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COMPUTING THE INTEGER PARTITION FUNCTION

NEIL CALKIN, JIMENA DAVIS, KEVIN JAMES, ELIZABETH PEREZ,
AND CHARLES SWANNACK

Abstract. In this paper we discuss efficient algorithms for com-
puting the values of the partition function and implement these
algorithms in order to conduct a numerical study of some conjec-
tures related to the partition function. We present the distribution
of p(N) for N ≤ 109 for primes up to 103 and small powers of 2
and 3.

1. Introduction

Here we discuss some open questions concerning the partition func-
tion and algorithms for efficiently computing p(n) for all n up to some
bound N . We then present some computational evidence related to
these conjectures.

A partition of a natural number n is a non-increasing sequence of
natural numbers whose sum is n. The number of such partitions of n
is denoted p(n). For example the partitions of 4 are:

4,

3 + 1,

2 + 2,

2 + 1 + 1 and

1 + 1 + 1 + 1.

Thus, p(4) = 5.
One way of studying the partition function is to study its generat-

ing function. Euler [8] proved the following formula concerning this
generating function.
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(1) P (q) :=
∑

n≥0

p(n)qn =
∏

n≥1

1

1 − qn
= 1 + q + 2q2 + 3q3 + 5q4 + · · · .

Euler’s pentagonal number theorem asserts further that

(2)
∏

n≥1

(1 − qn) =
∑

n∈Z

(−1)nq(3n2+n)/2,

from which we immediately deduce the recurrence which we will refer
to as Euler’s algorithm for computing p(n),

(3) p(n) =
∑

k≥1

(−1)k+1

(

p

(

n − k(3k + 1)

2

)

+ p

(

n − k(3k − 1)

2

))

.

In fact, a careful analysis of the generating function for p(n) leads
one to the Hardy-Ramanujan asymptotic formula

(4) p(n) ∼ 1

4n
√

3
eπ
√

2n
3

which was improved by Rademacher [22] to an exact formula for p(n)
(see chapter 5 of [8] for a nice treatment of the expansion of p(n)).

One would hope that the presence of an exact formula for p(n) would
lead to a good understanding of the partition function or at least to
efficient algorithms for the computation of p(n). Indeed, if one de-
sires the value of p(n) for a single value of n then the exact formula
of Rademacher yields a very fast algorithm. However, if one wishes
to compute p(n) for all n ≤ N then Euler’s algorithm is much faster.
This is because once one already knows p(1), p(2), . . . , p(n − 1), the
Euler algorithm only requires

√
n additions to compute p(n) while the

Rademacher formula requires that one compute the sum of
√

n values
of some quite complicated functions. Indeed, many questions concern-
ing the partition function remain open and it is still computationally
difficult to compute the values of p(n) for all values of n less than some
bound N when N is large.

We now outline some open questions and conjectures concerning the
partition function for which we would like to gather numerical evidence.
One of the simplest questions that one could ask is the frequency with
which p(n) takes on even or odd values. Parkin and Shanks [21] studied
this question and were lead to the following conjecture.
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Conjecture 1.1. As n → ∞, we have

lim
X→∞

#{n ≤ X : 2|p(n)}
X

=
1

2
.

One can of course ask more generally about the distribution of p(n)
modulo an arbitrary modulus. In this direction Newman [17] made the
following conjecture.

Conjecture 1.2. If M is a positive integer, then in every residue class
r modulo M there are infinitely many integers n for which

p(n) ≡ r (mod M).

Clearly the presence of the Ramanujan-type congruences bears on
this question. Ramanujan [23] proved that

p(5n + 4) ≡ 0 (mod 5),(5)

p(7n + 5) ≡ 0 (mod 7),(6)

p(11n + 6) ≡ 0 (mod 11)(7)

for all n ∈ N. The congruence

(8) p(113 · 13n + 237) ≡ 0 (mod 13)

was discovered in the late 1960’s by Atkin, O’Brien and Swinnerton-
Dyer (see [9], [10] and [11]). Recently, Ono (see [19] and [24]) and
Ahlgren and Ono [7] have proved the existence of infinitely many other
such congruences modulo any prime ℓ ≥ 5 while Ahlgren and Boylan
[3] have proved that there are no other congruences of this type which
are as simple as those of Ramanujan.

In light of the above mentioned congruences, one might expect that
the distribution of p(n) would be slightly biased to the zero class mod-
ulo a given integer M and otherwise uniform. Let us be more precise.

Definition 1.1. Let M ∈ Z and 0 ≤ r ≤ M − 1 and define for any
X ∈ R

δr(M, X) :=
#{0 ≤ n < X : p(n) ≡ r (mod M)}

X
.

Then we have the following conjecture of Ahlgren and Ono [6]

Conjecture 1.3. Let M ∈ Z, 0 ≤ r ≤ M − 1 and let δr(M, X) be
defined as above. Then,



4NEIL CALKIN, JIMENA DAVIS, KEVIN JAMES, ELIZABETH PEREZ, AND CHARLES SWANNACK

(1) If 0 ≤ r < M , then there is a real number 0 < dr(M) < 1 such
that

lim
X→∞

δr(M, X) = dr(M).

(2) If s ≥ 1 and M = 2s, then for every 0 ≤ i < 2s we have

di(2
s) =

1

2s
.

(3) If s ≥ 1 and M = 3s, then for every 0 ≤ i < 3s we have

di(3
s) =

1

3s
.

(4) If there is a prime ℓ ≥ 5 for which ℓ|M , then for every 0 ≤ r <
M we have

dr(M) 6= 1

M

In the direction of Conjecture 1.1, the best known result is due to
Serre [18] and to Ahlgren [1]. We know that

#{n ≤ X : 2|p(n)} ≫
√

X and

#{n ≤ X : 2 6 |p(n)} ≫
√

X

log X
,

which is far from an affirmation of Conjecture 1.1.
In the direction of Newman’s Conjecture 1.2, Atkin [9], Kolberg [15],

Newman[17] and Klove [16] proved the conjecture for M = 2, 5, 7, 13,
17, 19, 29 and 31. Some conditional results were obtained in work of
Ono [19], Ahlgren [2], and Bruinier and Ono [12]. Recently, Ahlgren
and Boylan [3, 4] have shown that the conjecture is true for M = ℓj

for all primes ℓ ≥ 5 and j ≥ 1.
Like Conjecture 1.1, Conjecture 1.3 is still wide open. Part (1) of

this conjecture is not known for any values of r and M . Theorem 2 of
[6] implies that if M is coprime to 6 then

lim inf
X→∞

δ0(M, X) > 0.

This is not known for any other (r, M) pairs. Thus it is would be
of interest to gather numerical evidence on all of these conjectures.
Additionally, the authors of [6] have shown that the congruences of
p(n) are far more widespread than previously known. In particular, [6]
has shown that for every prime l ≥ 5 and any positive integer m, there
exist infinitely many arithmetic progressions of the form

p(An + B) ≡ 0 (mod lm)
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for every n ∈ Z. To be more precise, for each prime l ≥ 5, define the
two integers ǫl and δl to be

ǫl =

(−6

l

)

and

δl =
l2 − 1

24
.

Further, let Sl be the set of (l + 1)/2 integers

Sl =

{

β ∈ {0, 1, . . . , l − 1} :

(

β + δl

l

)

= 0 or − ǫl

}

.

Then, we have the following theorem from [7].

Theorem 1.1. If l ≥ 5 is prime, m is a positive integer, and β ∈
Sl, then there are infinitely many non-nested arithmetic progressions
{An + B} ⊂ {ln + β} such that

p(An + B) ≡ 0 (mod lm)

for every integer n.

This naturally leads the authors of [7] to the following speculation [6].

Speculation 1.1. If l ≥ 5 is prime and 0 ≤ r < l, define δ′r(l, X) by

δ′r(l, X) =
# {n < X : p(n) ≡ r (mod l) and n (mod l) 6∈ Sl}

# {n < X : n (mod l) 6∈ Sl}
is it true that limX→∞ δ′r(l, X) = 1

l
?

It is of additional interest to investigate this speculation numerically.
In the remainder of this paper we discuss a new algorithm for com-

puting the values of the partition function and discuss its running time.
We compare the running time of this new algorithm with that of Euler’s
algorithm. We then discuss a parallelization of the Euler algorithm for
computing p(n) modulo a small prime p. We also discuss the scalability
of the Euler algorithm. Finally, we present data related to the various
conjectures mentioned above.

2. FFT Inversion of Power Series.

To the authors’ knowledge the algorithm discussed in this section
is new: it is exactly analogous to Euler’s proof that the generating
functions for partitions into odd parts and for partitions into even parts
are identical.

For any function f(z), the function f(z)f(−z) is even. Hence, if
f(z) =

∑

anzn is a power series and if we write f(z)f(−z) =
∑

bnzn,
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then bn is nonzero only if n is even. This leads us to the following
expansion for 1

f(z)
.

(9)
1

f(z)
=

f(−z)

f(z)f(−z)
=

f(−z)

f1(z2)
,

where f1(z) =
∑

b2nzn. Now, again f1(z)f1(−z) has only even coeffi-
cients and thus in the power series expansion of f1(z

2)f1(−z2) the only
nonzero coefficients are the coefficients of zn where 4|n. Thus, we have

(10)
1

f(z)
=

f(−z)

f1(z2)
=

f(−z)f1(−z2)

f1(z2)f1(−z2)
=

f(−z)f1(−z2)

f2(z4)
.

Repeating the above process k times yields

(11)
1

f(z)
=

f0(−z)f1(−z2) . . . fk(−z2k

)

fk+1(z2k+1)
,

where

(12)
f0(z) = f(z) and

fi(z
2) = fi−1(z)fi−1(−z) i > 0.

Thus we have that

(13)
1

f(z)
= f0(−z)f1(−z2) . . . fk(−z2k

) + O(z2k+1

).

Thus if one would like to compute the first N coefficients of 1
f(z)

, it

suffices to compute the first N coefficients of the product

f0(−z)f1(−z2) . . . fk(−z2k

)

where k = ⌈lg N−1⌉. One should also note that since we are interested
only in the first N coefficients of 1

f(z)
, only the first ⌊N/2i⌋ coefficients

of fi are needed for this computation. In fact, we can say more precisely
for any 0 ≤ ℓ ≤ k that only the first ⌊N/2k−ℓ⌋ coefficients of each of
the partial products

fk(−z2k

)fk−1(−z2k−1

) · · ·fk−ℓ(−z2k−ℓ

)

are needed in this computation.

Definition 2.1. Let R be any ring. We define the truncation operator
Tk : R[[z]] → R[z] by

(14) Tk(
∞
∑

i=0

aiz
i) =

k−1
∑

i=0

aiz
i



7

Put f̄i = T⌊N/2i⌋(fi) and define

(15)
g0(z) = f̄k(z) and

gi(z) = T N

2k−i

(

gi−1(−z2)f̄k−i(z)
)

1 ≤ i ≤ k.

Then

(16) gk(−z) = f̄0(−z)f̄1(−z2) . . . f̄k(−z2k

) + O(zN ) =
1

f(z)
+ O(zN ).

Theorem 2.1. Let f(z) be a power series with integral coefficients
and constant coefficient 1. Let p be any prime which is congruent to 1
modulo 2⌈lg N⌉+1. The computation of the first N coefficients of 1/f(z)
modulo p requires at most O(N lg N) coefficient multiplications.

Proof. It suffices to show that the computation of gk(−z) de-
scribed above requires only O(N lg N) coefficient multiplications where
all arithmetic is done in Fp and the f̄i’s and gk’s are understood to be
in Fp[z]. There are two steps in this computation. First, one must
compute f̄1(z), f̄2(z), . . . , f̄k(z) where k = lg N − 1 using (12). Next
one must iteratively construct the gi’s (i=0,1,. . . ,k) using (15). We
recall that deg(f̄i(z)) = ⌊N/2i⌋ − 1 and that using the discrete fast
Fourier transform, the computation of the product of two polynomials
of degree less than M modulo p where M < N requires O(M lg M)
coefficient multiplications. Thus the the number of coefficient multi-
plications required for the computation of the f̄i’s is

(17) O

(

k−1
∑

i=0

N

2i
lg(

N

2i
)

)

= O (N lg N) .

Now we consider the computation of the gi’s. From (15), we have
that deg(gi−1(−z2)) < N

2k−i and from (12), deg(f̄k−i)(z) = N
2k−i . Thus

the number of coefficient multiplications required to compute the gi’s
is at most

(18) O

(

k−1
∑

i=0

N

2k−i
lg(

N

2k−i
)

)

= O (N lg N)

and this completes the proof of the proposition.
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3. Computing p(n).

Theorem 3.1. Let p be any prime which is congruent to 1 modulo
2⌈lg N⌉+1. The computation of p(n) modulo p for all 1 ≤ n ≤ N requires
at most O(N lg N lg p lg lg p) machine multiplications.

Proof. Combining (1) and (2), we see that

(19) P (q) =
∞
∑

n=0

p(n)qn =
1

∑

n∈Z
(−1)nq(3n2+n)/2

The computation of the first N terms of the denominator clearly
requires at most O(

√
N) multiplications of integers which are easily

bounded in absolute value by
√

N . Using the discrete FFT, one can
perform multiplication of integers of size

√
N using at most O(

√
N lg N)

machine multiplications. Thus, the first N terms of the denominator
can be computed using at most O(N lg N) machine multiplications.
Now we may use our inversion algorithm which will require an ad-
ditional O(N lg N) coefficient multiplications. Since, we are working
modulo p, each coefficient may be taken to be between 0 and p−1. Thus
using discrete FFT, the multiple of any two coefficients requires at most
O(lg p lg lg p) machine multiplications. Thus the first N coefficients
of P (q) modulo p requires at most O(N lg N + N lg N lg p lg lg p) =
O(N lg N lg p lg lg p) machine multiplications.

Corollary 3.1. The computation of p(n) for all n ≤ N can be done
using O(N3/2 log2(N)) machine multiplications.

Proof. Select a prime p satisfying p(N) < p < (4Np(N))5.5 and
p ≡ 1 (mod 2⌈lg N⌉+1). To see that this can be done we note that the
main result of [14] guarantees that for (A, B) = 1, there is a prime
congruent to A modulo B that is smaller than B5.5. Taking A = 1 and
B = 2⌈lg N⌉+1p(N) then guarantees us that there is a prime p as above
since 2⌈lg N⌉+1 < 4N . By Theorem 3.1 one can compute p(n) modulo p
for all 1 ≤ n ≤ N using O(N lg N lg p lg lg p) machine multiplications.
However, since 0 < p(n) < p this gives the exact value of p(n) for all
1 ≤ n ≤ N . Using (4), one can see that for N sufficiently large, we may

assume that p < e15
√

N . Combining this with our previous estimate on
the number of machine multiplications yields the desired result.

We will refer to the algorithm suggested by the previous two re-
sults as fast Fourier Transform inversion or simply as FFTI. A careful
analysis of the Euler algorithm yields the following results.

Theorem 3.2. The computation of p(n) for all 1 ≤ n ≤ N using the
Euler algorithm requires O(N2) machine additions.
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Proof. Examining (3), one sees that for each 1 ≤ n ≤ N the com-
putation of p(n) requires the addition of n1/2 values of the partition
function. Thus the computation of p(n) for all 1 ≤ n ≤ N requires
n3/2 additions of numbers which grow as large as p(N). The theorem
now follows from (4) �

Theorem 3.3. For m ∈ N, the computation of p(n) modulo m for all
1 ≤ n ≤ N requires at most O(N3/2 log m) machine additions.

Proof. The proof is the same as that of the previous theorem. �

The FFTI algorithm has a faster running time than the Euler al-
gorithm for computing p(n) for all 1 ≤ n ≤ N . However, if one is
interested only in the values of p(n) modulo m where m is not a prime
which is 1 modulo 2⌈lg N⌉+1 and where log(m) < log2(N) then the Eu-
ler algorithm has the faster running time. We now consider a parallel
version of the Euler algorithm that improves the running time by a
constant factor when the later case is of interest.

4. A parallel version of Euler’s algorithm

We now consider a parallel implementation of Euler’s algorithm for
computing p(n) for all 1 ≤ n ≤ N . When computing in parallel one
wishes to equally distribute the computation and data storage among
all, say Np, processors. Since each partition number requires summing a
subset of the previously computed numbers one can not store partition
numbers linearly across the processors and expect balanced work across
all Np processors at any given instance. Thus we store the partition
number p(n) on the ithp processor if and only if n ≡ ip (mod Np). Now,
we make the following definitions.

Definition 4.1. Let m, n ∈ N0 and m ≤ n, then the partial Euler sum
of n up to m, p̃m(n), is

p̃m(n) =
∑

k
0≤n−k(3k+1)/2≤m

(−1)k+1p

(

n − k(3k + 1)

2

)

+

∑

j

0≤n−j(3j−1)/2≤m

(−1)j+1p

(

n − j(3j − 1)

2

)

.
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Definition 4.2. Let i, m, n, N ∈ N0, i < N and m ≤ n, then the ith

N-wise decimation of the partial Euler sum of n up to m, q̃m,i,N(n), is

q̃m,i,N (n) =
∑

k
n−k(3k+1)/2≡i (mod N)

0≤n−k(3k+1)/2≤m

(−1)k+1p

(

n − k(3k + 1)

2

)

+

∑

j

n−j(3j−1)/2≡i (mod N)

0≤n−j(3j−1)/2≤m

(−1)j+1p

(

n − j(3j − 1)

2

)

.

Note that
∑N−1

i=0 q̃m,i,N(n) = p̃m(n) and p̃n−1(n) = p(n). Thus, to com-
pute p(n) distributed across Np processors we can compute q̃n−1,ip,Np

(n)
on the ithp processor in parallel and upon completion, p̃n−1(n) on one
processor. We now discuss how to efficiently compute the sums ap-
pearing in Definition 4.2.

In order to efficiently compute q̃m,i,N(n) we note that one does not
need to check the condition n−k(3k±1)/2 ≡ i (mod N) for all values
of k. By completing the square, we have n− k(3k ± 1)/2 ≡ i (mod N)
if and only if

(20) 6k ≡ ∓1 +
√

24(n − i) + 1 (mod N)

or

(21) 6k ≡ ∓1 −
√

24(n − i) + 1 (mod N),

provided that this square root exists. In this direction we provide the
following definitions.

Definition 4.3. Let i, N ∈ Z, N prime, N 6= 2, 3. We define for any
n ∈ Z,

χi,N(n) =

(

24(n − i) + 1

N

)

where
(

a
p

)

is the Legendre symbol.

Definition 4.4. Let n, i, N ∈ N0, N prime, N 6= 2, 3, and χi,N(n) 6=
−1. Then, we define

(22) ti,N(n) =
√

24(n − i) + 1 (mod N)

where the square root in (22) is the unique integer r, 0 ≤ r < (N−1)/2,
such that r2 = 24(n − i) + 1 (mod N).
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Thus, if n − k(3k ± 1)/2 ≡ i (mod N) then

(23) 6k ≡ ∓1 + ti,N(n) (mod N) or 6k ≡ ∓1− ti,N(n) (mod N)

Combining (23),(20) and (21) leads to the following definitions.

Definition 4.5. Let n, i, N ∈ N0, N prime, N 6= 2, 3, and χi,N(n) 6=
−1. We define for any l ∈ Z,

α0,i,N(l, n) = −6−1 (1 − ti,N(n)) + lN

α1,i,N(l, n) = 6−1 (1 + ti,N(n)) + lN

α2,i,N(l, n) = −6−1 (1 + ti,N(n)) + lN

α3,i,N(l, n) = 6−1 (1 − ti,N(n)) + lN

and for j ∈ {0, 1, 2, 3}

ρj,i,N(l, n) = n − αj,i,N(l, n)(3αj,i,N(l, n) + (−1)j)

2

where 0 ≤ 6−1 < N is the unique integer such that 6·6−1 ≡ 1 (mod N).

We will omit the subscripts i, N in Definitions 4.3 and 4.5 when they
are apparent in the context they are used. Definition 4.2 may now be
rewritten as
(24)

q̃m,i,N(n) =















































3
∑

j=0

∑

l
0≤ρj(l,n)≤m

(−1)αj(l,n)+1p (ρj(l, n)) if χ(n) = 1

1
∑

j=0

∑

l
0≤ρj(l,n)≤m

(−1)αj(l,n)+1p (ρj(l, n)) if χ(n) = 0

0 if χ(n) = −1

Note that q̃m,i,N(n) vanishes whenever χ(n) = −1. Thus, since Np

is a prime not 2 or 3, χip,Np
(n) 6= −1 for exactly (Np + 1)/2 many

0 ≤ ip < Np for any given n ≥ Np. Thus, for any computation of p(n)
only (Np + 1)/2 processors are used. However, since Np is coprime to
6, 2(n − i)3−1 + 36−1 runs through all equivalence classes mod Np for
Np consecutive n. Thus, if q̃m,i,N(n) is computed for L consecutive
values of n at any instance, where L = jNp and j ∈ N0, each processor
computes exactly j(Np + 1)/2 non-zero q̃m,i,N(n). We now show how
this can be used to compute p(n).

Begin by letting nk be largest value for which p(n) is know ex-
actly. On any processor, say i, we may then compute q̃nk,i,N(nk +
1), q̃nk,i,N(nk + 2), . . . , q̃nk,i,N(nk + L). Upon completion, one processor
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may then compute p̃nk
(nk + 1), p̃nk

(nk + 2), . . . , p̃nk
(nk + L). Then,

since p̃nk
(nk + 1) = p(nk + 1) we may use this processor to compute

p(nk + 1), p(nk + 2), . . . , p(nk + L). We call this one processor the con-
trol processor. This could be a separate processor in addition to the
Np processors already in use. Our algorithm to compute p(n) is the
following:

Algorithm 4.1. For any integer j > 0 and Np > 0, set L = jNp.
On every processor except the control processor:

(0) Set l = 0
(1) Have each processor compute p(n) exactly for 0 ≤ n < L
(2) Set nk = L − 1, l = 1
(3) Compute q̃nk,ip,Np

(n) on each processor, ip, using (24)
for (l + 1)L ≤ n < (l + 2)L.

(4) If l 6= 1, receive exact values for p(n) for lL ≤ n < (l +1)L and
set nk = nk + L

(5) Finish Computing q̃nk ,ip,Np
(n) on each processor ip using (24)

for (l + 1)L ≤ n < (l + 2)L.
(6) Send all computed q̃nk,ip,Np

to control process
(7) Set l = l + 1 goto 3.

On the control process we follow:

(0) Set l = 1, nk = L − 1
(1) Receive q̃nk,ip,Np

(n) from all processors for lL ≤ n < (l + 1)L.

(2) Compute p̃nk
(n) =

∑Np−1
i=0 q̃nk,ip,Np

(n) for lL ≤ n < (l + 1)L
(3) Set p(nk + 1) = p̃nk

(nk + 1).
(4) Compute p(n) exactly using p̃nk

(n) and p(j)
for nk ≤ j < n for lL ≤ n < (l + 1)L

(5) Send exact p(n) to all processors
(6) Set l = l + 1, nk = nk + L, goto 1

5. Discussion

The algorithm of Section 4 was used with Np = 108 to compute
p(n) modulo primes less than 104 for n ≤ 109. We list the statistical
properties of the partition function up to 109 in the Appendix. Com-
putations are ongoing and further data can be found at [25]. In order
to be concise we only list the intermediate results for 106, 107, 108 and
109, and plot the cases in which we wish to be more precise.

In regard to Conjecture 1.1 we see that the conjecture is justified.
Examining Table 1 we see that the distribution agrees out to the 4th
decimal place. Similarly for M = 3, Table 2 shows that the distribution
is 1/3 out to 4 decimal places.
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106 107 108 109

δ0(2, X) 0.500447 0.499786 0.500029 0.500036
δ1(2, X) 0.499554 0.500214 0.499971 0.499964

Table 1: The Distribution of p(n) (mod 2)

106 107 108 109

δ0(3, X) 0.333013 0.333163 0.333287 0.333325
δ1(3, X) 0.333629 0.333630 0.333414 0.333335
δ2(3, X) 0.333359 0.333207 0.333299 0.333340

Table 2: The Distribution of p(n) (mod 3)

In order to examine the conjectures and speculation of [6] we make
the following definitions.

Definition 5.1. Let M ∈ Z and define for any X ∈ Z

µd(M, X) =
1

M − 1

M−1
∑

j=1

δj(M, X) =
1 − δ0(M, X)

M − 1

and

σ2
d(M, X) =

1

M − 1

M−1
∑

j=1

(δj(M, X) − µd(M, X))2

to be the mean and variance of the distribution of p(n) (mod M) among
the non-zero congruence classes mod M for n < X.

In regard to Conjecture 1.3 (1) the computational evidence suggests
that this conjecture is justified. Examining Table 3 in the Appendix
we can see that for primes M ≤ 103 it appears that the distribution
of p(n) (mod M) in the zero class is approaching a limit, say d0(M).
Additionally, by examining Table 4 in the Appendix we can see that
the variance of the distribution δj(M, X) is tending to zero, implying
that the distribution of p(n) (mod M) approaches a limit. In fact,
since the variance is tending to zero the computations suggest that
p(n) is equally likely to lie in any of the non-zero classes modulo M .
Thus, if (as the computations suggest) limX→∞ δ0(M, X) = d0(M) and
limX→∞ σd(M, X) = 0 then

(25) lim
X→∞

δj(M, X) =
1 − d0(M)

M − 1
∀ 0 < j < M.
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Figure 1. The variance of δj for j not 0. For (a) M = 5
and (b) M = 7 and X from 1000 to 109 in steps of 1000.

Table 4 also suggests that not only does the distribution of p(n) (mod M)
converge, but it converges at a very fast rate. Indeed, examining Figure
1 for M = 5 and M = 7 it appears that the variance is tending to 0 at
an exponential rate. Further, examining Table 4 for all other primes
this same trend appears. That is, as X grows linearly so does the
exponent of the variance. This leads us to the following speculation.

Speculation 5.1. Is it true that for any M ≥ 3 and for any 0 ≤ j ≤
M − 1

lim
X→∞

− log |δj(M, X) − dj(M)|
X

> 0 ?

As previously noted, due the congruence properties of p(n), it is
reasonable to think that p(n) is biased toward the zero class. That is,
d0(M) > dj(M) for 0 < j ≤ M − 1. It is reasonable to expect that
this holds for all prime powers M > 5 since, by Theorem 1.1, there are
infinitely many non-nested arithmetic progressions

p(An + B) ≡ 0 (mod M).

However, if d0(M) > 1/M and (25) is true, this would imply that
dj(M) < 1/M for 0 < j ≤ M − 1. Examining Table 3 for small prime
M > 5 it appears that indeed d0(M) > 1/M and thus Conjecture 1.3
(4) is also justified. However, since the known congruences modulo M
for M > 11 have A ≫ 1 the influence of these progressions are not
apparent in the computation for all primes.

It is natural to consider how one may remove the bias of p(n) to the
zero class. That is, it is natural to consider if one can, by excluding
a subset of integers, say S, make the distribution of p(n) (mod M)
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Figure 2. The variance of the the distribution of the
congruence classes for p(n) where n 6∈ SM . For (a) M = 5
and (b) M = 7 and X from 1000 to 109 in steps of 1000.

uniform for n 6∈ S. This is the content of Speculation 1.1. Recall that
for prime M ≥ 5, δ′r(M, X) is defined to be the distribution of p(n)
(mod M) for n (mod M) 6∈ SM . That is,

δ′r(M, X) =
# {n < X : p(n) ≡ r (mod M) and n (mod M) 6∈ SM}

# {n < X : n (mod M) 6∈ SM} .

Then, similar to Definition 5.1 we have the following definitions con-
cerning the distribution of p(n) (mod M) for n 6∈ SM .

Definition 5.2. Let M be a prime with M ≥ 5 and define for any
X ∈ Z

µp(M, X) =
1

M

M−1
∑

j=0

δ′j(M, X) =
1

M

and

σ2
p(M, X) =

1

M

M−1
∑

j=0

(

δ′j(M, X) − µp(M, X)
)2

to be the mean and variance of the distribution of p(n) (mod M) for
n 6∈ SM and n < X respectively.

The computed values for σ2
p(M, X) can be seen in Table 5 in the

Appendix. The speculation of [6] seems to well justified. In fact the
variance of the distribution of p(n) for n 6∈ SM (mod M) again appears
to decay exponentially in X. This can be seen in Figure 2 (a) and (b)
for M = 5 and M = 7. By examining Table 5 we can see that this
trend appears for all computed primes. This leads us to the following
speculation.
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Speculation 5.2. Is it true that for any prime M ≥ 5 and for any
0 ≤ j ≤ M − 1

lim
X→∞

− log |δ′j(M, X) − 1/M |
X

> 0 ?

A notable exception to the congruence properties of p(n) appear to
occur for a modulus which is a power of 2 or 3. That is, if Conjecture
1.3 (2) and (3) are true then p(n) is not biased toward the zero class
modulo 2m or 3m for any m ∈ N. In this direction we make the following
definitions.

Definition 5.3. Let M ∈ Z define for any X ∈ Z

µ(M, X) =
1

M

M−1
∑

j=0

δj(M, X) =
1

M

and

σ2(M, X) =
1

M

M−1
∑

j=0

(

δj(M, X) − 1

M

)2

to be the mean and variance of the distribution of p(n) (mod M) for
n < X respectively.

The computed values for δ0(M, X) and σ2(M, X) can be seen in
Table 6 and Table 7 in the Appendix for powers of 2 and the computed
values for δ0(3

m, X) and σ2(3m, X) can be seen in Table 8 and Table 9 in
the Appendix. Examining Table 6 and Table 8 we see that Conjecture
1.3 (2) and (3) is well justified. Indeed, for X = 109 there appears
to be no bias toward the zero class as δ0 agrees to the 5th decimal
place. Further, in these cases the variance again appears to tend to
zero exponentially fast further supporting Speculation 5.1.

In conclusion, we see that the computations suggest that Conjecture
1.3 and Speculation 1.1 seem to be well justified. In fact, our computa-
tions also suggested a stronger result than Conjecture 1.3. This leads
us to the following revision of Conjecture 1.3.

Conjecture 5.1. Let M ∈ Z, 0 ≤ r ≤ M − 1. Then, there exists a
real number 0 < d(M) < 1 such that

lim
X→∞

δ0(M, X) = d(M)

and ∀ 0 < r < M

lim
X→∞

δr(M, X) =
1 − d(M)

M − 1
In particular,
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(1) If s ≥ 1 and M = 2s, then d(2s) = 1/2s

(2) If s ≥ 1 and M = 3s, then d(3s) = 1/3s

(3) If there is a prime ℓ ≥ 5 for which ℓ|M , then d(M) 6= 1/M
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Appendix A. Data

δ0(M, 106) δ0(M, 107) δ0(M, 108) δ0(M, 109)
2 0.500447 0.499786 0.500029 0.500036
3 0.333013 0.333163 0.333287 0.333325
5 0.363677 0.364091 0.364455 0.364610
7 0.272756 0.272939 0.273082 0.273174
11 0.173382 0.173569 0.173523 0.173563
13 0.080236 0.079782 0.079476 0.079252
17 0.058708 0.058871 0.058940 0.058947
19 0.052607 0.052761 0.052865 0.052863
23 0.043637 0.043661 0.043762 0.043760
29 0.034710 0.034564 0.034559 0.034552
31 0.032461 0.032312 0.032240 0.032263
37 0.026949 0.027055 0.027045 0.027026
41 0.024351 0.024370 0.024391 0.024386
43 0.023182 0.023215 0.023226 0.023256
47 0.021223 0.021280 0.021278 0.021270
53 0.018927 0.018847 0.018852 0.018861
59 0.016908 0.016965 0.016942 0.016950
61 0.016296 0.016367 0.016392 0.016400
67 0.014856 0.014941 0.014947 0.014927
71 0.013791 0.014056 0.014081 0.014085
73 0.013593 0.013716 0.013687 0.013694
79 0.012398 0.012631 0.012674 0.012664
83 0.012070 0.012119 0.012056 0.012050
89 0.011113 0.011246 0.011224 0.011231
97 0.010326 0.010354 0.010323 0.010307
101 0.009887 0.009895 0.009913 0.009901
103 0.009626 0.009717 0.009703 0.009705

Table 3. The values of δ0 for primes ≤ 103
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σ2
d(M, 106) σ2

d(M, 107) σ2
d(M, 108) σ2

d(M, 109)
3 1.823e-08 4.471e-08 3.351e-09 4.930e-12
5 1.040e-07 2.133e-08 2.275e-09 3.481e-11
7 8.820e-08 2.107e-08 2.361e-09 1.351e-11
11 1.156e-07 3.864e-09 4.948e-10 7.233e-11
13 6.045e-08 8.387e-09 9.000e-10 3.670e-11
17 5.529e-08 1.282e-09 5.044e-10 4.091e-11
19 3.396e-08 3.261e-09 4.398e-10 5.140e-11
23 2.775e-08 2.323e-09 3.043e-10 5.312e-11
29 4.029e-08 3.400e-09 4.279e-10 1.974e-11
31 2.570e-08 1.766e-09 3.190e-10 3.041e-11
37 4.034e-08 2.159e-09 2.208e-10 2.678e-11
41 2.189e-08 1.802e-09 2.113e-10 2.315e-11
43 2.058e-08 2.360e-09 2.707e-10 2.574e-11
47 2.279e-08 1.202e-09 2.562e-10 2.032e-11
53 1.829e-08 1.937e-09 1.508e-10 1.664e-11
59 2.271e-08 1.801e-09 1.494e-10 1.225e-11
61 1.948e-08 1.610e-09 1.902e-10 1.504e-11
67 1.761e-08 1.813e-09 1.192e-10 1.272e-11
71 1.286e-08 1.401e-09 1.452e-10 1.293e-11
73 1.332e-08 1.581e-09 1.198e-10 1.595e-11
79 1.137e-08 1.310e-09 1.136e-10 1.379e-11
83 8.823e-09 1.353e-09 1.440e-10 1.056e-11
89 7.730e-09 9.219e-10 1.039e-10 1.188e-11
97 1.098e-08 9.991e-10 1.193e-10 1.220e-11
101 9.600e-09 9.882e-10 5.857e-11 1.124e-11
103 1.121e-08 1.003e-09 7.340e-11 9.771e-12

Table 4. The variance of δj(M, X) about µd(M, X) for
j 6= 0
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σ2
p(M, 106) σ2

p(M, 107) σ2
p(M, 108) σ2

p(M, 109)
5 1.262e-07 4.441e-09 4.835e-09 8.154e-11
7 2.874e-07 2.858e-08 4.090e-09 2.225e-10
11 2.311e-07 1.065e-08 1.464e-09 2.238e-10
13 7.622e-08 1.729e-08 2.140e-09 1.006e-10
17 1.296e-07 9.688e-09 1.387e-09 1.108e-10
19 9.526e-08 9.943e-09 9.045e-10 1.151e-10
23 8.018e-08 8.045e-09 7.891e-10 1.234e-10
29 1.135e-07 6.671e-09 9.132e-10 6.695e-11
31 4.017e-08 3.118e-09 6.685e-10 6.127e-11
37 5.998e-08 4.262e-09 3.480e-10 6.084e-11
41 3.848e-08 3.918e-09 3.035e-10 5.349e-11
43 4.615e-08 5.388e-09 6.182e-10 5.150e-11
47 3.677e-08 2.836e-09 5.205e-10 4.283e-11
53 3.533e-08 4.275e-09 2.914e-10 4.761e-11
59 3.869e-08 3.522e-09 3.430e-10 2.746e-11
61 4.399e-08 3.439e-09 3.016e-10 3.531e-11
67 2.957e-08 3.386e-09 2.754e-10 1.959e-11
71 3.240e-08 3.089e-09 2.672e-10 2.178e-11
73 2.530e-08 2.925e-09 2.968e-10 2.372e-11
79 1.849e-08 2.564e-09 2.565e-10 2.560e-11
83 2.175e-08 2.916e-09 2.908e-10 2.007e-11
89 2.108e-08 2.014e-09 2.389e-10 2.536e-11
97 2.588e-08 1.932e-09 2.216e-10 2.345e-11
101 2.285e-08 2.210e-09 1.700e-10 1.960e-11
103 2.404e-08 2.247e-09 2.065e-10 1.804e-11
Table 5. The variance of δ′j(M, X) about µp(M, X)
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δ0(M, 107) δ0(M, 108) δ0(M, 109) 1/M
21 0.499786 0.500029 0.500036 0.500000
22 0.249832 0.249982 0.250015 0.250000
23 0.124911 0.124961 0.125008 0.125000
24 0.062438 0.062473 0.062504 0.062500
25 0.031165 0.031236 0.031254 0.031250
26 0.015598 0.015613 0.015622 0.015625
27 0.007790 0.007805 0.007811 0.007813
28 0.003896 0.003906 0.003904 0.003906
29 0.001927 0.001955 0.001952 0.001953
210 0.000970 0.000979 0.000977 0.000977
211 0.000486 0.000490 0.000489 0.000488
212 0.000236 0.000246 0.000245 0.000244
213 0.000119 0.000125 0.000123 0.000122
214 0.000064 0.000064 0.000062 0.000061
215 0.000031 0.000031 0.000031 0.000031

Table 6. The values of δ0 for powers of 2

σ2(M, 107) σ2(M, 108) σ2(M, 109)
21 4.564635e-08 8.343399e-10 1.269179e-09
22 2.304500e-08 8.904586e-10 5.107867e-10
23 7.611309e-09 1.567789e-09 1.397324e-10
24 3.888221e-09 4.386575e-10 6.467568e-11
25 3.074581e-09 1.955245e-10 3.558670e-11
26 1.585966e-09 1.155879e-10 1.360000e-11
27 8.183707e-10 8.195320e-11 6.882936e-12
28 3.832744e-10 4.217360e-11 3.472434e-12
29 1.949290e-10 2.079980e-11 1.802906e-12
210 9.566222e-11 9.907638e-12 8.912183e-13
211 4.831187e-11 4.909129e-12 4.648978e-13
212 2.387426e-11 2.435416e-12 2.396083e-13
213 1.191768e-11 1.224673e-12 1.202085e-13
214 6.026680e-12 6.093979e-13 6.140721e-14
215 3.072776e-12 3.027812e-13 3.077366e-14

Table 7. The variance of δj(M, X) about 1/M for pow-
ers of 2.
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δ0(M, 107) δ0(M, 108) δ0(M, 109) 1/M
31 0.333163 0.333287 0.333325 0.333333
32 0.111198 0.111112 0.111113 0.111111
33 0.036975 0.037021 0.037037 0.037037
34 0.012315 0.012343 0.012349 0.012346
35 0.004127 0.004118 0.004118 0.004115
36 0.001369 0.001372 0.001375 0.001372
37 0.000453 0.000457 0.000457 0.000457
38 0.000153 0.000153 0.000153 0.000152
39 0.000053 0.000051 0.000051 0.000051
310 0.000018 0.000018 0.000017 0.000017
311 0.000006 0.000006 0.000006 0.000006
312 0.000002 0.000002 0.000002 0.000002
313 0.000001 0.000001 0.000001 0.000001

Table 8. The values of δ0 for powers of 3

σ2(M, 107) σ2(M, 108) σ2(M, 109)
31 4.438803e-08 3.307325e-09 3.513351e-11
32 1.025873e-08 1.622078e-09 1.148162e-10
33 4.370097e-09 5.261098e-10 3.191454e-11
34 1.198509e-09 1.103418e-10 1.186007e-11
35 3.859236e-10 4.232208e-11 3.834449e-12
36 1.350973e-10 1.288184e-11 1.413339e-12
37 4.493377e-11 4.441386e-12 4.616726e-13
38 1.521634e-11 1.519451e-12 1.513390e-13
39 5.078601e-12 5.117933e-13 5.134899e-14
310 1.689233e-12 1.689466e-13 1.684987e-14
311 5.633204e-13 5.624952e-14 5.670555e-15
312 1.877057e-13 1.874117e-14 1.885936e-15
313 6.258333e-14 6.262380e-15 6.277984e-16

Table 9. The variance of δj(M, X) about 1/M for pow-
ers of 3.
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