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Abstract

We show that the set of elliptic curves with trace of Frobenius at p a minimum has
density one.

1. Introduction

Let Ea,b be the elliptic curve y2 = x3 + ax + b over Fp. Suppose Ea,b has good

reduction at p. A famous result of Hasse (see [3, Theorem 7.3.1]) states that

|#Ea,b(Fp)− (p+ 1)| ≤ 2
√
p

or equivalently that

(p+ 1)− 2
√
p ≤ #Ea,b(Fp) ≤ (p+ 1) + 2

√
p.

Thus, a natural question to ask is how often the number of points on an elliptic

curve hits its upper bound.

Definition 1. If p is such that Ea,b is nonsingular over Fp and #Ea,b(Fp) =

(p+ 1) + b2√pc, then we call p a champion prime for Ea,b.
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By defining ap := p + 1 −#Ea,b(Fp), as a direct corollary to Hasse’s Theorem we

have that

|ap| < 2
√
p.

Thus, we can equivalently say that p is a champion prime for Ea,b if and only if

ap = −b2√pc. We note that when ap = 0, Ea,b has a supersingular reduction at p.

For more on supersingular primes see [4].

2. Champion Primes

We first show that champion primes do occur. This fact is a direct corollary of

Deuring’s Theorem.

Theorem 2 (Deuring). (see [2, 14.C]) Let p > 3 be prime, and let N = p+ 1− a
be an integer, where −2

√
p ≤ a ≤ 2

√
p. Then the number of non-isomorphic elliptic

curves E over Fp which have #E(Fp) = p+ 1− a is

(p− 1)

2
H(4p− a2)

where H is the Hurwitz class number as defined in [1, Definition 5.3.6, p.234].

Please note the Hurwitz class number differs from the Kronecker class number,

which has the same notation, and is sometimes used to state Deuring’s Theorem as

in [5].

Thus, if we are given a prime p, we can find an elliptic curve for which p is a

champion. However, the alternative question is more difficult to answer. That is,

does a given elliptic curve have a champion prime? To provide a partial answer to

this question, we will consider a density argument. Namely, if we consider a box

ΩAB = [−A,A]× [−B,B] in the plane for some A,B > 0 ∈ R and fix some bound

X, we can calculate the density of curves in this box which have a champion prime

less than X. Letting our box grow will then provide a density of all curves which

have a champion prime less than X. If we then let X grow, we obtain the density

of curves which have a champion prime. We will show this density is 1.

Throughout, we will assume X < A,B. We let

N(A,B,X) = #{(a, b) ∈ ΩAB : ∃ prime p, (4 < p < X)

s.t. p is a champion prime for Ea,b.}

Similarly, for fixed primes 4 < p1 < p2 < · · · < pk < X we let

Np1p2···pk(A,B,X) = #{(a, b) ∈ ΩAB : Ea,b has champion prime pi, i = 1, 2, . . . , k}.
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We define the density of curves in ΩAB with a champion prime p, 4 < p < Xto be

δ(A,B,X) :=
N(A,B,X)

4AB
,

and if the limit exists, we define

δ(X) := lim
A→∞

δ(A,A,X)

to be the density of curves which have a champion prime p, 4 < p < X. Finally,

if A(X), B(X) are functions of X satisfying A(X), B(X) � exp(( 5
8 + ε)X) (see

Theorem 3) we define

δ := lim
X→∞

δ(A(X), B(X), X)

to be the density of elliptic curves which have a champion prime. Using this nota-

tion, our first result is as follows.

Theorem 3. Suppose A,B and X < A,B are real numbers. We have the following

formula for N(A,B,X), the number of curves Ea,b with (a, b) ∈ ΩAB for which

there exists a prime p, 4 < p < X so that p is a champion prime for Ea,b:

N(A,B,X) = 4AB

[
1−

∏
4<p<X

[
1−p− 1

2p2
H(4p−b2√pc2)

]]
+O

(
A

(
exp

(
1

4
X + o(X)

)
− 1

)

+B

(
exp

(
1

4
X + o(X)

)
− 1

)
+ exp

(
5

4
X + o(X)

)
− 1

)
.

Proof. Fix a prime 4 < p < X where A,B > X. We first compute the number of

integer pairs in ΩAB for which the curve Ea,b has good reduction at p and has p as

a champion. Consider the region [1, p]× [1, p]. Deuring’s Theorem implies that the

number of curves in this box which have good reduction at champion p is

p− 1

2
H(4p− b2√pc2).

Thus, by translating this p× p box within ΩAB , we see that

Np(A,B,X) =

(
2A

p
+O(1)

)(
2B

p
+O(1)

)
p− 1

2
H(4p− b2√pc2). (1)

Let ∆ = 4p− b2√pc2, and note that ∆ = O(
√
p). Recall [2, p.319] that

H(∆) = 2
∑
f2|∆

−∆

f2 ≡0,1(mod 4)

h(−∆/f2)

w(−∆/f2)
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Also recall Dirichlet’s class number formula [3, p.247]

h(−∆) =
w(−∆)| −∆|1/2

2π
L(1, χ−∆).

Combining these two results with a result from [5, p.656], we get that

H(∆)� p1/4(log p)2.

Thus, H(4p − b2√pc2) = O(p1/4(log p)2). If we apply this to equation (1) above,

we find through expansion that

Np(A,B,X) =
4AB(p− 1)

2p2
H(4p− b2√pc2) +O

(
(A+B + p)p1/4(log p)2

)
.

By inclusion/exclusion

N(A,B,X) =

π(X)−2∑
k=1

(−1)k+1
∑

n=p1···pk
4<pi<X

Nn(A,B,X). (2)

By the Chinese Remainder Theorem, if n = p1p2 · · · pk, then

Nn(A,B,X) =

[∏
p|n

p− 1

2
H(4p− b2√pc2)

](
2A

n
+O(1)

)(
2B

n
+O(1)

)

=
4AB

n2

[∏
p|n

p− 1

2
H(4p− b2√pc2)

]
+O

 1

2k
(A+B + n)n1/4

∏
p|n

(log p)2

 ,

where we have once again used the fact that H(4p − b2√pc2) = O(p1/4(log p)2).

Thus, if we substitute this into (2) above, we find that

N(A,B,X) =

π(X)−2∑
k=1

(−1)k+1
∑

n=p1···pk
4<pi<X

[
4AB

n2

[∏
p|n

p− 1

2
H(4p− b2√pc2)

]

+O

 1

2k
(A+B + n)n1/4

∏
p|n

(log p)2

]

= 4AB

[
1−

∏
4<p<X

[
1− p− 1

2p2
H(4p− b2√pc2)

]]

+O

(
A

[ ∏
4<p<X

[
1 +

1

2
p1/4(log p)2

]
− 1

]
+B

[ ∏
4<p<X

[
1 +

1

2
p1/4(log p)2

]
− 1

]

+

[ ∏
4<p<X

[
1 +

1

2
p5/4(log p)2

]
− 1

])
.
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Note that∏
4<p<X

[
1− p− 1

2p2
H(4p− b2√pc2)

]
= exp

(
−

∑
4<p<X

p− 1

2p2
H(4p− b2√pc2)

−
∑

4<p<X

∞∑
k=2

(p−1
2p2 H(4p− b2√pc2))k

k

)
.

We next note that∑
4<p<X

p− 1

2p2
H(4p− b2√pc2)�

∑
4<p<X

1

p
= log(log(X)) +O

(
1

(logX)2

)
and by partial summation,

∑
4<p<X

p− 1

2p2
H(4p− b2√pc2)� 4X1/4

logX
+O

(
X1/4

(logX)2

)
.

Since

∑
4<p<X

∞∑
k=2

(p−1
2p2 H(4p− b2√pc2))k

k
=

∑
4<p<X

∞∑
k=2

(p− 1)k

2kkp2k
H(4p− b2√pc2)k

�
∑

4<p<X

∞∑
k=2

(p− 1)k

2kkp2k
(p5k/16)

≤
∑

4<p<X

∞∑
k=2

1

(2p11/16)k

=
∑

4<p<X

1

(2p11/16)2
· 1

1−
(

1
2p11/16

)
=

∑
4<p<X

1

4p22/16 − 2p11/16

�
∑

4<p<X

1

p22/16

converges as X →∞, we see that

exp

(
−X

1/4

logX
+O

(
X1/4

(logX)2

)
+O(1)

)
≤

∏
4<p<X

[
1− p− 1

2p2
H(4p− b2√pc2)

]

≤ exp

(
− log(log(X)) +O

(
1

(logX)2

)
+O(1)

)
.
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Now, since log(1 + x) = log(x) +O( 1
x ), we see that

∏
4<p<X

[
1 +

1

2
p1/4 log(p)2

]
= exp

(
1

4

∑
4<p<X

log(p) + 2
∑

4<p<X

log(log(p))−
∑

4<p<X

log(2)

+
∑

4<p<X

O

(
2

p1/4 log(p)2

))
.

The Prime Number Theorem then implies that∏
4<p<X

[
1+

1

2
p1/4(log p)2

]
= exp

(
1

4
X + o(X)

)
and

∏
4<p<X

[
1+

1

2
p5/4(log p)2

]
= exp

(
5

4
X + o(X)

)
.

Putting all of our results together, we find that

N(A,B,X) = 4AB

[
1−

∏
4<p<X

[
1−p− 1

2p2
H(4p−b2√pc2)

]]
+O

(
A

(
exp

(
1

4
X + o(X)

)
− 1

)

+B

(
exp

(
1

4
X + o(X)

)
− 1

)
+ exp

(
5

4
X + o(X)

)
− 1

)
.

This result gives us the following corollary, whose proof is immediate from The-

orem 2.

Corollary 4. If A(X) and B(X) are chosen so that they satisfy

• A(X)� exp
((

1
4 + ε1

)
X
)

• B(X)� exp
((

1
4 + ε2

)
X
)

• A(X)B(X)� exp
((

5
4 + ε3

)
X
)

then

N(A(X), B(X), X) = 4A(X)B(X)

[
1−

∏
4<p<X

[
1−p− 1

2p2
H(4p−b2√pc2)

]]
+o(A(X)B(X))

and

δ(A(X), B(X), X) =

[
1−

∏
4<p<X

[
1− p− 1

2p2
H(4p− b2√pc2)

]]
+ o(1).

Furthermore, δ(A(X), B(X), X) equals the density of curves Ea,b for which there

exists a prime 4 < p < X such that Ea,b has p as a champion prime.
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Suppose we fix a box, centered at the origin, in the plane. Using our work

above, we can now obtain the density of curves in this specific box which will have

a champion prime less than a determined bound.

Corollary 5. Suppose A and B are fixed positive real numbers, and let

s =

(
8

5
− ε
)

log(min{A,B})

Then the density of curves Ea,b with |a| ≤ A, |b| ≤ B for which there exists a prime

4 < p < s such that Ea,b has good reduction at p and p is a champion prime is given

by [
1−

∏
4<p<s

[
1− p− 1

2p2
H(4p− b2√pc2)

]]
+ o(1).

Our main density result, however, is as follows.

Theorem 6. Suppose A(X) and B(X) are chosen so that they satisfy the conditions

of Corollary 4. Then the density of curves which have good reduction for some prime

p and have p as a champion prime satisfies

δ = lim
X→∞

δ(A(X), B(X), X) = 1.

Proof. In the proof of Theorem 2 we showed that[
1−

∏
4<p<X

[
1−p− 1

2p2
H(4p−b2√pc2)

]]
≥ 1−exp

(
− log log(X) +O

(
1

(logX)2

)
+O(1)

)
and that[
1−

∏
4<p<X

[
1−p− 1

2p2
H(4p−b2√pc2)

]]
≤ 1−exp

(
−X

1/4

logX
+O

(
X1/4

(logX)2

)
+O(1)

)
.

Given this, and Corollary 4, we now see that

δ = lim
X→∞

δ(A(X), B(X), X) = 1

which concludes the proof of Theorem 6.

We conclude with the following remarks.

Remark 7. 1. If we wished to consider elliptic curves with trace of Frobenius

at p a maximum, the results and proofs given above would still hold by the

symmetry of 4p − a2 in a. Such primes could be called “minimal primes,”

since the curve E would have the minimum possible number of points modulo

p.

2. In our proof, we chose ΩAB to be centered at the origin. We could, in fact,

center ΩAB anywhere without altering our results.
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