
DISCRETE BERNOULLI CONVOLUTIONS: AN ALGORITHMIC

APPROACH TOWARD BOUND IMPROVEMENT

NEIL J. CALKIN, JULIA DAVIS, MICHELLE DELCOURT, ZEBEDIAH ENGBERG,
JOBBY JACOB, AND KEVIN JAMES

Abstract. In this paper we consider a discrete version of the Bernoulli con-
volution problem traditionally studied via functional analysis. We develop
an algorithm which bounds the Bernoulli sequences, and we give a significant
improvement on the best known bound. 1

1. Introduction

The classic Bernoulli convolution problem in analysis has an elegant discrete
analogue which we now describe. Consider the two maps dupn, shfn : Rn −→ R3n

defined by

(1.1) dupn : (a1, a2, ..., an−1, an) #−→ (a1, a1, a2, a2, ..., an−1, an−1, an, an,

n times
︷ ︸︸ ︷

0, ..., 0)

(1.2) shfn : (a1, a2, ..., an−1, an) #−→ (

n times
︷ ︸︸ ︷

0, ..., 0, a1, a1, a2, a2, ..., an−1, an−1, an, an).

The names “dup” and “shf” reference the duplication and shifting of the co-
ordinates. Consider the finite sequences of increasing length recursively given by
B0 = (1) and Bn+1 = dupn(Bn)+ shfn(Bn). We call Bn the Bernoulli sequence on
level n. Likewise, we refer to the map (dupn + shfn) : Rn −→ R3n seen in (1.1) and
(1.2) as the process of duplicate, shift, add or DSA for short.

Figure 1 shows the first few levels of the Bernoulli sequence.
In this paper, we are interested in the rate at which the maximum mn :=

max(Bn) is growing with n. It is easy to see that the mean µ(Bn) = (4/3)n

[2]. The major question to be asked is if mn also grows like (4/3)n. We develop
an algorithm which allows one to bound mn. Upon adjusting the parameter of our
algorithm, we achieve the best known bound mn = O((1.33997599)n).

This problem is equivalent to an unsolved problem in the theory of Bernoulli
convolutions. A Bernoulli convolution is obtained as an infinite convolution of
Bernoulli measures. The Bernoulli measure, denoted by b(X), is the measure cor-
responding to the discrete probability density function on the real line with value
1/2 at 1 and −1. The Bernoulli convolution with parameter q for 0 < q < 1 is the
measure

µq(X) = b(X) ∗ b(X/q) ∗ b(X/q2) ∗

Date: June 10, 2010.
2000 Mathematics Subject Classification. Primary 05A16, 42A85; Secondary 26A46, 46G99,

28E99.
Key words and phrases. Bernoulli Convolution, Bernoulli Sequence, Growth Rate of Bernoulli

Sequence.

1

2 N. CALKIN, J. DAVIS, M. DELCOURT, Z. ENGBERG, J. JACOB, AND K. JAMES

Figure 1. This shows the process of DSA at three low levels.
The figure demonstrates computation of the Bernoulli sequence on
level n+1 from the Bernoulli sequence on level n for n = 0, 1 and 2
using the definition.

A different perspective on Bernoulli convolutions is obtained through a functional
equation. For 0 < q < 1, consider the functional equation

(1.3) F (t) =
1

2
F

(
t − 1

q

)

+
1

2
F

(
t + 1

q

)

for t on the interval Iq := [−1/(1− q), 1/(1− q)]. Fq(t) is the distribution function
of µq, that is Fq(t) = µq((−∞, t]). Jessen and Winter, in [3], showed that Fq(t)
is either absolutely continuous or purely singular. The major question regarding
the solutions of (1.3) is to determine the values of q that make Fq(t) absolutely
continuous. The only value of q for which it is shown that Fq(t) is absolutely
continuous is q = 1/2. In this paper, we investigate this question for q = 2/3. Fq(t)
is absolutely continuous at q = 2/3 if and only if mn = O((4/3)n). For a detailed
introduction and motivation on the discrete analogue of Bernoulli convolutions, see
[2].

For an in depth report on Bernoulli convolutions, refer to Sixty years of Bernoulli
convolutions [4]. A good introduction on the computational aspects of the problem
is found in Chapter 5 of [1].

2. Bounding Bernoulli

2.1. Preliminaries. Since Bn has length 3n, we index it by the first 3n nonnegative
integers. It is advantageous to normalize the indexing in such a way that each index
is in the interval [0, 1]. We simply take the image of k ∈ {0, 1, 2, ..., 3n − 1} under
the map k #→ k/3n to normalize the index. For a subset S ⊂ [0, 1], we define

Γn(S) = max
x∈S̄

gn(x)

where S̄ = S ∩ {0, 1/3n, 2/3n, ..., (3n − 1)/3n} and gn(x) denotes the value corre-
sponding to x in the nth level Bernoulli sequence where now x ∈ [0, 1]. In other
words,

(2.1) gn

(
k

3n

)

= bk for k = 0, 1, ...3n − 1.

DISCRETE BERNOULLI CONVOLUTIONS 3

Consider the two maps predup, preshf : [0, 1] ∪ {∅} −→ [0, 1] ∪ {∅} defined by

predup : x #−→
{

(3/2)x if x ∈ [0, 2/3]
∅ otherwise

preshf : x #−→
{

(3/2)(x − 1/3) if x ∈ [1/3, 1]
∅ otherwise.

Furthermore, define predup(∅) = ∅ and preshf(∅) = ∅.
For a given entry gn(x) on the nth level, gn(x) can be written as a sum of two

entries on level n− 1, provided x is in the middle third. If x is in the first third or
the last third then gn(x) only comes from one entry on the previous level. The maps
predup and preshf give the preimage of the index x on the duplicated copy of the
(n− 1)th level and the shifted copy of the (n− 1)th level, respectively. These maps
reflect the behavior of the indices in the duplication process and shifting. Indeed,
in this new setting the process of duplicate, shift, add translates to the equation

(2.2) gn+1(x) = gn(predup(x)) + gn(preshf(x))

where gn(∅) = 0.

2.2. Description of algorithm. We wish to give a reasonable bound on the
growth of Γn := Γn([0, 1]) in terms of n. Note that Γn is equal to mn, which
is defined in Section 1. The following procedure gives a method for computing a
positive real number θ so that Γn = O(θn). The exact number θ will depend on
several factors discussed in the remarks in Section 2.4.

(1) Write the interval [0, 1] as a union

(2.3) [0, 1] =
w
⋃

j=1

Dj

where each Dj is a closed interval.
(2) Fix an index j and let D = Dj. Consider the image of D under predup and

preshf. We “pull D back” one level to obtain the two intervals predup(D)
and preshf(D). Note that one of predup(D) or preshf(D) may be empty,
but this poses no problem. Pulling D back two levels, we are left with the
four intervals

(predup(predup(D))), (preshf(predup(D))),

(predup(preshf(D))), (preshf(preshf(D))).

Continuing in this manner, we are left with 2r intervals after considering
the image of D under all pullbacks to level n − r. Call these intervals
E1, E2, ..., E2r .

(3) For each i = 1, 2, ..., 2r, consider the interval Ei. If Ei is empty, we disregard
Ei. Also, if Ei only contains 0 or 1, we disregard it. The reason for this
is that Γn({0}) = 1 and Γn({1}) = 0. Hence intervals will contribute
nothing—this is explained in the proof. Otherwise there exists a y ∈ Ei

so that |y − 1/2| ≤ |z − 1/2| for all other z ∈ Ei. In other words, we
select the element from Ei that is closest to 1/2. If y > 1/2, replace y with
1 − y ∈ (0, 1/2] in the following step.

4 N. CALKIN, J. DAVIS, M. DELCOURT, Z. ENGBERG, J. JACOB, AND K. JAMES

(4) Consider the sequence of rationals a0, a1, a2, ... where

ak =
1

2

(
2

3

)k

.

We see that ak → 0 as k → ∞, hence there exists k = ki so that ak+1 ≤
y < ak.

(5) For this index i, define the monomial moni(X) := Xn−r−ki ∈ R[X]. If
Ei = ∅, {0}, or {1}, then set moni(X) = 0. Recall that D = Dj and
consider

(2.4) fj(X) = Xn −
2r

∑

i=1

moni(X).

Note that fj is not necessarily a polynomial. If n is small, then the powers
n − r − ki of X may turn out to be negative. However, we assume that n
is large enough so that fj is indeed a polynomial. Increasing the value of n
only increases the multiplicity of the root at X = 0. For each j = 1, 2, ..., w,
let θj be the greatest real root of fj(X).

(6) Let θ = maxj θj .

After computing θ, we have Γn = O(θn).

2.3. Verification of algorithm. After first reading the above algorithm, it is not
clear how or even why it works. We now prove that this algorithm does indeed
provide a bound for Γn.

Theorem 2.1. Suppose θ is found using the above method. Then ΓN = O(θN) for
all positive integers N .

Proof. We proceed by induction on N . Whenever N is small, ΓN is a bounded
integer. Hence ΓN < CθN for a large enough constant C. This establishes the base
case; moreover it establishes the bound for any N less than some fixed positive
integer. Before we begin the inductive step, we revisit our algorithm. We will see
that the above algorithm is essentially the computation involved in the inductive
step.

Using the aforementioned notation, we see that in step 1 we have

Γn = max
j∈{1,...,w}

Γn(Dj).

Now using the properties of the functions predup and preshf as in (2.2), in step 2
we obtain the estimate:

Γn(D) ≤
2r

∑

i=1

Γn−r(Ei).

Consider the sequence gh(x) on some level h. There is very little we know regarding
the location of the maximum. However, one very trivial statement we can make is
that the maximum occurs on [1/3, 2/3]; in the process of duplicate, shift, add the
first third of gh(x) is simply the first half of gh−1(x). By extending this inductively,
if x ∈ [0, (1/2)(2/3)k], then gh(x) can be realized as a term of the (h − k)th level.
A similar argument applies for x ∈ [1− (1/2)(2/3)k, 1]. For such x, we obtain that

gh(x) ≤ Γh−k.

DISCRETE BERNOULLI CONVOLUTIONS 5

In step 3, we are determining the y ∈ Ei that is closest to 1/2. In step 4, we
compute the largest value of k so that every x ∈ Ei satisfies either x ≤ (1/2)(2/3)k

or x ≥ 1 − (1/2)(2/3)k. This gives the estimate

Γn−r(Ei) ≤ Γn−r−ki
.

Putting these two inequalities together, we obtain

Γn(D) ≤
2r

∑

i=1

Γn−r−ki
.

We now tackle the inductive step in the proof. Assume that Γn < Cθn for all
n < N . We wish to show that ΓN < CθN .

ΓN = max
j

ΓN (Dj)

≤ max
j

2r

∑

i=1

ΓN−r−ki

< max
j

2r

∑

i=1

CθN−r−ki

= C max
j

(

θN − fj(θ)
)

where the last equality comes from (2.4). Since fj(X) is a monic polynomial,
fj(X) → ∞ as X → ∞. In particular, fj(X) ≥ 0 for all X ≥ θj , where θj the
largest real root of fj(X). Since θ ≥ θj for all j, it follows that fj(θ) ≥ 0 for all j.
Hence

C max
j

(

θN − fj(θ)
)

≤ C max
j

θN = CθN .

!

2.4. Remarks on algorithm and its implementation. We can improve the
efficiency of this algorithm as follows. In step 1 of the outline, we only need to
consider breaking up the interval [1/3, 1/2] in (2.3) as a union of closed intervals
because the maximum is guaranteed to occur on this interval. Also, steps 3 and 4
could be omitted from the algorithm at the expense of obtaining a weaker bound.
In this case, we set moni(X) = Xn−r if Ei -= ∅ and moni(X) = 0 if Ei = ∅.

We implemented the algorithm in Python. The code can easily be broken up and
run at many computing nodes; indeed this is how we implemented step 1. We have
found that the majority of the running time is spent in steps 3 and 4. Specifically,
for a given interval D, steps 3 and 4 must be repeated at most 2r times. Since some
of the intervals Ei become empty under repeated applications of predup and preshf,
the number of nonempty Ei will not be quite this high. However, the number of
nonempty intervals still grows exponentially.

There are two independent parameters we control when running this algorithm.
We are able to choose exactly how we break up the interval [1/3, 1/2] in (2.3) and we
choose the pullback number r defined in step 2. There is a computational trade off
when setting these two values—it is hard to make both large at once. After testing
various ways of breaking up [1/3, 1/2] in (2.3) and various pullback numbers r, we

6 N. CALKIN, J. DAVIS, M. DELCOURT, Z. ENGBERG, J. JACOB, AND K. JAMES

find that a small increase in r will yield a better bound than a finer partition in
(2.3).

2.5. Data. We ran many jobs using the high-throughput computing facilities of
Condor at Clemson University. Before implementing this algorithm, the best known
bound on mn was O((

√
2)n) [2]. We succeeded in significantly improving the bound.

The best bound we were able to achieve is mn = O(θn) where θ = 1.33997599527.
Specifically θ is the largest real root of the polynomial

X33 − 752X8 − 520X7 − 319X6 − 231X5 − 141X4 − 101X3 − 54X2 − 50X − 83.

This polynomial was obtained using r = 25 and w = 300.
We conclude this paper with the following conjecture.

Conjecture 2.1.1. mn = O((4/3)n).

References

[1] David H. Bailey, Jonathan M. Borwein, Neil J. Calkin, Roland Girgensohn, D. Russell Luke,
and Victor H. Moll, Experimental mathematics in action, A K Peters Ltd., Wellesley, MA,
2007. MR MR2320374 (2007m:00003)

[2] Neil Calkin, Julia Davis, Michelle Delcourt, Zebediah Engberg, Jobby Jacob, and Kevin James,
Taking the convoluted out of bernoulli convolutions: A discrete approach, Submitted.

[3] Børge Jessen and Aurel Wintner, Distribution functions and the Riemann zeta function, Trans.
Amer. Math. Soc. 38 (1935), no. 1, 48–88. MR MR1501802

[4] Yuval Peres, Wilhelm Schlag, and Boris Solomyak, Sixty years of Bernoulli convolutions,
Fractal geometry and stochastics, II (Greifswald/Koserow, 1998), Progr. Probab., vol. 46,
Birkhäuser, Basel, 2000, pp. 39–65. MR MR1785620 (2001m:42020)

Neil Calkin, Department of Mathematical Sciences, Clemson University, Clemson,

SC 29634

E-mail address: calkin@ces.clemson.edu

Julia Davis, Department of Mathematics, Grove City College, Grove City, PA 16127

E-mail address: davisjl1@gcc.edu

Michelle Delcourt, School of Mathematics, Georgia Institute of Technology, At-

lanta, GA 30332

E-mail address: mdelcourt3@gatech.edu

Zebediah Engberg, Department of Mathematics, Dartmouth College, Hanover, NH

03755

E-mail address: zeb@dartmouth.edu

Jobby Jacob, School of Mathematical Sciences, Rochester Institute of Technology,

Rochester, NY 14623

E-mail address: jxjsma@rit.edu

Kevin James, Department of Mathematical Sciences, Clemson University, Clemson,

SC 29634

E-mail address: kevja@clemson.edu

