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Abstract

Let F(m,n) be the number of distinct configurations of non-
attacking kings on an mxn chessboard. Let 72 = limm n—oo F(m,n) mw
We give rigorous and heuristic bounds for n2. We also give bounds
for similar constants in higher dimensions.

1 Introduction

We consider the following question: How many different ways can kings be
placed on a chessboard so that no two kings can attack each other? How
about on an m x n chessboard? The statement of the problem generalizes
naturally to a d-dimensional board.

In chess a king can attack any of the 8 squares surrounding the square
in which the king is placed. Kings in the center of the board can attack
any of the 8 surrounding squares while kings on the boundary of the board
attack fewer.

In this paper, we will first examine the Kings Problem in one dimension,
then discuss the problem in two dimensions, and will eventually approach
the problem in higher dimensions. Our primary approach will utilize ad-
jacency matrices and the dominant eigenvalues of these matrices. We will
attempt to bound the entropy constant of each system,rny, where d is the
number of dimensions of the board.

2 The One-Dimensional Problem

A one dimensional chess board is simply a row or column of squares.
Squares at either end are adjacent to exactly one other square and all other
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squares are adjacent to two. A king in any square can attack any adjacent
square.

Definition 1. F(n) = the number of distinct configurations of non-attacking
kings on a one-dimensional chess board with n squares.

Consider F(n). Every configuration on a board of length n will either
begin with an empty square or begin with a square with a king in it. Those
that begin with an empty square are followed by a board of n — 1 squares.
Since the begining square is empty, every configuration of kings on a board
of n—1 squares can follow the initial empty square. Similarly, configurations
with a king in the first square must have an empty square second and are
then followed by a board of n—2 squares. Since the second square is empty,
every configuration of kings on a board of n — 2 squares can follow. Thus
F(n)=F(n—1)+F(n—2) forn > 2.
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Figure 1: Configurations of non-attacking kings on 1 by n boards

Since it is easy to determine that F'(1) = 2 and F(2) = 3 we have a
complete recursive definition of F'(n):

2 n=1
F(n):{ 3 n=2
Fn—-1)+F(n—-2) n>2

It is interesting to note that F'(n) gives the familiar Fibonacci sequence
properly indexed.

3 The Two-Dimensional Problem

Definition 2. F(m,n) = the number of distinct configurations of non-
attacking kings on an m by n chess board. It is obvious that F(m,n) =
F(n,m)

In order to thoroughly study the kings problem in two dimensions it will
be useful to define another object in the one dimensional kings problem.

Definition 3. S,, = the set of all possible configurations of non-attacking
kings on a one dimensional chess board with n squares.
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Clearly #5S,, = F(n). There is a method of generating the elements of
S, in an order that will be useful later.

1. Write the numbers 0 through F(n)-1 as a sum of the fewest non-
repeating Fibonacci numbers. Thus 1 = 1,2 =2,3=3,4 =3 +
1.

2. Create a grid with rows labeled 0,1,2,..., F(n) — 1 and columus la-
beled with Fibonacci numbers beginning with 1,2 up to F(n — 1)

3. Place a king in each square that appears in the sum. The zeroth row
of squares has no king, The first row has a king in the first square,
the second row of kings has a king in the second square, the forth row
of squares has kings in the 1st and 3rd square.

It should be clear that this process will enumerate every possible one dimen-
sional board, because no two consecutive Fibonacci numbers will appear in
a sum, so no two kings will be placed in adjacent squares. The following
diagram may aid the visualization.
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Figure 2: The elements of S5 generated by summing Fibonacci numbers

One result of generating S5 in this order is that we have also generated
the elements of S,Vn < 5. For example Sy is the first 8 rows of the grid
with the last column removed.

Using methods from Biggs[2] we use the approach of graphs and adja-
cency matrices to bring us from the one-dimensional problem to the two
dimensional problem. We construct a graph G,, whose vertices are the ele-
ments of S,,. Two vertices are adjacent if and only if the two 1-dimensional
boards can be glued together as a permissible 2 dimensional board. Thus



the number of walks on the graph of length m — 1 will correspond to the
number of legal configurations on an m x n board. We let A, be the
adjacency matrix associated with G,,. Thus,

F(m,n)=1TA""11

The construction of the set S,, provides a convenient recurrence in the
matrices A,,, illustrated below.

11
w=(1s)

1 11

As=|( 1 0 0

1 00
11 1 11
10 010
As3=11 0 0 0 O
110 00
1.0 0 0 O

And in general:
_ An—l An—2
An N ( An—2 0
Where the copies of A, _o are padded with rows or columns of zeros as
needed. Thus, we can generate A, for any n limited only by the space
in we have in which to record the matrix. We can also answer the first

question we asked by finding the numbers of ways can kings be placed on
a standard 8 x 8 chessboard so that no two kings can attack each other.

F(8,8) = 1T Al1 = 1355115601



This recurrence gives rise to matrices with very interesting structure.
Pictured below is the matrix A;o with values of 1 represented by a black
pixel and values of 0 represented by a white pixel. We were able to use the
structure to our advantage in performing certain calculations which will be

discussed in the next section.
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The eigenvectors associated with the dominant eigenvalues also have an
interesting structure. The following are plots of the entries in vg, v19, and
v11 against their indices. The vectors are normalized so that the largest
entry is 1 and we have connected the values with a line in order to better
see the “shape” of the vector. At first glance it appears that vy is a
concatenation of v1g and wg scaled appropriately, but this is not the case.
We can however, get very good approximations for v,, concatenating scaled
copies previous eigenvectors.
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Figure 6: The actual plot of eigen- Figure 7: A concatenation of vy
vector vy and a scaled vg
4 Entropy
Let n = [ny,n2,...,ny4] be a vector of dimensions for a multidimensional

chessboard. Let F(n) be the number of configurations of non-attacking
kings on the multidimensional board. We define the entropy constant of
this system as follows:

Definition 4. ng = lim,_, F(n)ﬁ, where |n| =ny X ng...ng
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It is easy to see that 71 = limy,_.oF(n)7 is the golden ratio H52. No

closed form has been found for the entropy constants of higher dimensional
systems.

In order to find bounds for 7y we will need to work with the function
F(m,n). Using spectral decomposition as found in Axler[1] we have:

F(m,n) = Z kmi/\zi_l

lTvn,ivz;il
K . . L. HUn,iHZ
the eigenvector associated with A, ;. It is important to note that each

kn,; > 0 since the numerator of our expression is the square of the sum
of the elements of v, ; and the denominator is the sum of the squares of
those elements and each element is a real number since A,, is symmetric.
Furthermore since each A,, is a primitive matrix we know from the Perron-
Frobenius theorem that the dominant eigenvalue is simple and positive so
we can order our eigenvalues so that A, 1 > [An2] > [Ang| > ...

where each A, ; is an eigenvalue of A, and k,; = with vy, ;

Theorem 1.
lim F(m,n)"™ =\, 1.

Proof. We have:
F(m,n) = Z km/\’,?,i_l.

Factoring out A7'; gives:

kn 1 Knji (Ani "
oo, (05 ().
) i=2 ’ ’

So:
K1 3 Fos (Aoa )™\

. 1/m _ . n, 0 0 o
Trll—IgoF(W%n) - )\n’l T?“}I_I'r(l)o <>\n,1 " =2 )\n,l (Anyl) ) - An,l
since i’” <1Vi>1. O

n,l

1
From this theorem and our definition of 7, it follows that lim,, o /\7"{’1 =
2.
In order to develop our best lower bound on 72, we need the following
lemma.

Lemma 2. A\, 1F(n,2p —1) > F(n,2p)



Proof.

A'rL,lFW(n7 2p - 1) = An,l Z kn,l)\i{)l_Q = Z An,lkn,iAi{)Z‘_Q

Since each k,, ; > 0, 2p—2is even, and A, 1 is positive every term in this sum
is positive. And since \,, ;1 > |\, ;| for all i, )\n71kn7i)\i’,’;2 > )\n’icmi}\ff;zw.
So:
)\n,lF(na 2p - 1)

2p—2
Zi )‘n,lkmi)‘n{)i

> > kn,i/\i{)i_l
= F(n,2p)
Thus, A\, 1F(n,2p —1) > F(n,2p). O

Using this lemma we can prove our best lower bound. However, from
this point on we are only concerned with the dominant eigenvalue of A,, so
we will abbreviate our notation from A, ; to the slightly less cumbersome
An-

Theorem 3. 222 <19

A2p_1

Proof.
F(n,2p) < A\ F(n,2p—1)

F(n,2p)
Flnspot) < An

F(n,2p) & i
(F(n,%ﬁl)) < Ad

F(n,2p) )

limy, oo (F(n,2p—1)
22 <

Aap—1

3=

1
<limp oo AR
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It is clear from extensive calculation that a similar convergence is hap-
pening from above.

. A
Conjecture 1. 1o < (f\qT:l)

The best proved upper bounds come from an adaptation of the method
of Calkin and Wilf in [3]. We use the fact that for each positive integer p,

An < Trace(Af,’;)ﬁ.

We consider all the set of one-dimensional cylindrical chessboards with
circumference 2p, containing no adjacent kings. We then compute the ad-
jacency matrices, as done before, calling them Bs,. Then

Trace(A?) = lTBg;)_ll.



So, )
1
m < (11B5, )7 < gy
where po, is the dominant eigenvalue of Bs,. Since B, consists of Agy,
with some elements zeroed out, it should be clear that ps, < Agp.

Our lower bound depends on our ability to calculate the dominant eigen-
value of A,,. When n is small we can use various mathematical to utilities
to compute the entire eigenstructure of A, with little difficulty. However,
the size of A,, grows exponentially so we must resort to other methods.

The method we have employed is the power method with which we were
able to calculate the dominant eigenvalues of matrices as large as Az;. We
were stopped at this point due to the fact that the matrices exceeded the
amount of computer memory available to us since the number of elements
in A, grows exponentially as the square of the golden ratio.

We used sparse matrix techniques to get the next few eigenvalues, but
even these were overwhelmed by the rapid growth of the matrices. Since
the number of non-zero elements in A,, grows like a power of 2. This is less
than the rate of growth of the elements in the entire matrix, but still rapid
enough to cause problems in a short amount of time.

Fortunately, the matrices we are dealing with are recursive so we devel-
oped a simple recursive algorithm to generate a single row of the matrix of
interest while only storing much smaller matrices in the computer’s mem-
ory. This algorithm combines sparse matrix notation with the recursive
definition of A,, given earlier. As a result of this we were able to calculate
the dominant eigenvalue of every matrix up to Az4. We have included these
values in the table below.

Currently, our best proved bounds on 7, are

1.3426439 < ny < 1.3426444
If proved, our conjecture would improve these bounds to
1.3426439509 < 19 < 1.3426439513

These figures are limited only by our ability to calculate the dominant
eigenvalues of these massive matrices.

We now consider chessboards of more than two dimensions. For a board
drawn in d dimensions, recall that 7, is the entropy constant for the system.
In order to understand such a system, it is helpful to think of the “board”
as a vector space, with each square represented as a vector of integers. Two
kings are adjacent if and only if the distance between them is no greater
than one in each dimension. In a board of d dimensions, a centrally placed
king is adjacent to 3¢ — 1 squares.

As we go forward, emphasis will be placed on 73, because it is easiest
to conceptualize, and has the most connections to real-world problems. In
order to develop bounds for 74, we will we need a supporting lemma.



T

A

n An

1 1.6180339887499 | 1.618033988750
2 | 2.0000000000000 | 1.414213562373
3 | 2.8136065026483 | 1.411739131737
4 | 3.6903064458833 | 1.386007583093
5 | 5.0175972233734 | 1.380699473582
6 | 6.6929993658732 | 1.372787967659
7 9.0174511749115 1.369116936204
8 12.085328018303 1.365470447645
9 16.241777083101 | 1.363059576611
10 | 21.796006986300 | 1.360935973337
11 | 29.271986048056 | 1.359295363082
12 | 39.296415956952 | 1.357884231820
13 | 52.764934519259 | 1.356713379686
14 | 70.841810771015 | 1.355699845892
15 | 95.117240999363 | 1.354827332649
16 | 127.70723870093 | 1.354061748445
17 | 171.46630404741 | 1.353387875785
18 | 230.21752372612 1.352788522478
19 | 309.10064010556 | 1.352252801038
20 | 415.01176989206 | 1.351770674864
21 | 557.21327880429 | 1.351334692797
22 | 748.13887149248 | 1.350938427754
23 | 1004.4842481176 | 1.350576741997
24 | 1348.6646166621 1.350245271728
25 | 1810.7764482868 | 1.349940396006
26 | 2431.2280037527 | 1.349659030798
27 | 3264.2736022465 | 1.349398561045
28 | 4382.7571862615 1.349156740627
29 | 5884.4824399280 1.348931636768
30 | 7900.7647432022 | 1.348721573550
31 | 10607.913998964 | 1.348525092499
32 | 14242.651559646 | 1.348340917465
33 | 19122.809968143 | 1.348167927490
34 | 25675.125129685 | 1.348005133658
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Lemma 4. Let D represent a permutation of d dimensions, and k,n € Z*.
The following inequalities hold for boards containing d + 1 dimensions.

F(k xn,D) < F(n,D)* < F(k x (n+1),D)

Proof. Consider the first term of the inequality. It is one big board, with
the first dimension being k xn squares long. The second term represents the
action of taking that board and dividing it into k equal partitions along the
first dimension. This will allow additional configurations, as kings can now
be placed next to each other on the newly formed edges without attacking
each other. The final term in the inequality reunites the pieces of the board,
with a gap of width one between them. This will have at least as many




configurations as the middle term, as kings on the edge of the board will still
be unable to attack each other. It is also strictly greater than the middle
term, because now we add the configurations where kings are placed in the
middle gap between boards. O

A direct effect of these inequalities are the following more useful formu-
las:

ni ng ng

F(my,ma,...,mg_1,mg, N)™ ™2 ma

> F(ny,ng,...ng, N)

and

n

n n2 d
F(mhm?’.”7md717md’N)m1+1 mo+1 " mg+1
< F(nlvn27 ce 7nd717nd7N)

if m; divides n; for all i.

The idea behind these calculations is to iteratively use the lemma.
Where the lemma only modifies the value of one of the dimensions, here
the term for all dimensions except one have been modified by repeated use
of the lemma, targeting a new dimension each time. This can be done,
because at each step all other terms are left constant, and due to the sym-
metry of the board, the relationship holds regardless of which term we are
modifying.

Theorem 5. Let Ap be the largest eigenvalue for a transition matrix corre-
sponding to boards of D dimensions, where D = {nq,na,...,nq}, and these
boards are being stacked together along the (d + 1) dimension.

1 J
()\D)Hi("i+1) < N(d+1) < ()\D)Hi n;

Proof. Using Lemma 4, solving for the bounds becomes a matter elementary

calculus. .

)\glnl--nd
- (limN_,oo F(D, N)%) g
1 mqmy ™mqg 1
= lime,NHoo F(D, N) N ny ng"ng mpma...mg
1 1
> lime,NHooF(mLmQ,...,md,N)Wm
= MNd+1
and )
)\("Ll+1)(7L2+1)...(nd+1)
p 1
= (thﬁoo F(D,N)%) (n1+1)(no+1)...(ng+1)
1 my my o ™g 1
= hme,Nﬂoo F(D}N)anﬁ»l ng+l"ng+l mymgy...mg
1 1
< hme,N—»ooF(m17m27...,md,N)Wm
= MNd+1
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Using calculated eigenvalues, we have determined the following bounds.

A5 = 504,741.03754 (A(225)"/™ = 1183358
()\(2,25))1/50 = 1.300353
A@2.25 = 501,678,518.8 (A(2225))/%3* = 1.08938
(A@,2,25)) /10 = 1.221812
Az = 40140192924  (A56))" /42 = 1.153427
(As.00) /% = 1.221198
N334y = 248.85506094 (A\33,4)Y% = 1.07139
()\(3,3,4))1/36 = 1.16561
Thus:

11833 < 13 < 1.2212
1.0894 < 7y < 1.1656

5 1n, The Sequence

The different values of 1 can be combined to form an infinite sequence where
the d" term in the sequence is 7.

1
Theorem 6. 227 <ng < (1+ Qd)zzd :

Proof. Consider a board of size D = {n1,na,...,nq}, where n; = 2kVi for
arbitrary value k € Z*. Divide the board into k% hypercube blocks, each
block of width 2.

It is clear that each block can contain at most 1 king. Thus, there are
1+ 24 possible configurations per block. It is clear that the upper bound is
an over-estimate because it allows for interference between kings in different
blocks.

Another estimate for the number of configurations possible is to only
allow a king in the uppermost easterly square. With this situation, we get
F(1) = 2 configurations per block. This figure discounts any interference
between kings in separate blocks, but underestimates the total number of
configurations. It is thus a valid lower bound.

(2" < F(D) < (1429

K4 k4
lim (2)@n? < g < Jim (1+ 2%) o
A

k—oo

1
od

237 < g < (1+2%)°
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As we can see, the sequence of 7)’s diminishes very rapidly. The increased
accuracy of the bounds further into the sequence is misleading. These
bounds grow farther apart as the number of dimensions grow, but more
significant digits seem to appear. This is because the leading unit digit
must be taken as “significant.” If the log of these values were to be used,
only a single significant digit would be known (if that).

m 72 UE N4 10 <o+ 720
~162 ~134 ~12 =~11 =~1.003 ... =~1.000
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