781794801 27 4025 1.703805423

Table 1: The maximums mn appear to grow like (4/3)n. The
fact that mn(3/4)n seems to be converging, albeit slowly, sup-
ports this claim.

3. A Polynomial Approach to DSA

3.1. Translating DSA into a polynomial recursion. By encoding these sequences as coeffi-
cients of polynomials, the process of duplicate, shift, add gives a particularly nice recursive rela-
tion among the polynomials. Let Bn = (b0, b1, ..., bt) be the Bernoulli sequence on level n where
t = 3n − 1. Consider the polynomial pn(x) := b0 + b1x+ ...+ btx

t.
We describe how these polynomials behave under the process of DSA. We see that the duplication

b0, b0, b1, b1, ..., br, br corresponds to the polynomial (1 + x)pn(x2). Shifting the sequence 3n places
to the right corresponds to multiplication by x3n

. By adding the duplicate and the shift of the
sequence, we arrive at the sequence on the next level. This yields the recursive relation

pn+1(x) = (1 + x)pn(x2)
(
1 + x3n)

(8)

with P0(x) = 1.

3.2. Explicit formula for pn(x). This formula (8) allows us to explicitly solve for pn(x).

Theorem 3.1. For n ≥ 1, the polynomials pn(x) satisfy

pn(x) =
n−1∏
i=0

(
1 + x2i

) n−1∏
j=0

(
1 + x2n−1(3/2)j

)
. (9)
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Proof. We proceed by induction on n. We know P1(x) = 1 + 2x+ x2, and thus the formula holds
for the case n = 1. Assume the formula holds for pn(x). We have

pn+1(x) = (1 + x)pn(x2)
(
1 + x3n)

= (1 + x)
n−1∏
i=0

(
1 + (x2)2

i
) n−1∏

j=0

(
1 + (x2)2

n−1(3/2)j
) (

1 + x3n)
= (1 + x)

n−1∏
i=0

(
1 + x2i+1

) n−1∏
j=0

(
1 + x2n(3/2)j

)(
1 + x2n(3/2)n

)
=

n∏
i=0

(
1 + x2i

) n∏
j=0

(
1 + x2n(3/2)j

)
.

�

3.3. A bound on the coefficients. By factoring pn, we can obtain a bound on how fast the
coefficients grow with the level n.

Theorem 3.2. mn = O((
√

2)n)

Proof. Define polynomials qn, rn, sn by

qn(x) =
n−1∏
i=0

(
1 + x2i

)
sn(x) =

∏
1≤j≤n−1

j odd

(
1 + x2n−1(3/2)j

)

rn(x) =
∏

1≤j≤n−1
j even

(
1 + x2n−1(3/2)j

)
=
b(n−1)/2c∏

j=1

(
1 + x2n−1(9/4)j

)
.

We see that
pn(x) = qn(x)

(
1 + x2n−1

)
rn(x)sn(x).

Consider the polynomial qn(x)rn(x). Because 9/4 > 2, we are left with distinct powers of x when
we expand qn(x)rn(x). In other words, the coefficients of qn(x)rn(x) are all either 0 or 1. Hence
the coefficients of qn(x)rn(x)(1 + x2n−1

) are all either 0, 1, or 2. In particular, the coefficients are
bounded. On the other hand, there are at most n/2 terms in the product defining sn(x). Thus
there are at most 2n/2 nonzero terms in the polynomial sn(x). Also, the coefficients of sn(x) are
bounded as in the case of rn(x). Therefore the coefficients of pn(x) are all O(2n/2) = O((

√
2) n). �

3.4. An algorithmic implementation: PIP. The fact that the Bernoulli sequence can be re-
alized as the coefficients of an explicitly defined polynomial provides us with an algorithm for
computing specified values on high levels. The algorithms DSA and DEM are useful for computing
entire levels, though this task becomes impossible for large n due to the recursive nature of the al-
gorithm. The following algorithm, which we dub PIP, allows us to compute values on much higher
levels. The algorithm is non-recursive—we need no lower levels to compute entries of Bn. The
name PIP stands for polynomial isolated point ; this algorithm computes the entry corresponding
to a given index on a given level.

Our algorithm is based on the following idea. Suppose S = {a1, ..., an} is a sequence of positive
integers. Consider the polynomial

f(x) =
n∏

i=1

(1 + xai) =
m∑

j=1

αjx
j .
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Then αj is the number of ways that j can be written as a sum of distinct elements from S [8].
This idea is applicable to the coefficients of our polynomial because our polynomial is a product of
terms of the form (1 + xa). Applying this idea to our situation, we find that the coefficient bj of
xj in pn(x) (which is the jth entry on the nth Bernoulli sequence) is precisely the number of ways
that j can be written as a sum of distinct terms in the sequence

S = {1, 2, 4, ..., 2n−2, 2n−1, 2n−1, 2n−23, 2n−332, ..., 223n−3, 213n−2, 3n−1}. (10)

The values in the sequence S are just the exponents of the factors of pn(x) in (9).
We now outline an algorithm that can be used to calculate the entry bj for a fixed level n. Let

S = {a1, ..., an} where each ai > 0. Let NS(k) denote the number of ways k can be written as a
sum of elements from S. Our entire algorithm is based on the following observations:

• For any i ∈ {1, ..., n}, we have

NS(k) = NS \{ai}(k) + NS \{ai}(k − ai). (11)

• If k >
∑
s∈S

s, then NS(k) = 0.

• If k < 0, then NS(k) = 0.
These three relations provide an algorithm for computing the jth entry on a given Bernoulli level.

However, our sequence S in (10) takes on a particularly nice form—taking advantage of this we can
increase the efficiency of our algorithm. Let S be as in (10). Suppose 0 < k < 2n−1. Any element
of S containing a positive power of 3 is strictly larger than k itself, so these terms become useless
when writing k as a sum of elements in S. Hence, we are left with the distinct powers of 2 in S.
But k can now be written uniquely; this is simply the binary expansion of k. So NS(k) = 1 in this
case.

Based on the above ideas, we implement a tree branching algorithm to compute NS(k) for various
values of k and n. See Figure 3 for a specific example of the PIP algorithm.

3.5. Data. Our PIP algorithm is used to compute isolated points on Bn for a given n. It is in-
feasible to compute entire levels using PIP, so we are not able to calculate the global maximum of
a given level with this method. Instead, PIP provides us with local information on the Bernoulli
sequence. In particular, the PIP algorithm gives evidence that the Bernoulli sequence Bn is con-
verging uniformly as n grows large. Furthermore, we can gather local data on much higher levels
than we were able to with DSA or DEM.

We now describe one way in which PIP can be used to gather local information on the Bernoulli
sequence. Fix α in [0, 1]. Consider the index k = dα(3n − 1)e. We now use PIP to compute the
entry bk at index k for levels n = 1, 2, ..., 50 (we have used PIP to compute individual entries on
levels as high as n = 70). Finally, we take the quotient of bk by (4/3)n. This data is presented in
Table 2.

Level 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5
1 1.500000 1.500000 1.500000 1.500000 1.500000 1.500000 1.500000 1.500000
2 1.687500 1.687500 1.687500 1.687500 1.687500 1.125000 1.125000 1.125000
3 1.265625 1.687500 1.687500 1.687500 1.687500 1.265625 1.265625 1.687500
4 1.265625 1.582031 1.582031 1.265625 1.582031 1.265625 1.582031 1.898438
5 1.186523 1.186523 1.661133 1.423828 1.898438 1.423828 1.423828 1.898438
6 1.245850 1.423828 1.779785 1.423828 1.779785 1.423828 1.423828 1.779785
7 1.201355 1.334839 1.735291 1.601807 1.601807 1.334839 1.601807 1.601807
8 1.201355 1.301468 1.802032 1.701920 1.501694 1.401581 1.501694 1.802032
9 1.201355 1.351524 1.877117 1.802032 1.501694 1.351524 1.576778 1.802032
10 1.182584 1.407838 1.858346 1.689405 1.464151 1.520465 1.520465 1.576778
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11 1.309289 1.435995 1.816111 1.562700 1.393759 1.520465 1.647170 1.689405
12 1.330407 1.393759 1.742199 1.615494 1.488789 1.520465 1.647170 1.710523
13 1.354164 1.401679 1.710523 1.591737 1.472950 1.520465 1.591737 1.520465
14 1.336346 1.425436 1.674887 1.567979 1.496708 1.478890 1.621433 1.639251
15 1.296256 1.469981 1.643706 1.576888 1.496708 1.496708 1.630342 1.630342
16 1.312960 1.433231 1.603615 1.573548 1.533457 1.493367 1.583570 1.583570
17 1.315466 1.450771 1.578559 1.563525 1.525940 1.510906 1.563525 1.623661
18 1.324862 1.460167 1.578559 1.544733 1.516544 1.482718 1.572921 1.668762
19 1.314996 1.429160 1.594063 1.530638 1.530638 1.496812 1.577149 1.640574
20 1.319224 1.436559 1.585606 1.525353 1.534867 1.474614 1.569750 1.617318
21 1.305747 1.446073 1.591156 1.534074 1.541209 1.479370 1.560236 1.584020
22 1.309314 1.455586 1.589372 1.539425 1.539425 1.478776 1.566182 1.641102
23 1.311098 1.446221 1.581345 1.547898 1.547898 1.485019 1.577331 1.650913
24 1.312436 1.453914 1.585358 1.551243 1.535189 1.483012 1.578334 1.609440
25 1.310178 1.455419 1.592382 1.563785 1.537446 1.478748 1.576579 1.610443
26 1.304910 1.448270 1.603482 1.563409 1.533495 1.479877 1.581470 1.609690
27 1.308438 1.448129 1.609832 1.559881 1.526864 1.478607 1.577237 1.601789
28 1.308967 1.444848 1.615017 1.556601 1.532790 1.485486 1.579142 1.612160
29 1.315555 1.448896 1.616049 1.554379 1.529853 1.476517 1.576046 1.618192
30 1.308114 1.451872 1.616346 1.554914 1.527055 1.471516 1.577594 1.610810
31 1.304274 1.449729 1.617150 1.550718 1.531565 1.470757 1.577639 1.608846
32 1.304073 1.447017 1.616983 1.552593 1.536219 1.473034 1.575094 1.610252
33 1.307213 1.447419 1.616631 1.551990 1.531498 1.474767 1.572030 1.613467
34 1.308757 1.447589 1.615463 1.549579 1.532515 1.474315 1.575458 1.615463
35 1.308474 1.449637 1.616141 1.549989 1.529139 1.473750 1.574780 1.617582
36 1.308125 1.449245 1.617667 1.550127 1.530548 1.474640 1.574123 1.616396
37 1.307886 1.450556 1.617897 1.552057 1.530150 1.474251 1.574417 1.617445
38 1.307892 1.450008 1.619012 1.551682 1.529727 1.473464 1.574763 1.617743
39 1.307544 1.450535 1.619714 1.550310 1.529070 1.473370 1.575921 1.617233
40 1.307356 1.450019 1.620015 1.550705 1.529959 1.475150 1.575666 1.616817
41 1.308606 1.449664 1.620206 1.550265 1.529659 1.475490 1.574831 1.616616
42 1.308272 1.448889 1.620105 1.550073 1.529771 1.476246 1.575167 1.617084
43 1.309044 1.449437 1.619960 1.550729 1.529682 1.477035 1.574522 1.616727
44 1.309736 1.449494 1.619917 1.550938 1.529485 1.475599 1.574488 1.617941
45 1.308585 1.449791 1.619751 1.550583 1.529578 1.475369 1.574587 1.617180
46 1.308839 1.449973 1.619832 1.550568 1.529498 1.476223 1.574642 1.615671
47 1.309522 1.450225 1.619787 1.550845 1.529697 1.476398 1.574457 1.617048
48 1.309481 1.449946 1.619833 1.550384 1.529741 1.476457 1.574743 1.616217
49 1.309458 1.450029 1.619892 1.550488 1.529521 1.476353 1.575004 1.616225
50 1.309438 1.450046 1.619848 1.550631 1.529865 1.476265 1.574653 1.616802

Table 2: We consider various values for α (appearing in the
top row), and compute associated entry of the Bernoulli se-
quence. We chose these specific α values because the only
portion of the sequence of interest is the first half of the mid-
dle third.
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        k=12
S={1,2,4,4,6,9}

       k=12
S={1,2,4,4,6}

     k=12
S={1,2,4,4}

STOP

STOP

        k=3
S={1,2,4,4,6}

      k=6
S={1,2,4,4}

     k=6
S={1,2,4}

     k=2
S={1,2,4}

   k=6
S={1,2}

   k=2
S={1,2}

k < cutoff = 3
  answer++

k < cutoff = 3
  answer++

k < cutoff = 3
  answer++

  k>      s=3
      s  S

  k>      s=11
      s  S

Figure 3. The above flowchart illustrates the PIP algorithm. It shows the com-
putation of NS(k) for k = 12 and S = {1, 2, 4, 4, 6, 9}. The boxes containing the
word “cutoff” account for the fact that if 0 < k < 2n−1, then there is a unique way
to write k as a sum of elements in S (the binary expansion of k). As the diagram
suggests, NS(k) = 3, corresponding to the fact that there are three boxes containing
the word answer++. Hence the 12th entry on the 3rd Bernoulli level is 3.

4. Conclusion

Studying Bernoulli convolutions through a discrete lens sheds much new insight on the subject.
Many of our algorithms would not have been discovered without combinatorial thinking—for ex-
ample, the PIP algorithm is made possible by the fact that the coefficients of a polynomial can be
thought of as counting the number of representations of integers as sums from a certain sequence.
The discrete point of view is a very simple way to think about Bernoulli convolutions (the duplicate,
shift, add method could be explained to a small child), but a computer has trouble computing more
than a handful of Bernoulli sequences. In particular, studying Bernoulli convolutions via combina-
torics has led to the discovery and development of two elegant algorithms (DEM and PIP). Using
these algorithms we were able to generate the entire Bernoulli sequences at many new levels (up to
27) and also were also able to calculate individual entries of Bn at levels as high as 70.

We conjecture that mn = O((4/3)n), or equivalently that F2/3(t) is absolutely continuous. Our
two algorithms provide much data to support this claim.
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