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Abstract

For an elliptic curve E/Q, we define an extremal prime for E to be a prime p of good
reduction such that the trace of Frobenius of E at p is ±b2√pc, i.e., maximal or minimal in
the Hasse interval. Conditional on the Riemann Hypothesis for certain Hecke L-functions,
we prove that if End(E) = OK , where K is an imaginary quadratic field of discriminant
6= −3,−4, then the number of extremal primes ≤ X for E is asymptotic to X3/4/ logX.
We give heuristics for related conjectures.

1. Introduction

Let E/Q be an elliptic curve. Let p be a prime of good reduction for E, and let E/Fp
be the corresponding reduction. The trace of Frobenius of E modulo p can be defined by
ap(E) = p+ 1−#E(Fp). Hasse’s Theorem [Si1, Theorem V.1.1] famously asserts that

−2√p ≤ ap(E) ≤ +2√p.(1.1)

We therefore say [−2√p,+2√p] is the Hasse interval of p. By [De], every integer in the
Hasse interval of a fixed prime p is the trace of Frobenius of some rational elliptic curve
modulo p. However, if we instead fix E/Q and vary p, then the statistical distribution of
the ap(E) is not completely understood.

Hereafter, if f, g denote functions of X, then the phrase “f ∼ g as X →∞” stands
for limX→∞ f/g = 1. In comparison with the unnormalized traces ap(E), we know much
more about the distribution of the normalized traces bp(E) = ap(E)/2√p. Specifically,
the latter depends only on whether E has complex multiplication (CM). In the CM case,
the distribution of the bp is due to Hecke, cf. [He1], [He2]:
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Theorem 1.1 (Hecke). If E has CM and [a, b] ⊆ [−1,+1], then the distribution of the
bp(E) has a spike at 0 of measure 1/2 and

#{p ≤ X of good reduction for E : bp(E) ∈ [a, b] \ {0}}(1.2)

∼ 1
2π

(∫ b

a

1√
1− t2

dt
)

X

logX

as X →∞.

In the non-CM case, the analogous result was known as the Sato-Tate Conjecture until
its recent proof by Clozel, Harris, Shepherd-Barron and Taylor, cf. [CHT], [T], [HST], and
[BGHT]:

Theorem 1.2 (Clozel, Harris, Shepherd-Barron, Taylor). If E does not have CM and
[a, b] ⊆ [−1,+1], then

#{p ≤ X of good reduction for E : bp(E) ∈ [a, b]} ∼ 2
π

(∫ β

α

√
1− t2 dt

)
X

logX(1.3)

as X →∞.

Finally, the current hypothesis for the distribution of the unnormalized ap(E) is known
as the Lang-Trotter Conjecture [LT]:

Conjecture 1.3 (Lang-Trotter). Let E/Q be an elliptic curve and let r ∈ Z. If either
r 6= 0 or E does not have CM, then

#{p ≤ X of good reduction for E : ap(E) = r} ∼ CE,r
√
X

logX ,(1.4)

where CE,r is an explicit constant depending only on E and r.

Related to these conjectures, one can also ask when, for fixed E, the value ap(E) is
maximal or minimal in the Hasse interval. In other words, how often is p a witness to the
effectiveness of Hasse’s theorem?

Definition 1.4. Let p be a prime of good reduction for E. We say that p is an extremal
prime for E if and only if |ap(E)| = b2√pc.

In [Hed], Jason Hedetniemi studies the primes p such that ap(E) = −b2√pc. He refers
to them as champion primes for E, because at such primes, E attains the maximum
number of Fp-rational points possible among elliptic curves over Fp.

Theorem 1.5 (Hedetniemi). Let X,A(X), B(X) > 0 such that for some ε > 0,
1. A(X), B(X) ≥ exp((1/4 + ε)X)).
2. A(X)B(X) ≥ exp((5/4 + ε)X)).

For all a, b ∈ Z such that 4a3 + 27b2 6= 0, let Ea,b be the elliptic curve whose affine
equation is y2 = x3 + ax+ b. Let

E(A,B) = {Ea,b : |a| ≤ A and |b| ≤ B},(1.5)
E−(A,B) = {Ea,b ∈ E(A,B) : Ea,b has a champion prime}.(1.6)

Then #E−(A,B) ∼ #E(A,B) as X →∞.
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In other words, almost all elliptic curves E/Q have at least one champion, hence
extremal, prime. We note that one can employ the Chinese Remainder Theorem as in
Hedetniemi’s work to deduce that, for all N ≥ 1, we can construct infinitely many elliptic
curves having no extremal primes ≤ N .

By Theorems 1.1 and 1.2, we expect the density of extremal primes to differ greatly
depending on whether E has CM or not. In the CM case, ap(E) tends to live near the
edges of the Hasse interval (excepting the spike at 0), whereas in the non-CM case, ap(E)
tends toward the center.

In this note, we estimate the asymptotic density of extremal primes for any E such
that End(E) = OK , where K is an imaginary quadratic field of class number 1 and
discriminant 6= −3,−4, conditional on the Riemann Hypothesis (RH) for certain Hecke
L-functions. The idea of the proof is to obtain a correspondence between extremal primes
of E and prime elements $ ∈ OK in the region Re(z)1/2 ≥ Im(z) > 0, after discarding a
negligible subset of the $. In Section 6, we provide heuristics for further conjectures in
both CM and non-CM cases.
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3. Statement of Results

Throughout the rest of this paper, OE = End(E). We write π±E (X) for the number of
extremal primes for E that are less than X. If K is a number field, then we write a C OK
to mean a is an ideal of OK . Our main result is the following theorem, proved in Sections
4 and 5:

Theorem 3.1. Suppose OE = OK , where K is an imaginary quadratic field of class
number 1 and discriminant ∆K 6= −3,−4. Let χ∞ be the Hecke character of K that sends

a 7→ (α/|α|)#O×
K(3.1)

for all a C OK , where α is any generator of a. If the Riemann Hypothesis (RH) for
L(s, χn∞) holds for all n, then

(3.2) π±E (X) = 4
3π

X3/4

logX +O

(
X3/4

(logX)2

)
.

The heuristics in Section 6 lead us to the following general conjectures for the CM
and non-CM cases, respectively:
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Conjecture 3.2. Suppose OE = OK , where K is an imaginary quadratic field of class
number 1. Then

π±E (X) ∼ CE
X3/4

logX ,(3.3)

where CE = 2#O×K/(3π).

Conjecture 3.3. Suppose E does not have CM. Then

(3.4) π±E (X) ∼ CE
X1/4

logX ,

for some constant CE depending only on E.

4. Proofs

We briefly review facts about orders in imaginary quadratic fields, following [Cox].
By definition, an order in a number field K is a finitely-generated sublattice O of OK
such that OK = O⊗Z Q. If K = Q(

√
d) for some square-free d < 0, then O is called an

imaginary quadratic order and

O = Z + fOK(4.1)

for some f ≥ 1 called the conductor of O. The fundamental discriminant of O, which
depends only on K, is

∆K =
{
d if d ≡ 1 (mod 4),
4d if d ≡ 2, 3 (mod 4),(4.2)

and the discriminant of O is ∆O = ∆Kf
2. Thus,

O =


Z
[√

∆O

2

]
if ∆ ≡ 0 (mod 2),

Z
[

1+
√

∆O

2

]
if ∆ ≡ 1 (mod 2).

(4.3)

If E is an elliptic curve over Q with CM, then OE = End(E) is an imaginary quadratic
order of one of the following 13 discriminants [Si2, p. 483]:

∆OE = −3,−4,−7,−8,−11,−19,−43,−67,−163,(4.4)
− 22 · 3,−22 · 4,−22 · 7,−32 · 3.

Observe that the imaginary quadratic field KE to which OE belongs always has class
number 1. Thus, if OE = OKE , then OE has unique prime factorization.

The first step of our proof is the following proposition, which in turn will require two
short lemmas.
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Proposition 4.1. Suppose E/Q has CM. If p is an extremal prime of E, then p = $$
for some prime element $ ∈ OE such that

Re($) ≥
{

Im($)2 if Re($) ∈ Z,
Im($)2 + 3/4 otherwise.(4.5)

The converse holds if ∆KE 6= −3,−4.

For all a ∈ Z and n ∈ Z≥0, abbreviate

D(a, n) = a2 − 4n, and(4.6)
D(n) = b2

√
nc2 − 4n.(4.7)

We always have D(a, n) ≡ 0, 1 (mod 4).

Lemma 4.2. Let p 6= 2, 3 be of ordinary reduction for E/Q. Then D(ap(E), p) = ∆OEv
2

for some v ∈ Z.

Proof. Let E be the reduction of E modulo p. By hypothesis, E is ordinary. Also, since
E is defined over Q, the conductor f of OE satisfies 1 ≤ f ≤ 3. Thus, p does not divide
the conductor of OE . So, OE ' OE by Theorem 12 of [La, Chapter 13]. Let a = |ap(E)|.
We know OE contains the Frobenius element $, which must satisfy $2 ± a$ + p = 0.
Thus, Z[$] ↪→ OE , where D(a, p) is the discriminant of Z[$], as in the proof of Theorem
14.16 in [Cox]. The result follows.

Lemma 4.3. If n ∈ Z≥0, then

n =


u2 + |D(n)|

4 and u ≥ |D(n)|
4 if D(n) ≡ 0 (mod 4),

u2 + u+ |D(n)|+ 1
4 and u ≥ |D(n)|+ 1

4 if D(n) ≡ 1 (mod 4),
(4.8)

for some u ∈ Z≥0.

Proof. Taking

(4.9) u =
{
b2
√
nc

2 if D(n) ≡ 0 (mod 4),
b2
√
nc−1
2 if D(n) ≡ 1 (mod 4),

one can easily verify the result.

Proof of Proposition 4.1. We write (O,∆,K) = (OE ,∆OE ,KE) for convenience. Suppose
p is extremal. Then D(p) = D(ap(E), p). So, by Lemma 4.2, D(p) = ap(E)2 − 4p = ∆v2

for some v ∈ Z. So

p =


u2 + |∆|v

2

4 and u ≥ |∆|v
2

4 if ∆v2 ≡ 0 (mod 4),

u2 + u+ |∆|v
2 + 1
4 and u ≥ |∆|v

2 + 1
4 if ∆v2 ≡ 1 (mod 4),

(4.10)

for some u ∈ Z≥0 by Lemma 4.3. We will refer to the top possibility as case (1) and the
bottom as case (2).
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Suppose ∆ is even, so that O = Z[τ ] where τ =
√

∆/2. Then case (1) must hold,
so setting $ = u + τv ∈ O, we are done. Suppose ∆ is odd, so that O = Z[τ ] where
τ = (1 +

√
∆)/2. Case (1) holds if v ≡ 0 (mod 2) and (2) holds if v ≡ 1 (mod 2). Set

$ = u0 + τv ∈ O, where

u0 =
{
u− v/2 if v ≡ 0 (mod 2),
u− (v − 1)/2 if v ≡ 1 (mod 2).(4.11)

Computation shows p = $$ once again. The inequality relating u, v is equivalent to

u0 + v

2 ≥
1
4

{
|∆|v2 if v ≡ 0 (mod 2),
|∆|v2 + 3 if v ≡ 1 (mod 2),(4.12)

where Re($) = u0 + v/2 and Im($) = v
√
|∆|/2, as needed.

Conversely, suppose p = $$ for some $ ∈ O such that the appropriate inequality
relating Re($) and Im($) in (4.5) holds. In OK , we know $$ is a prime factorization
of p, so $ is the unique prime element of norm p in OK up to multiplication by units and
conjugation. But the Frobenius element of OE is also a prime of norm p and trace ap(E),
cf. the proof of Theorem 14.16 of [Cox]. If ∆K 6= −3,−4, then the only units of OK are
±1, so we conclude that $ corresponds to the Frobenius element of OE , up to sign and
conjugation, under the isomorphism OE ' O. Therefore,

2 Re($) = $ +$ = ±ap(E),(4.13)

from which

D(ap(E), p) = ($ +$)2 − 4$$ = ($ −$)2 = −4 Im($)2.(4.14)

Next, observe that the inequality in (4.5) implies that Re($) > 0 and −4 Im($)2 ≥
−4 Re($). Combining these facts with (4.13) and (4.14), we deduce that

ap(E)2 − 4p ≥ −4 Re($) = −2|ap(E)|,(4.15)

which implies (|ap(E)|+ 1)2 ≥ 4p. But ap(E)2 < 4p, so it follows that |ap(E)| = b2√pc,
meaning p is extremal for E.

In summary, Proposition 4.1 implies that:

{primes p = $$ such that Re($) ≥ Im($)2}
(4.16)

= {extremal primes p for E}
∪ {primes p = $$ such that Re($) /∈ Z and 0 ≤ Re($)− Im($)2 ≤ 3/4}.

Above, the size of the last set will be negligible in comparison to the sizes of the other two.
In particular, its contribution will be negligible compared to the error term in Theorem
3.1. So to estimate the number of extremal primes, it suffices to estimate the number
of $ such that Re($) ≥ Im($)2 and Im($) > 0, i.e. counting each conjugate pair only
once and discarding the inert primes. If OE = OKE , then we can do this estimation using
Hecke’s theory of prime distribution in number fields.
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In what follows, let K be a number field. For all a C OK , let Na = #(OK/a) denote
the absolute norm of a. Let PK(X) be the set of prime ideals p C OK such that Np ≤ X,
and let πK(X) = #PK(X). If f C OK , then we write IfK for the group of fractional ideals
of K coprime to f. We need a result of Hecke-Rajan in [Ra]; see also [AIW, Theorem
3.2.3]:

Theorem 4.4. Let f C OK , and let χ : IfK → C× be a Hecke character of infinite order.
Then there exists a constant AK > 0 such that, for all [a, b] ⊆ [0, 1],

#{p ∈ PK(X) : (p, f) = 1 and argχ(p) ∈ [2πa, 2πb)}(4.17)

= (b− a)πK(X) +O
(
X exp

(
−AK(logX)1/2

))
.

If RH for L(s, χn) holds for all n ≥ 1, then the error term can be improved to Oε(X1/2+ε)
for all ε > 0.

Corollary 4.5. Suppose K is an imaginary quadratic field of class number 1. Let
θK = 2π/#O×K , and for all primes p C OK , let θp be the argument modulo θKZ of any
generator of p. Then there exists a constant BK > 0 such that, for all [a, b] ⊆ [0, 1],

#{p ∈ PK(X) : θp ∈ [aθK , bθK) + θKZ}(4.18)

= (b− a)πK(X) +O
(
X exp

(
−BK(logX)1/2

))
.

If χ∞ is as in Theorem 3.1 and RH for L(s, χn∞) holds for all n ≥ 1, then the error term
can be improved to Oε

(
X1/2+ε) for all ε > 0.

Proof. By the class number 1 condition on K, we know the generators of an ideal of
OK can differ only up to multiplication by a unit. Thus for p C OK and p = αpOK ,
we have that argαp ∈ θp + θKZ and that argχ∞(p) = #O×K · argαp = #O×K · θp. Thus
θp ∈ [aθK , bθK) + θKZ if and only if argχ∞(p) ∈ [2πa, 2πb). This together with Theorem
4.4 implies the corollary.

In the rest of this section, we assume the Riemann Hypothesis for χn∞ for all n, and
in particular, the classical Riemann hypothesis. For ease of notation, set K = KE . Let
πsplit(X) be the number of integral primes p ≤ X that split in OK . By quadratic reciprocity
and the strong version of Dirichlet’s theorem for primes in arithmetic progressions that is
conditional on RH, cf. [Dav, p. 124],

πsplit(X) = 1
2

X

logX +Oε

(
X1/2+ε

)
,(4.19)

for all ε > 0. For example, in the case of Q(
√
−2), the splitting primes are the primes

congruent to 1, 3 modulo 8. The following prime-counting function will be fundamental
to the proof of our main result. For all intervals I ⊆ [0, 2π), let

πI(X) = {p ∈ Z : p = $$ ≤ X for some $ ∈ OK such that arg$ ∈ I}.(4.20)

From Corollary 4.5, we get the following estimate on πI(X):
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Corollary 4.6. Assume RH for χn∞ for all n. If I = [aθK , bθK) ⊆ [0, θK/2), an interval
of width θ = (b− a)θK , then

πI(X) = θ

θK

X

logX +Oε

(
X1/2+ε

)
(4.21)

for any ε > 0.

Proof. First, recall that if the rational prime p is inert in K, then N(pOK) = p2. Thus
the contribution of the inert primes to πK(X) is O

(
X1/2

logX1/2

)
= O(X1/2). Next, since

θ < θK/2, each rational prime p that does split in OK can be written in the form p = $$
for at most one $ ∈ OK such that arg$ ∈ I. (That is, the condition arg$ ∈ I controls
the sign and conjugation of $.) Employing Corollary 4.5, we obtain

πI(X) = #{p ∈ PK(X) : θp ∈ I + θKZ}+O
(
X1/2

)
(4.22)

= θ

θK
πK(X) +Oε

(
X1/2+ε

)
.

Finally, note that

πK(X) = 2πsplit(X) +O
(
X1/2

)
= X

logX +Oε

(
X1/2+ε

)
(4.23)

and the theorem follows.

5. Proof of Theorem 3.1

5.1. Partitioning into Sectors
By Proposition 4.1 and the discussion following (4.16), we can compute the main term

of the asymptotic for π±E (X) by finding the number of rational primes p ≤ X that split
in OK into $,$ such that either $ ∈ A(X) or $ ∈ A(X), where

A(X) = {z ∈ C : Re(z) ≥ Im(z)2 > 0 and |z|2 = zz ≤ X}(5.1)

=
{
z = reiα ∈ C× : 0 < r < min

{
X1/2,

cosα
sin2 α

}
and α ∈ (0, π/2)

}
.

To employ Corollary 4.6, we will divide A(X) into regions of the form

{reiα : 0 ≤ r ≤ R and θ(R) ≤ α < θ(R+ δ)},(5.2)

where θ(r) is chosen so that reiθ(r) is the unique point along the parabola Re(z) = Im(z)2,
within the first quadrant, that is precisely at distance r from the origin. By trigonometry,

θ(r) = arccos
[
−1 +

√
1 + 4r2

2r

]
(5.3)

has the desired property. Using the first-order Taylor approximation at infinity
√

1 + 4r2 =
2r +O(r−1), we obtain

−1 +
√

1 + 4r2

2r = 1− 1
2r +O

(
r−2) .(5.4)
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We further recall that the Puiseux series of arccos(1− y) is given by

arccos(1− y) =
√

2y1/2 +
√

2
12 y

3/2 +O
(
y5/2

)
.(5.5)

Combining the last two estimates and a bit of algebra yields

(5.6) θ(r) = r−1/2 +O
(
r−3/2

)
.

From the above discussion, θ(r) ∈ (0, π/2) and r = cos θ(r)/sin2 θ(r).
Let us first partition A into regions A1,A2(see Figure 5.1):{

A1(X) = {reiα ∈ C× : 0 < r < X1/2 and α ∈ (0, θ(X1/2)]},
A2(X) = {reiα ∈ C× : 0 < r < cosα/sin2 α and α ∈ (θ(X1/2), π/2)}.(5.7)

Re(z)

Im(z)

Re(z) = Im(z)2

|z| ≤ X1/2

θ
(
X1/2)
A2

A1

X1/2

Figure 5.1: Regions A1 and A2

Let πAj (X) be the contribution of the primes corresponding to Aj(X). In the
hypothesis of our theorem, ∆K 6= −3,−4, which occurs if and only if #O×K = 2, or
equivalently, θK = π. Therefore, by Corollary 4.6,

πA1(X) = π[0,θ(X1/2))(X) = θ(X1/2)
π

X

logX +Oε

(
X1/2+ε

)
(5.8)

= 1
π

(X3/4 +O
(
X1/4)

)
logX +Oε

(
X1/2+ε

)
.

= X3/4

π logX +Oε

(
X1/2+ε

)
.

We next turn our attention to the estimation of πA2(X). First, we wish to identify a
power ρ of X for which the contribution of the primes in the region

Cρ = {reiα : 0 ≤ r ≤ cosα/ sin2 α; α ∈ [θ(Xρ), π/2)}(5.9)
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can be overestimated by π[θ(Xρ),π/2)](X2ρ), and such that this overestimate remains
negligible compared to our main term. Again by Corollary 4.6,

πCρ ≤ π[θ(Xρ),π/2)(X2ρ) = π/2− θ(Xρ)
π

X2ρ

(ρ) logX +Oε′
(
Xρ+(2ρ)ε′

)
(5.10)

= O

(
X2ρ

logX

)
.

So, taking 2ρ < 3/4 will do. Since 5/7 is close to and less than 3/4, we will take ρ = 5/14
and set C = C5/14 in what follows. Setting

B = {reiα : 0 ≤ r ≤ cosα/ sin2 α; α ∈ [θ(X1/2), θ(X5/14))},(5.11)

and using (5.8) and (5.10), we have

π±E (X) = πA1(X) + πB(X) + πC(X)(5.12)

= X3/4

π logX + πB(X) +O

(
X5/7

logX

)
.

In order to estimate πB(X), we set rt(X) = X1/2 − tX1/3 and define{
Bn = {reiα : 0 < r < rn−1(X) and α ∈ [θ(rn−1(X)), θ(rn(X)))},
Bn = {reiα : 0 < r < rn(X) and α ∈ [θ(rn−1(X)), θ(rn(X)))},(5.13)

for 1 ≤ n ≤ κ := bX1/6 − X1/42c. For such n, observe that rn(X) ≥ X5/14. Finally,
define

(5.14) D = {reiα ∈ C× : 0 < r < cosα/ sin2 α and α ∈ [θ(rκ(X)), θ(X5/14))},

so that
κ⋃
n=1

Bn ⊆ B ⊆
κ⋃
n=1

Bn ∪D.(5.15)

Note that rκ(X) < X5/14 +X1/3, from which r2
κ(X) = X5/7 +O(X29/42). We now use

Corollary 4.6 to estimate πD(X):

πD(X) ≤ π[θ(rκ(X)),θ(X5/14))(r2
κ(X))(5.16)

= θ(X5/14)− θ(rκ(X))
π

r2
κ(X)

log r2
κ(X) +Oε′

(
rκ(X)1+2ε′

)
= O

(
θ(X5/14) + θ(rκ(X))

π

X5/7

(5/7) logX

)
+Oε′

(
X5/14+(5/7)ε′

)
= O

(
X5/7

logX

)
,

given that θ(X5/14) and θ(rκ(X)) are both O(1). Combining (5.15) and (5.16), we have
κ∑
n=1

πBn(X) ≤ πB(X) ≤
κ∑
n=1

π
Bn

(X) +O

(
X5/7

logX

)
.(5.17)
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5.2. Estimating the Contribution of Bn
Consider the following Taylor-series expansion at infinity:

fn(t) := (rn(X) + t)−1/2(5.18)

= 1
(X1/2 − nX1/3)1/2 −

t

2(X1/2 − nX1/3)3/2 +O

(
t2

(X1/2 − nX1/3)5/2

)
.

From equations (5.6) and (5.18), we deduce that the angular width of each of Bn and Bn
is:

θ(rn(X))− θ(rn−1(X)) = fn(0)− fn(X1/3) +O
(
rn(X)−3/2 + rn−1(X)−3/2

)
(5.19)

= X1/3

2(X1/2 − nX1/3)3/2 +O

(
X2/3

(X1/2 − nX1/3)5/2

)
.

Recalling that for 1 ≤ n ≤ κ, we have (X1/2−nX1/3) ≥ X5/14, we compute for 1 ≤ n ≤ κ
that

πB
n
(X)(5.20)

= 1
π

(
X1/3

2(X1/2 − nX1/3)3/2 +O

(
X2/3

(X1/2 − nX1/3)5/2

)) (
X1/2 − nX1/3)2

2 log
(
X1/2 − nX1/3

)
+Oε′

(
(X1/2 − nX1/3)1+2ε′

)
= X1/3(X1/2 − nX1/3)1/2

4π log(X1/2 − nX1/3)
+O

(
X2/3

(X1/2 − nX1/3)1/2 log(X1/2 − nX1/3)

)
+Oε′

(
(X1/2 − nX1/3)1+2ε′

)
= X1/3(X1/2 − nX1/3)1/2

4π log(X1/2 − nX1/3)
+O

(
X41/84

logX

)
+Oε′

(
(X1/2 − nX1/3)1+2ε′

)
= X1/3(X1/2 − nX1/3)1/2

4π log(X1/2 − nX1/3)
+Oε′

(
X1/2+ε′

)
.

(Later on, we will find that the same estimate holds for π
Bn

(X), cf. (5.30).) Hence,

κ∑
n=1

πBn(X) =
κ∑
n=1

(
X1/3 (X1/2 − nX1/3)1/2

4π log(X1/2 − nX1/3)
+Oε′(X1/2+ε′)

)
(5.21)

= X1/3

4π

κ∑
n=1

(X1/2 − nX1/3)1/2

log(X1/2 − nX1/3)
+Oε′

(
X2/3+ε′

)
.

If we interpret the main term as a Riemann sum, then we have the lower bound

(5.22) 1
4π

∫ κ+1

1

X1/3(X1/2 − uX1/3)1/2

log(X1/2 − uX1/3)
du = 1

4π

∫ X1/2−X1/3

X1/2−(κ+1)X1/3

t1/2

log t dt,

11



and the upper bound

(5.23) 1
4π

∫ κ

0

X1/3(X1/2 − uX1/3)1/2

log(X1/2 − uX1/3)
du = 1

4π

∫ X1/2

X1/2−κX1/3

t1/2

log t dt.

The integrals on the right can be computed by noting that t1/2/ log t is increasing. Namely,
for A < B, we have∫ B

A

t1/2

log t dt =
∫ B

A

(
t1/2

log t −
2t1/2

3 log2 t

)
dt+O

(∫ B

A

2t1/2

3 log2 t
dt
)

(5.24)

= 2
3

(
B3/2

logB −
A3/2

logA

)
+O

(
B1/2

log2B
B

)
.

Combining (5.21), (5.22), (5.23), and (5.24),

X1/3

4π

κ∑
n=1

(X1/2 − nX1/3)1/2

log(X1/2 − nX1/3)

(5.25)

= 1
4π

∫ X1/2

X1/2−κX1/3

t1/2

log t dt + O

(∫ X1/2−κX1/3

X1/2−(κ+1)X1/3

t1/2

log t dt+
∫ X1/2

X1/2−X1/3

t1/2

log t dt.
)

= 1
3π

X3/4

logX +O

(
X3/4

(logX)2

)
+ O

(∫ X1/2−κX1/3

X1/2−(κ+1)X1/3

t1/2

log t dt+
∫ X1/2

X1/2−X1/3

t1/2

log t dt.
)

= 1
3π

X3/4

logX +O

(
X3/4

(logX)2

)
+ O

(
X1/3 · X5/28

log
(
X5/14

) +X1/3 · X1/4

log
(
X1/2

))

= 1
3π

X3/4

logX +O

(
X3/4

(logX)2

)
+O

(
X7/12

logX

)
= 1

3π
X3/4

logX +O

(
X3/4

(logX)2

)
.

Substituting the above estimate into (5.21) yields

(5.26)
κ∑
n=1

πBn(X) = 1
3π

X3/4

logX +O

(
X3/4

(logX)2

)
.

5.3. Concluding the Proof
We will relate the overestimate Bn to the underestimate Bn. To this end, note that

rn−1(X)2 = (X1/2 − nX1/3)2 + 2X1/3(X1/2 − nX1/3) +X2/3(5.27)

= (X1/2 − nX1/3)2 +O
(
X1/3(X1/2 − nX1/3)

)
,
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where the last estimate holds because X1/2 − nX1/3 > X5/14 > X1/3. Using a first-order
approximation at infinity to the logarithm function, we find

log rn−1(X) = log(X1/2 − nX1/3) +O

(
X1/3

X1/2 − nX1/3

)
(5.28)

= log(X1/2 − nX1/3) +O
(
X−1/42

)
.

Thus,

(X1/2 − (n− 1)X1/3)2

2 log(X1/2 − (n− 1)X1/3)
(5.29)

=
(X1/2 − nX1/3)2 +O

(
X1/3(X1/2 − nX1/3)

)
2 log(X1/2 − nX1/3) +O

(
X−1/42

)
= (X1/2 − nX1/3)2

2 log(X1/2 − nX1/3)
+O

(
X1/3(X1/2 − nX1/3)
log(X1/2 − nX1/3)

)
,

Finally, using Corollary 4.6, together with the above estimate and the estimate (5.19) for
the angular width of the regions Bn and Bn, we compute:

π
Bn

(X)− πBn(X)(5.30)

= 1
π

(
X1/3

2(X1/2 − nX1/3)3/2 +O

(
X2/3

(X1/2 − nX1/3)5/2

))
·
(

(X1/2 − (n− 1)X1/3)2

2 log(X1/2 − (n− 1)X1/3)
− (X1/2 − nX1/3)2

2 log(X1/2 − nX1/3)

)
= 1
π

(
X1/3

2(X1/2 − nX1/3)3/2 +O

(
X2/3

(X1/2 − nX1/3)5/2

))
·O
(
X1/3(X1/2 − nX1/3)
log(X1/2 − nX1/3)

)
= O

(
X2/3

(X1/2 − nX1/3)1/2 log(X1/2 − nX1/3)

)
= O

(
X1/2

)
.

Therefore,
κ∑
n=1

π
Bn

(X) =
κ∑
n=1

πB
n
(X) + κ ·O

(
X1/2

)
=

κ∑
n=1

πB
n
(X) +O

(
X1/6

)
·O
(
X1/2

)
=

κ∑
n=1

πBn(X) +O
(
X2/3

)
Combining (5.17), (5.26), and (5.31), we have

(5.31) πB(X) = 1
3π

X3/4

logX +O

(
X3/4

(logX)2

)
.

13



Finally substituting (5.31) into (5.12), we conclude that

π±E (X) = 4
3π

X3/4

logX +O

(
X3/4

(logX)2

)
,(5.32)

as needed.

6. Heuristics

6.1. The CM Case
Define the approximate density function

δ(r, θ) = 1
θK log r .(6.1)

Then we can rewrite the right-hand side of (4.21): For all θ1, θ2 such that θ2 − θ1 = θ,

θ

θK

X

logX +Oε

(
X1/2+ε

)
=
∫ θ2

θ1

∫ X1/2

21/2
δ(r, θ)r dr dθ +Oε

(
X

(logX)2

)
.(6.2)

Integrating,∫
A1(X)

δ(r, θ)r dr dθ +
∫
A2(X)

δ(r, θ)r dr dθ(6.3)

=
∫ θ(X1/2)

0

∫ X1/2

21/2
δ(r, θ)r dr dθ +

∫ X1/2

21/2

∫ θ(X1/2)

θ(r)
δ(r, θ)r dθ dr +O (1)

∼ θ(X1/2)
θK

X

logX + 1
θK

∫ X1/2

21/2

r

log r

(
X−1/4 − r−1/2 +O

(
r−3/2

))
dr

= 1
θK

X3/4

logX + 1
θK

X3/4

logX −
2

3θK
X3/4

logX +O

(
X3/4

log2X

)
= 4

3θK
X3/4

logX +O

(
X3/4

log2X

)
,

which yields the heuristic for Conjecture 3.2 and is supported by Theorem 3.1.

6.2. The Non-CM Case
Here, we use the Sato-Tate law to construct our heuristic. For a non-CM elliptic curve

E, the probability that ap(E) = +b2√pc is approximately

2
π

∫ 1

1−1/(2√p)

√
1− t2 dt = 2

π

∫ 1

1−1/(2√p)

(√
2(1− t)1/2 +O((1− t)3/2)

)
dt(6.4)

= 2
π

(
2
√

2
3

(
1

2√p

)3/2
)

+O
(
p−5/4

)
= 2

3πp
−3/4 +O

(
p−5/4

)
.
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In order to estimate π±E , we will assume that the events ap(E) = ±b2√pc for different p
are disjoint, a fortiori that their conjunctions contribute to lower-order, then sum over
primes p ≤ X, since there are only finitely many primes of bad reduction:

π±E (X) =
∑
p≤X

2
(

2
3πp

−3/4
)

(6.5)

∼ 4
3π

∫ X

2

u−3/4

log u du

∼ 4
3π

X1/4

logX .

Due to the unique arithmetic behavior of each isogeny class of elliptic curves, it is not
heuristically clear that the constant 4/(3π) above is meaningful. We replace it by a
generalized constant CE depending on E. This is the estimate in Conjecture 3.3.
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