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Abstract. For an elliptic curve E/Q, Hasse’s theorem asserts that #E(Fp) = p + 1 − ap, where |ap| ≤
2
√
p. Assuming that E has complex multiplication, we establish asymptotics for primes p for which ap

is in subintervals of the Hasse interval [−2
√
p, 2
√
p] of measure o(

√
p). In particular, given a function

f = o(1) satisfying some mild conditions, we provide counting functions for primes p where |ap| ∈ (2
√
p(1−

f(p)), 2
√
p), and for primes where ap ∈ (2

√
p(c− f(p)), 2c

√
p), where c ∈ (0, 1) is a constant.

1. Introduction

Let E/Q be an elliptic curve. For a prime p of good reduction, we may consider #E(Fp), the number of points
on E modulo p. Putting the curve in its Weierstrass form E : y2 = x3 + ax+ b and arguing probablistically
with the theory of quadratic residues, one sees that #E(Fp) should be roughly p+ 1. Indeed, it is a classical
result of Hasse [18] that #E(Fp) = p+1−ap, where the error term ap, called the trace of Frobenius, satisfies
|ap| ≤ 2

√
p. The distribution of the quantity ap within the Hasse interval [−2

√
p, 2
√
p] has been of great

interest in modern number theory, due in part to its role in the Birch and Swinnerton-Dyer conjecture, which
relates the rank of the group E(Q) to its local arithmetic data. More specifically, to such a curve, we can
associate an L-series via an Euler product:

(1) L(E, s) =
∏
p-∆E

1

1− app−s + p1−2s
,

where ∆E = −16(4a3 + 27b2) is the discriminant of E. This series converges for <(s) > 3/2, and as a
consequence of the modularity theorem, it will always admit an analytic continuation to all of C. The
resulting function is called the Hasse-Weil zeta function of E. Birch and Swinnerton-Dyer [3] conjectured
that the rank of E(Q) is equal to the order of vanishing of the Hasse-Weil zeta function at s = 1. The
product formula (1) makes it clear that the behavior of L(E, s) will depend entirely on the distribution
of ap. The distributions of the normalized trace of Frobenius bp = ap/2

√
p have been well-studied, with

different results depending on whether or not E has complex multiplication (CM). The CM case is due to
Hecke and Deuring:

Theorem 1.1 (Hecke [11, 12], Deuring [7, 8, 9, 10]). Suppose that E is an elliptic curve over Q with
complex multiplication. Then ap = 0 for asymptotically half of all primes p. Moreover, for each subinterval
[α, β] ⊆ [−1, 1],

lim
x→∞

1

π(x)
#

{
p ≤ x :

ap
2
√
p
∈ [α, β]\{0}

}
=

1

2π

∫ β

α

dt√
1− t2

.

The distribution of the normalized trace in the non-CM case is much more difficult; the proof was finalized
only in 2006, in a paper by Clozel, Harris, Taylor, and Shepherd-Barron. Until its proof, it was known as
the Sato-Tate conjecture.

Theorem 1.2 (Clozel, Harris, Shepherd-Barron, Taylor [1]). Let E be an elliptic curve over Q without
complex multiplication. Then, for each subinterval [α, β] ⊆ [−1, 1],

lim
x→∞

1

π(x)
#

{
p ≤ x :

ap
2
√
p
∈ [α, β]

}
=

2

π

∫ β

α

√
1− t2 dt.

The distributions are markedly different based on whether or not E has CM: if it does, ap/2
√
p is concentrated

toward the endpoints of the interval [−1, 1]. These theorems give us information about the number of primes
whose trace of Frobenius lies in subintervals of measure proportionial to that of the Hasse interval, but they
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do not give information about primes which are in “density-zero” subintervals of the Hasse interval. In
particular, the Lang-Trotter conjecture, which predicts the number of primes for which ap = r for a fixed
integer r, remains unresolved.

Conjecture 1.3 (Lang-Trotter). Let E be an elliptic curve over Q and let r ∈ Z. Then if r = 0 or E does
not have CM, then

#{p ≤ x : ap = r} ∼ CE,r
√
x

log x
,

where CE,r is an explicit constant depending on E and r.

In this paper, we extend the program begun by James, Tran, Trinh, and Wertheimer in [14] and continued
by James and Pollack in [13]. In these papers, the authors study primes for which |ap| is as large as
possible for CM elliptic curves. Adopting the conventions of that paper, we say a prime p is extremal for
an elliptic curve E/Q if |ap| = b2√pc, additionally we say that p is a champion prime if ap = −b2√pc
(and consequently #E(Fp) is as large as possible), and finally p is a trailing prime if ap = b2√pc. In [14],
the authors established an asymptotic for the count of extremal primes, assuming the Generalized Riemann
Hypothesis (GRH). In [13], James and Pollack removed the reliance on GRH and separated the counts of
trailing and champion primes.

Theorem 1.4 (James, Pollack). Let E/Q be an elliptic curve with complex multiplication, then

#{p ≤ x : p is a trailing prime for E} ∼ 2

3π

x3/4

log x
,

and the same asymptotic holds for champion primes.

Here we adapt the techniques of [13] to establish asymptotics for primes p for which ap is in short subintervals
of the Hasse interval. Our main result gives a counting function for nearly extremal primes, which are primes
for which ap is within a small range of the endpoints of the Hasse interval. Our work also enables us to
count primes within a small range of 2c

√
p, where c ∈ (0, 1) is a constant. In this context, “small” means

that our intervals are of measure o(
√
p).

Definition 1.5. Let E/Q be an elliptic curve and p a prime. We say p is

(i) f -nearly extremal for E if |ap| ∈ (2
√
p(1− f(p)), 2

√
p);

(ii) an f -champion prime if ap < −2
√
p(1− f(p));

(iii) an f -trailing prime if ap > 2
√
p(1− f(p));

(iv) a (c, f)-prime for E if ap ∈ (2
√
p(c− f(p)), 2c

√
p) for some constant c ∈ (0, 1).

Before we state our main theorem, we recall that a function f : R→ R is called regularly varying if the limit

C(λ) = lim
x→∞

f(λx)

f(x)

exists for all λ > 0, and f is slowly varying if the above limit is 1 for all λ > 0. In our work, the language of
regularly varying functions gives the most precise description of the functions f that may be considered for
f -nearly extremal and (c, f)-primes. We emphasize that this is not too serious a restriction on the function f ,
as for example, all polynomials are regularly varying, and log x and 1/ log x are slowly varying. Importantly,
if f is regularly varying, then Karamata’s theorem [2] gives that f(x) = xαg(x) where g is slowly varying.
Note that α = 0 if and only if f is slowly varying. This parameter α = α(f) is used in the statement of our
main theorem.

Theorem 1.6. Let E be an elliptic curve with complex multiplication, and let f(x) = o(1) be a convex,
differentiable, regularly varying function. If x−1/2 � f , then the number of f -trailing primes p ≤ x is

∼
√

2

π(2 + α)

√
f(x)

x

log x
,

and the same asymptotic holds for f -champion primes. Moreover, if 1
f(x) = o(x.265/ log x) for sufficiently

large x, the number of (c, f)-primes p ≤ x is

∼ 1

2π

1

1 + α

1√
1− c2

f(x)
x

log x
.
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In Table 1, we compute asymptotics for f -extremal primes for several specific examples of f , and in Table 2
we include asymptotics for (c, f)-primes when c = 1/2. As Table 1 indicates, taking f(p) = 1/2p1/2 recovers

the asymptotic of Theorem 1.4. For the tables, we let πf−Champ
E (x) and π

(1/2,f)
E (x) denote the counting

functions of f -champion and (1/2, f)-primes, respectively.

Table 1. Asymptotics for f -nearly extremal primes.

f(p) Width of interval πf−Champ
E (x)

1

2p1/2
1 ∼ 2

3π

x3/4

log x

n

2p1/2
, n ≥ 1 n ∼ 2

√
n

3π

x3/4

log x

1

2p1/4
p1/4 ∼ 4

7π

x7/8

log x

1

2p1/2−ε , ε ∈
[
0,

1

2

)
pε ∼ 2

(3 + 2ε)π

x3/4+ε/2

log x

1

log p

2p1/2

log p
∼
√

2

2π

x

(log x)3/2

1

log log p

2p1/2

log log p
∼
√

2

2π

x

log x
· 1

(log log x)1/2

log p

2
√
p

log p ∼ 2

3π

x3/4

√
log x

log log p

2
√
p

log log p ∼ 2

3π

x3/4

log x

√
log log x

2. Background

Here we discuss relevant background information about the complex multiplication of elliptic curves, the
trace of Frobenius, and regularly varying functions. All of the facts about elliptic curves used here can
be found in David Cox’s Primes of the form x2 + ny2 [5] and Joe Silverman’s The arithmetic of elliptic
curves [18].

2.1. Complex multiplication. One means of studying an elliptic curve E/Q is to consider the endomor-
phism ring defined of its Q-valued points, which we denote by End(E). For m ∈ Z, the multiplication-by-m
map

[m] : E → E

given by
P 7→ P + P + · · ·+ P︸ ︷︷ ︸

m times

provides an endomorphism of E. For almost all elliptic curves defined over Q, such maps give all of the
possible endomorphisms, i.e. End(E) ∼= Z. However, for some elliptic curves, the endomorphism ring is
strictly larger than Z. For example, if (x, y) is a point on the elliptic curve given by the Weierstrass equation
E : y2 = x3 − x, then (−x, iy) is also a point on the curve. This gives rise to an endomorphism [i] : E → E
which is not given by any multiplication-by-m map, so Z ( End(E). Such curves are said to have complex
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Table 2. Asymptotics for (1/2, f)-primes.

f(p) Width of interval π
(1/2,f)
E (x)

1

2p1/4
p1/4 ∼ 2

√
3

3π

x3/4

log x

1

2p.265−ε , ε ∈ (0, .265) p.235+ε ∼
√

3

(.735 + ε)6π

x.735+ε

log x

1

log p

2p1/2

log p
∼
√

3

3π

x

log2 x

1

log log p

2p1/2

log log p
∼
√

3

3π

x

log x
· 1

log log x

multiplication. To characterize the possible endomorphism rings of an elliptic curve, we first require the
definition of an order in a quadratic field.

Definition 2.1. Let A be a Q-algebra which is finitely generated over Q. An order R of A is a subring of
A such that R⊗Q = A.

Theorem 2.2. Let E/Q be an elliptic curve. Then either End(E) ∼= Z or End(E) is an order in a quadratic
extension of Q.

Any order in a quadratic extension K of Q is of the form Z + fOK , where f ≥ 1 is an integer. We say E
has complex multiplication by the maximal order if End(E) ∼= OK .

2.2. Trace of Frobenius. Just as we consider the endomorphism ring of the Q-valued points of an elliptic
curve defined over Q, we may analyze the endomorphism ring of the Fp-valued points of an elliptic curve E
defined over Fp for any prime p not dividing the discriminant ∆E ; write EndFp(E) for this ring. We again
have Z ⊆ EndFp(E). However, we also have the pth power Frobenius endomorphism given by

σp : (x, y) 7→ (xp, yp).

One may verify that σp /∈ Z, in that this map does not correspond to any multiplication by m map, so we
always have Z ( EndFp(E). We thus have the chain of containments

Z ( Z[σp] ⊆ EndFp(E),

where Z[σp] is finite over Z. The element σp satisfies a monic relation of the form

(2) σ2
p − apσp + p = 0 ∈ EndFp(E),

where ap is the trace of Frobenius as discussed in the introduction. The relation (2) motivates the use of the
term “trace.” Indeed, ap also arises as the trace of the Frobenius endomorphism when viewed as an element
of GL2(Z`) via its action on the Tate module T`(E), one can see the aforementioned reference [18] for an
in-depth treatment of this perspective. In particular, this allows us to view the polynomial x2 − apx + p
arising from the relation (2) as the characteristic polynomial of σp, which we denote charσp(x). For a curve
E defined over Q with complex multiplication by OK , the polynomial factors as

(3) charσp(x) = (x− ω)(x− ω),

where ω is a prime of OK that lies over p. Importantly, this implies that for the root ω of charσp , we have

2<(ω) = ω + ω = ap

and

|ω|2 = Nω =

{
p2 if ω ∈ Q,

p otherwise,
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where N denotes the norm of the field extension; in the quadratic case, this agrees with the square of the
usual complex modulus. Therefore, when an elliptic curve E/Q has CM by OK , we can associate to each
splitting rational prime p two primes ω and ω of OK lying over p, each with real part ap/2. This fact is
integral to the proof of our main theorem, and we will refer to the equation (3) later, specifying the prime
ω via congruence conditions.

2.3. Regularly varying functions. In this paper we require that f(x) = o(1) be differentiable, strictly
decreasing, convex, and regularly varying. We recall the definition as stated in the introduction.

Definition 2.3. A function f : R→ R is called regularly varying if the limit

C(λ) = lim
x→∞

f(λx)

f(x)

exists for all λ > 0. The function f is slowly varying if C(λ) = 1 for all λ > 0.

As previously discussed, if f is regularly varying, then Karamata’s theorem [2] implies that f(x) = xαg(x)
where g is slowly varying, and α = 0 if and only if f is slowly varying. We will need two technical lemmas
for dealing with regularly varying functions in our proof of Theorem 1.6.

Lemma 2.4. If f is regularly varying and η < 1, then f(X) ∼ f(X + Xη). Moreover, if f is strictly
decreasing with f(x)→ 0 as x→∞ and p ∈ [X,X +Xη] is a rational prime, then f(X) ∼ f(p) ∼ f(X+Xη),
and

f(p) < f(X) < (1 + h(X))f(p),

where

h(X) :=
f(X)− f(X +Xη)

f(X +Xη)
= o(1).

Proof. Observing that

C(λ) = lim
X→∞

f(λX)

f(X)
= lim
X→∞

f(λX)

f(
√
λX)

f(
√
λX)

f(X)
=

(
lim√
λX→∞

f(λX)

f(
√
λX)

)(
lim
X→∞

f(
√
λX)

f(X)

)
= C(

√
λ)2,

we have C(λ)→ 1 as λ→ 1. Given ε > 0 there exists a λ > 1 such that C(λ) > 1− ε. Then for sufficiently
large X

1 ≥ f(X +Xη)

f(X)
=
f(X(1 +Xη−1))

f(X)
>
f(λX)

f(X)
> 1− ε,

so letting ε→ 0 we have f(X+Xη) ∼ f(X). Therefore, we have h(X) = o(1). When f is strictly decreasing,
for p ∈ [X,X +Xη], we have

f(p) < f(X) =

(
1 +

f(X)− f(p)

f(p)

)
f(p) <

(
1 +

f(X)− f(X +Xη)

f(X +Xη)

)
f(p) = (1 + h(X))f(p),

which completes the proof. �

Lemma 2.5. Write f(x) = xαg(x) where g is slowly varying. If f is convex, then

α = lim
X→∞

Xf ′(X)

f(X)
.

Proof. Fix a λ > 1. By convexity we have∣∣f ′(λX)
∣∣ < ∣∣∣∣f(λX)− f(X)

(λ− 1)X

∣∣∣∣ < ∣∣f ′(X)
∣∣ .

Rearranging the left inequality yields ∣∣∣∣f ′(λX)λX

f(λX)

∣∣∣∣ < λ

∣∣∣∣∣∣1−
f(X)
f(λX)

λ− 1

∣∣∣∣∣∣ ,
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and substituting X = X/λ we get ∣∣∣∣f ′(X)X

f(X)

∣∣∣∣ < λ

∣∣∣∣∣∣1−
f(X/λ)
f(X)

λ− 1

∣∣∣∣∣∣ .
Thus, after a similar rearrangement for the RHS we can bound∣∣∣∣∣∣

f(λX)
f(X) − 1

λ− 1

∣∣∣∣∣∣ <
∣∣∣∣f ′(X)X

f(X)

∣∣∣∣ < λ

∣∣∣∣∣∣1−
f(X/λ)
f(X)

λ− 1

∣∣∣∣∣∣ .
Taking X →∞: ∣∣∣∣λα − 1

λ− 1

∣∣∣∣ < ∣∣∣∣f ′(X)X

f(X)

∣∣∣∣ < λ

∣∣∣∣∣1− λ−αλ− 1

∣∣∣∣∣ .
Finally, taking λ→ 1 we obtain the desired limit. �

3. Counting f-nearly extremal and (c, f)-primes

We now establish the framework for the proof of Theorem 1.6. As in [13], the proof involves replacing
the problem of counting primes with prescribed trace of Frobenius with the problem of counting primes of
imaginary quadratic fields lying in narrow sectors of the complex plane. Indeed, for an elliptic curve E/Q
with CM by OK , the splitting of the characteristic polynomial of Frobenius (3) establishes the first connection
between rational primes with prescribed trace and primes ω of OK . By imposing conditions on the trace,
we are able to establish bounds on the argument of the primes ω. Of course, as discussed in Section 2.1, an
elliptic curve E might have CM by an order strictly smaller than OK . However, for our purposes, we may
assume without loss of generality that E has complex multiplication by the maximal order OK , as there is
always a Q-rational isogeny φ : E → E′, where E′/Q has CM by the maximal order. See [4], Proposition
25 for a reference for this fact. In particular, ap(E) = ap(E

′) for all but a finite number of primes p, so this
additional assumption on the CM of E will not alter our asymptotic estimates.
Deuring [6] showed that ap = 0 if and only if p is inert or ramified in K, so when p is sufficiently large and is
either f -nearly extremal or a (c, f)-prime, it is split in K. It is known that for any elliptic curve over Q with
CM by OK , the prime ω of (3) can be specified by congruence conditions, i.e. there is a nonzero element
µ ∈ OK and an irredundant list of elements ν1, . . . , νr ∈ OK which are invertible modulo µ, such that for
each split prime p which is coprime to µ, a prime ω lying over p satisfies (3) if and only if

(4) ω ≡ ν1, . . . , νr−1, or νr (mod µ).

For more information on computing the exact congruence conditions to be imposed, one may consult [17].
As in [13], the work of Landau [15] allows us to argue that the number of congruence conditions r in (4)
above satisfies

r = ϕ(µ)/wK ,

where ϕ(µ) = #(OK/µOK)× is the number of units in OK/µOK and wK denotes the number of roots of
unity in K. The following theorem, due to Maknys [16], tells us how to count primes of OK which occur in
sectors.

Theorem 3.1 (Maknys). Let K be an imaginary quadratic field, fix a nonzero µ ∈ OK , and let hK denote
the class number of K. If ν is an invertible residue class modulo µ, we have∑

ω prime
Nω prime

x<Nω≤x+x0.735

ω≡ν (mod µ)
θ1<arg(ω)<θ2

1 ∼ wK
hKϕ(µ)

· θ2 − θ1

2π
· x

0.735

log x
,

as x→∞, when 2π ≥ θ2 − θ1 > x−0.265.
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As E is defined over Q, the field K is one of the nine imaginary quadratic fields of class number 1, i.e.,
for our purposes, we may take hK = 1 in the above theorem. Maknys’ result will allow us to count primes
in sectors of OK which satisfy the congruence conditions (4), which are precisely the primes ω lying over
rational primes p with <(ω) = ap/2. The following lemma establishes the sectors where primes ω of OK
must correspond to rational primes p which are f -trailing for E. Set η = 0.735, as in the previous theorem.

Lemma 3.2. Let f be a strictly decreasing, regularly varying function with f(x) → 0 as x → ∞ and
f(x)� x−1/2. Let ω = a+ bi ∈ OK be a prime of norm p, where p ∈ [X,X +Xη] is a rational prime. Let
h(X) be as in Lemma 2.4. Then for sufficiently large X, if

2a > 2
√
p(1− f(p)),

then
| arg(ω)| < (1 + f(X))

√
2f(X) = (1 + o(1))

√
2f(X).

Conversely, if

| arg(ω)| < (1− h(X))
√

2f(X) = (1− o(1))
√

2f(X),

then
2a > 2

√
p(1− f(p)).

Proof. First we prove the forward direction. By the Taylor expansion of cos(x) at x = 0, we have cos(x) <
1− 1

2x
2 + 1

24x
4 for x near 0. Then by assumption we have

√
p(1− f(p)) < a =

√
p cos(argω) <

√
p

[
1− 1

2
(argω)2 +

1

24
(argω)4

]
,

i.e.,

f(p) >
1

2
(argω)2 − 1

24
(argω)4.

Since f in strictly decreasing, for X < p < X +Xη we have

|argω|
√

1− 1

12
(argω)2 <

√
2f(p) <

√
2f(X).

Then, as f(X) = o(1) and argω ∈ [−π, π], we get

|argω| <
√

2f(X)√
1− π2

12

< 3
√

2f(X),

and therefore, for sufficiently large X, we have the bound

|argω| <
√

2f(X)√
1− (argω)2

12

<

(
1 +

(argω)2

18

)√
2f(X) < (1 + f(X))

√
2f(X) = (1 + o(1))

√
2f(X),

which proves the first implication. For the reverse direction, suppose |argω| < (1 − h(X))
√

2f(X). By
Lemma 2.4, for sufficiently large X we have

| argω| < (1− h(X))
√

2f(X) < (1− h(X))
√

2(1 + h(X))f(p) < π/2.

Since cos(x) is even and it is decreasing on [0, π/2], we have

a =
√
p cos(arg(ω)) >

√
p cos

(
(1− h(X))

√
1 + h(X)

√
2f(p)

)
.

The Taylor series for cosine gives that cos(x) > 1− 1
2x

2, so we have

2a > 2
√
p

(
1− 1

2

(
(1− h(X))

√
1 + h(X)

√
2f(p)

)2
)

= 2
√
p
(

1− (1− h(X))2(1 + h(X))f(p)
)

= 2
√
p
(

1− (1− h(X)2)(1− h(X))f(p)
)

> 2
√
p(1− f(p)).

�
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The previous lemma gives sectors in which one may count primes ω corresponding to f -trailing primes. In
the following lemma, we establish an analogous result for (c, f)-primes.

Lemma 3.3. Let f, ω = a+ bi,X ≤ p ≤ X +Xη and h(X) be as in the previous lemma. Let c ∈ (−1, 1).
For sufficiently large X, if

√
p(c− f(p)) < a < c

√
p,

then

arccos(c) < | argω| <= arccos(c) +

(
1− cf(X)

2(1− c2)
+ o

(
f(X)2

)) f(X)√
1− c2

= arccos(c) + (1 + o(1))
f(X)√
1− c2

.

Conversely, if

arccos(c) < | argω| < arccos(c) +

(
1− |c|f(X)

2− 2c2
− h(X)− |c|f(X)h(X)

2− 2c2

)
f(X)√
1− c2

= arccos(c) + (1− o(1))
f(X)√
1− c2

,

then
√
p(c− f(p)) < a < c

√
p.

Proof. For the forward implication, since f(X) = o(1), for sufficiently large X and any X ≤ p ≤ X + Xη,
we have −1 < c − f(p) < c < 1. Note that arccos(x) is decreasing on [−1, 1], we have a < c

√
p implies

| argω| = arccos(a/
√
p) > arccos(c).

Recall that f is strictly decreasing and that a >
√
p(c − f(p)). By the Taylor expansion for arccos(x) at

x = c, we know for sufficiently large X and any X ≤ p ≤ X +Xη, that

| argω| = arccos(a/
√
p)

< arccos(c− f(p))

= arccos(c) +
f(p)√
1− c2

− f(p)2c

2(1− c2)3/2
+ o

(
f(p)3

)
= arccos(c) +

(
1− cf(p)

2(1− c2)
+ o(f(p)2)

)
f(p)√
1− c2

< arccos(c) +

(
1− cf(p)

2(1− c2)
+ o(f(p)2)

)
f(X)√
1− c2

= arccos(c) +

(
1− cf(X)

2(1− c2)
+ o

(
f(X)2

)) f(X)√
1− c2

= arccos(c) + (1 + o(1))
f(X)√
1− c2

.

For the reverse implication, since f(X) = o(1), for sufficiently large X and any X ≤ p ≤ X + Xη, by
assumption we have

0 < arccos(c) < | argω| < arccos(c) +

(
1− |c|f(X)

2− 2c2
− h(X)− |c|f(X)h(X)

2− 2c2

)
f(X)√
1− c2

< π.

Since arccos(c) < | argω| and cos(x) is decreasing on [0, π], we have a < c
√
p.

For the other inequality, since

| argω| < arccos(c) +

(
1− |c|f(x)

2− 2c2
− h(X)− |c|f(X)h(X)

2− 2c2

)
f(X)√
1− c2
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and cos(α+ β) = cos(α) cos(β)− sin(α) sin(β), we have

a/
√
p = cos(| argω|)

> cos

(
arccos(c) +

(
1− |c|f(x)

2− 2c2
− h(X)− |c|f(X)h(X)

2− 2c2

)
f(X)√
1− c2

)

=c cos

((
1− |c|f(x)

2− 2c2
− h(X)− |c|f(X)h(X)

2− 2c2

)
f(X)√
1− c2

)

−
√

1− c2 sin

((
1− |c|f(x)

2− 2c2
− h(X)− |c|f(X)h(X)

2− 2c2

)
f(X)√
1− c2

)
.

For x near 0 we may use the bounds cos(x) > 1− 1
2x

2 and sin(x) < |x| to get

a/
√
p > c

(
1− 1

2

(
1− |c|f(X)

2− 2c2
− h(X)− |c|f(X)h(X)

2− 2c2

)2
f(X)2

1− c2

)
−
(

1− |c|f(X)

2− 2c2
− h(X)− |c|f(X)h(X)

2− 2c2

)
f(X)

= c−

(
1 +

cf(X)

2− 2c2

(
1− |c|f(x)

2− 2c2
− h(X)− |c|f(X)h(X)

2− 2c2

))
·
(

1− |c|f(X)

2− 2c2
− h(X)− |c|f(X)h(X)

2− 2c2

)
f(X)

Finally, when 0 ≤ c < 1 we apply Lemma 2.4 to see that

a/
√
p = c−

(
1 +

cf(X)

2− 2c

)(
1− |c|f(X)

2− 2c
− h(X)− |c|f(X)h(X)

2− 2c

)
(1 + h(X))f(p)

> c− f(p).

When −1 < c < 0 we apply Lemma 2.4 to see that

a/
√
p > c−

(
1− |c|f(x)

2− 2c
− h(X)− |c|f(X)h(X)

2− 2c

)
(1 + h(X))f(p)

> c− f(p).

This completes the proof. �

We are now ready for the proof of our main result.

Proof of Theorem 1.6. As established, we may suppose that E has CM by the maximal order OK . We
fix a number p0(E) which is large enough to ensure that all primes p > p0(E) are of good reduction for
E, unramified in K, and coprime to µ. We call a prime ω ∈ OK f -distinguished if Nω = p is prime,
ω ≡ ν1, . . . , νr−1 or νr (mod µ) (this ensures that (3) holds for ω and hence that 2<(ω) = ap), and 2<(ω) >
2
√
p(1−f(p)). If we count f -distinguished primes, we are double counting the rational primes they correspond

to: if ω is f -distinguished, then so is ω. Therefore, if we let χfd denote the characteristic function of f -
distinguished primes, we see that ∑

p0<p<X
p is f-distinguished

1 =
1

2

∑
p0<Nω<X

χfd(ω).

As in [13], we begin by considering a weighted version of the right-hand sum. Let η = .735 as in Theorem 3.1,
and let x be a large real number. For each prime ω ∈ OK with Nω prime and x1/2 < Nω ≤ x, we define

X (ω) = {T ∈ R : T < Nω ≤ T + T η}.

Each X (ω) is of length ∼ (Nω)η, uniformly in ω. Therefore,∑
x1/2<Nω≤x

χfd(ω)(Nω)η = (1 + o(1))
∑

x1/2<Nω≤x

χfd(ω)

∫
X (ω)

1 dX

= (1 + o(1))

∫ x

x1/2−xη/2

∑
X<Nω≤X+Xη

x1/2<Nω≤x

χfd(ω) dX.(5)
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We first consider the range of integration where x1/2 ≤ X ≤ x− xη; in this range the first restriction on the
sum implies the second. The difference between the bounds in Lemma 3.2 is ∼ 2

√
2f(X), so we can apply

Theorem 3.1 with θ2 − θ1 = 2
√

2f(X) and sum over the r = ϕ(µ)/wK residue classes to get∑
X<Nω≤X+Xη

χfd(ω) ∼
√

2f(X)

π

Xη

logX
.

We now let

(6) F (t) =

√
2

π
· 2

2(η + 1) + α
·
tη+1

√
f(t)

log t
,

where if f is regularly varying, α is given by Karamata’s theorem; f(x) = xαg(x) where g is slowly varying
(indeed, α = 0 if f is slowly varying). We now use Lemma 2.5 to compute

lim
t→∞

F ′(t) · π√
2

log t√
f(t)tη

=
2

2(η + 1) + α
lim
t→∞

log t

tη
√
f(t)

·

(
(1 + η)tη

√
f(t)

log t
−
tη
√
f(t)

log2 t
+

t1+ηf ′(t)

2
√
f(t) log t

)

=
2

2(η + 1) + α

(
(1 + η) + lim

t→∞

tf ′(t)

2f(t)

)
=

2

2(η + 1) + α

(
1 + η +

α

2

)
= 1.

Written differently, we have

F ′(t) ∼
√

2

π

√
f(t)tη

log t
.

The contribution to the integral from the range x1/2 ≤ X ≤ x− xη is thus

∼ F (x− xη)− F (x1/2),

which we claim is ∼ F (x). Indeed, we have

lim
x→∞

F (x− xη)− F (x1/2)

F (x)
= lim
x→∞

F (x− xη)

F (x)
− lim
x→∞

F (x1/2)

F (x)

= lim
x→∞

√
f(x− xη)(x− xη)η+1

log(x− xη)
· log x√

f(x)xη+1
− lim
x→∞

√
f(x1/2)x(η+1)/2

log x1/2
· log x√

f(x)xη+1

= lim
x→∞

(
f(x− xη)

f(x)

)1/2

− 2 lim
x→∞

(
f(x1/2)

f(x)

)1/2

· 1

x(η+1)/2

= 1− 2 lim
x→∞

(
f(x1/2)

f(x)

)1/2

· 1

x(η+1)/2
.

As x−1/2 � f(x), there is a constant C such that Cx−1/4 ≤
√
f(x) for sufficiently large x, so that(

f(x1/2)

f(x)

)1/2

· 1

x(η+1)/2
≤ C

√
f(x1/2)

x(2η+1)/4
,

where the term on the RHS clearly goes to 0 as x→∞. We may conclude that F (x−xη)−F (x1/2) ∼ F (x).
The remaining range of integration is the union of the intervals [x1/2 − xη/2, x1/2] and [x − xη, x], which
together make up a set of measure xη +xη/2 � xη, while the integrand itself is uniformly� xη. Altogether,
this interval makes a contribution of � x2η, and for large x and constants M and C we have

0 ≤ x2η

F (x)
= M · x2η log x√

f(x)xη+1
= M · log x√

f(x)x.265
≤ Cx.25 log x

x.265
=
C log x

x.015
→ 0;

we may conclude that this contribution does not affect the asymptotic. It follows that

(7)
∑

x1/2<Nω≤x

χfd(ω)(Nω)η ∼
√

2

π
· 2

2(η + 1) + α
·
√
f(x)xη+1

log x
;
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but for the corresponding sum over primes ω with N(ω) ≤ x1/2, we have∑
Nω≤x1/2

χfd(ω)(Nω)η � x(η+1)/2,

so we can delete the restriction that Nω > x1/2 on the sum in (7) without altering the asymptotic:∑
Nω≤x

χfd(ω)(Nω)η ∼
√

2

π
· 2

2(η + 1) + α
·
√
f(x)xη+1

log x
.

We will now remove the weights via partial summation. Put

A(t) =
∑
Nω≤t

χfd(ω)(Nω)η.

Then ∑
Nω≤x

χfd(ω) =

∫ x

2

t−ηdA(t) = (1 + o(1))

(√
2

π
· 2

2(η + 1) + α
·
x
√
f(x)

log x

)
+ η

∫ x

2

A(t)t−η−1 dt,

where∫ x

2

A(t)t−η−1 dt =

√
2

π
· 2

2(η + 1) + α

∫ x

2

(1 + o(1))
√
f(x)

log x
∼
√

2

π
· 2

2(η + 1) + α
· 2

2 + α
·
x
√
f(x)

log x
;

this may be confirmed by taking the derivative of the right-hand side. We thus have∑
Nω≤x

χfd(ω) ∼
√

2

π
· 2

2(η + 1) + α
·

(√
f(x)x

log x
+

2η

2 + α
·
x
√
f(x)

log x

)

=

√
2

π
· 2

2(η + 1) + α
· 2(η + 1) + α

2 + α
·
x
√
f(x)

log x

=

√
2

π
· 2

2 + α
·
x
√
f(x)

log x
.

The same argument, constraining arg(−ω) rather than arg(ω), gives the asymptotic for f -champion primes.
For the (c, f)-primes, the calculation is essentially the same; in this case, the difference between the bounds
constraining arg(ω) comes from Lemma 3.3, it is

(8) θ2 − θ1 ∼
2f(X)√
1− c2

instead of 2
√

2f(X). The function F as in (6) becomes

F (t) =
1

2π

1

1 + η + α

1√
1− c2

f(t)tη+1

log t
.

The remainder of the argument is similar, and the final asymptotic is then∑
p0<p≤x

p is a (c,f)-prime

1 ∼ 1

2π

1

1 + α

1√
1− c2

f(x)x

log x
.

�

Remark 3.4. The difference between the bounds (8) in the (c, f) case is the reason for the restriction that
1

f(x) = o(x.265/ log x) in Theorem 1.6, also this ensures that f is large enough to apply Maknys’ result in

Theorem 3.1. We remark that conditional on the generalized Riemann Hypothesis, this restriction may be
relaxed to x−1/2+ε � f for any ε > 0 using the methods in [14]. However, those techniques do not allow
one to separate the count of primes on either side of the Hasse interval, i.e. one could find the asymptotic
count of primes p ≤ x such that ap ∈ (2c

√
p(c − f(p), 2

√
p) ∪ (−2c

√
p,−2

√
p(c + f(p))), but not the count

of primes for which ap is in either interval in the union. We do not see how to bypass this limitation, and
consequently we do not pursue this direction in more detail.
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