AVERAGE FROBENIUS DISTRIBUTIONS FOR ELLIPTIC CURVES
OVER ABELIAN EXTENSIONS

NEIL CALKIN, BRYAN FAULKNER, KEVIN JAMES, MATT KING, AND DAVID PENNISTON

This paper is dedicated to the memory of our coauthor Matt King

ABSTRACT. Let E be an elliptic curve defined over an abelian number field K of degree m.
For a prime ideal p of Ok of good reduction we consider E over the finite field Ok /p and let
ap(F) be the trace of the Frobenius morphism. If £ does not have complex multiplication,
a generalization of the Lang-Trotter Conjecture asserts that given r, f € Z with f > 0 and
f | m, there exists a constant Cg , s > 0 such that

S iff=1,
#{p: N(p) <, degye(p) = f and ay(E) = r} ~ Crs - { logloga if f =2,
1 if f> 3.
We prove that this conjecture holds on average in certain families of elliptic curves defined

over K.

1. INTRODUCTION AND STATEMENT OF RESULTS

Let E be an elliptic curve defined over a number field K. Set [K : Q] = m and denote
by O the ring of integers of K. Let p C Ok be a prime ideal which lies above the rational
prime p € Z, and denote by degy (p) the degree of p. If E has good reduction at p, then we
may consider E over the finite field Ok /p. If we denote by a,(E) the trace of the Frobenius
morphism, then the number of points on E over Ok /p is

#E(Ok/p) = N(p) + 1 — a,(E),

where N(p) = pd°ex®) is the number of elements of O /p. Moreover, we have the Hasse

bound
|ap(E)| < 24/N(p).
Let r, f € Z with f > 0. Define

mpl () = #{p + N(p) <z, degy(p) = f and a,(E) = r},
and let

T (@._/W_Jﬁ__
1/ o 2 Qﬁlogt

In the case that K = Q, Lang and Trotter [12] made the following conjecture.
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Conjecture 1.1. If E/Q does not have complex multiplication, or if r # 0, then there is a
constant Cg, such that
ng(x) NCE,Wm/g(ac)NCE,T'@ as T — 00.

Although the Lang-Trotter Conjecture remains open, there are many partial results. For
example, Elkies [7] proved that for any elliptic curve £ /Q there are infinitely many primes p
such that a,(E) = 0. Moreover, there are several results which verify that the conjecture is
true in an average sense over families of elliptic curves defined over Q (see [1], [3], [4], [8], [9],
[10]). For K # @, less is known. In [5] David and Pappalardi proved the following result.

Theorem 1.2. Let K = Q(i), and let S, denote the set of elliptic curves E : Y? = X3 +
aX + B with o = ay + agi, f = by 4+ bei € Z[i| and max{|a1],|az|, |b1], |b2|} < xlogz. Ifr #0,

then
1

S Z 7 (x) ~ ¢ loglog ,
*l Ees,

where
1(0-1-(5))
1
C,,. = 3— . H ? 1 .
T g prime (¢ — 1) (q - (%))
q>2
If r =0, then
1 0,2
|Sx| Z Ty (35) = 0(1)
EES,

In this paper we generalize David and Pappalardi’s result as follows. Let {1, ..., a,} be
an integral basis for Ok. Given ¥ = (v1,...,vy) € Z™, put ||U]] := max;<;<,, |v;| and define
R(V) := 1", vie;. For v,% € Z™ we write Ej g for the curve
(1) Eyg:y* = 2° + R(0)x + R()

with discriminant Az = —16[4R(v)? + 27R(w)?], and for ¢ € R~ we let

Cy := {(v,w) € (Z™)*: ||7]|, |w]| <t and Aggz # 0}.
In this paper we prove the following theorem (the case of even r can be handled in a similar
way).

Theorem 1.3. Suppose K is an abelian number field and r is an odd integer. Then there
are explicit constants D,1 x and D, o i (see Section 2 for details) such that for any € > 0,

.. S (@)~ Dpyx-mp(z) if f=1andt> zlog®“x,
|Cy| , D, s kloglogx if f =2, m is even and t > \/xlogx.

J,0)€eC

Moreover, if f >3, f|m and t > 2"/, then

1 .
B 2 L) =00)
(

U,W0)ECy

Remark 1.4. While we have not pursued this, it would be interesting to have an explicit

expression for the error term in the f > 3 case of Theorem 1.3.
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The organization of the rest of this paper is as follows. In Section 2 we state Theorem 2.2,
which is a more precise version of Theorem 1.3, and show that it follows from three key
lemmas. Lemma 2.3, which is proved in Section 4, relates the desired average of the main
theorem to a weighted sum of special values of L-series. Lemma 2.4, which is proved in
Section 6, gives estimates for this weighted sum. Finally, Lemma 2.5, which is proved
in Section 8, gives an Euler product representation for one of the constants appearing in
Lemma 2.4. Sections 3, 5 and 7 contain various technical results which are essential to our
proofs of the three key lemmas.

2. PROOF OF MAIN THEOREM

In this section we prove a more precise version of Theorem 1.3. Let r, f, A, B € Z with
rodd, f,A,B > 0 and (A, B) = 1. Define A"*/ := r? —4A7 and for ¢ prime let A, =

A 1= o1dy (A7), By i= o1dy(B) and 9 = Yz = (255). Put

q
Df,A,B,f ={¢prime:q| B, ¢{2rand 0 <A, < B,} and
Q;,A,B,f = {¢prime:q| B, ¢t2rand A, > B,},

v, if A4 is even,

0 if A, is odd.

We define constants for use in the cases f =1 and f = 2 respectively as follows:

(ql,+1)  T2(g =1
boas= [ 4t T <1+ S0, +1) | Tila )

and for ¢ € Qf,A,B,f let I'y :=

51 Ag/2-1(g2 — Ag/2-1(g — 1
12 qX?A 1 ! 9€Q7 4 51 4 (q ) ! (q )
af2rAm
H gl(Bat1/2) 1 N qBat? H q(q+ )
glBa=D/2l (g — 1) @BlBAD/2 (g2 — 1) P?-1"
qe‘QTZ',A,B,l g

qlr

B,
= 11 P (g =) 9 (g - 1) 11 A
CrAB ‘= — 2 qLAq/QJ (q — 1)

P g — 7)) (% — 7q)

|B fal
s s
_ Bg+1
11 ¢~ 1 + P20 (g = ) (@ = 744> +9g) T alg — 1)
ene. \€PHa=1) P 2a2(q = 79) (4% — 1)
r,A,
28,

H (QQ(Bq/z]H(q_'_ 1)(q[Bq/21 _ 1) + qu+2>

FTEA (1)

9€Q7, 5

7 (e e g - 1)) .
I

¢*Br (g — v4)(¢? — 7q)

qlr

Next we recall a classical result which gives a useful characterization of abelian number fields.
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Fact 2.1. Let K/Q be a Galois number field. Then K is abelian if and only if there exists
an integer By such that degy (p) depends only on the residue class of p modulo By.

Suppose from now on that K is abelian, and for f | m fix ay1,...,az,, Bk € Z so that
a prime p € Z splits into degree f primes in O if and only if p = ayy,...,a50,-1 01 ayy,
(mod Bg). Define

01

4m ¢’ q(q> —q—1)
Dr,l,K = S 5 N <—> ) knamB )
3m9(Br) q};[K ¢ -1 ngK (g+1){g—1)* ; -
qlr

and if m is even let

m q q<q2_q_1_<_l>) S
D’I‘,Q,K = W H ﬂ H ) Z CT?”“Q,ivBK'
atBx \ 4 q qf2rBg

qlr

We now state our main result.

Theorem 2.2. Let K be an abelian number field, and suppose t > x'/T. Then

VT 73/2 logx)

log“t t

@ Wg;’u_} (27) = Dr,l,K . 7T1/2(£C) + O(
(T,0)€Cy

for any ¢ > 0, and if m s even,

Ienl Z ngﬁ(z) = D,y g loglogz + O <1 +

Cel (3,@)eCy

t

Moreover, if f > 3 and f | m, then
1 r
t @wec,

Recall that if x is a Dirichlet character, we have the Dirichlet L-series

L(s,x) = Z X(”)_

nS

n=1

Given an integer d we let x4 be the Kronecker character yq(e) = (). Set
B(r) := max{3,7%?/4, Ar},

where Ak is the discriminant of K, and for k any positive integer let

(r? —4pf)/k? if k2| r? — 4p/,

0 otherwise.

di(p) = drs (p) = {

We utilize the following three lemmas in our proof of Theorem 2.2.
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Lemma 2.3. If f | m and t > /7, then

L qz ngw(lf) [\/_logxz Z Z L(l Xd (p )logp

[C
(0,W)€eCy =1 k<2f B(r)<p<zl/f
(k,2r)= p=as; (mod By)
k2|r2 —4pf
U 1 d 1
— Z/ Yo7 D L xaw)logp -2 (—) dS| + &(x,1),
= B0 50s k ) <pesi dS \V/Slog S
(k2r)=1 p=ay,; (mod Bg)
k2|2 —dp?
where
loglog x + & logf if f=1,
vz logx . _
E(x,t) < Q1+ Y2 if f=2,
1 if [ >3

The next lemma consists of a result of James [11, Proposition 2.1] and a straightforward
generalization of a result of David and Pappalardi [5, Lemma 2.2]. Denote by [C, D] the
least common multiple of C' and D, and let

T’AB
Koapi=Y 3 30U (B nkz
keN neN
where
rAB( N @
a€(Z,/4nZ)
a=0,1 (mod 4)
(r2—ak? 4nk?)=4
1A=r>—ak?® (mod (4B,Ank?))
Also, let
a
2 r <_> C’r’ ) 7k )
(2) AB - Z Zn¢ 4Bnk2) Z n (a,n, )
keN a€(Z/AnZ)*
(k,2r)=1
where

Cy(a,n, k) == #{b € (Z/ABnk*Z)* :b=A (mod B) and 4b* = r* — ak® (mod 4nk?)}.
Then we have the following estimates for the weighted sums of L-series appearing in Lemma 2.3.

Lemma 2.4. For every c > 0,

Z l Z L(LXdk(p))lng:

Koap-o+0 (i) i f=1,

<2z K B(r)<p<al/f Crap-V+0 (logcx> if f=2.
(k,2r)=1 p=A (mod B)
K2 (r2—ap!

Our third lemma gives an Euler product expansion for the constant appearing in the f = 2

case of Lemma 2.4 (for the f =1 case see [11, Theorem 1.1]).
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Lemma 2.5. We have

2 q q( q

Cons=—— T —2L—~ AB

w3 ab e )
q|r

Proof of Theorem 2.2. First suppose f = 1. We combine Lemmas 2.3 and 2.4 to obtain

141

1 1 m 1 x
— & = — K. -
C,| (ng)gc qum(fﬁ) p [\/Elogx ;( r,a1.6,Br x+0<log0x>)

L1

’ S d 1
— Koo, B S+O|l ——= | || —=——1)dS
;/B(r)< a1,i,8 (log S)>d5<\/§log3) ]

23/ log x
- .

+0 <log log x +

In [11] James proved that

Koap = ﬁ 11 <2q—21)

qlr

2
—q—1
1 (q(q q )2 .

porp (AT D@ —1)

¢ D
and thus > ;' Ko, 50 = & 2:;”(. Moreover, one can show that

/ = (\/_110g5> =0 (%)
Z

G / d( | >
= —= — S—|—=——=1dS
2 llogx 5 dS \/§10g5

+O( VT +x3/2logx)
1 :

which yields

ﬂ«»
’U’lU

Integrating by parts gives

v od 1 VoooV2
L~ _)as= _ V2
/2 SdS (\/§10g5> S logz log?2 m1/2(%),

and our result now follows.
Now suppose f = 2. Here Lemmas 2.3 and 2.4 yield

lo

1 r,2 _m 1 \/E
P T A )

(U,W)€eCy
L (o545 )
+O<1+@)-
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It is easy to see that the first term in the brackets is O(1). Moreover, integrating by parts
gives

r 1 1
f (—)dS:——lo logz + O(1
and
@ : i<;) s = O(1).
B(r)2 log®S dS \/glogs
Therefore

1 ro m (& Vrlogx
— Z Eﬁw(x):% ;CT:CL2,Z'7BK loglogx + O 1+T ,

Cel (7,35)ECy

and since Lemma 2.5 implies that

27‘[‘DT
Z CT ;a2 uBK - 2 K

our result follows.
Finally, suppose f > 3. By (9) and (10) it suffices to show that the sum on the right hand
side of (9) is O(1), and this follows easily from (7). O

3. COUNTING CURVES

In this section we gather results that will aid us in estimating the number of (¥, @) € C,
such that . reduces to a given elliptic curve.

Note first that #{n € Z : |n| <t} = 2t + O(1). Moreover, given ¥ € Z™ there are at most
two values of W € Z™ such that Az gz = 0. It follows that

(3) C,| = 4™*™ + O(t*™ 1),

Let p C Ok be a prime ideal of degree f which lies above an unramified rational prime p > 3.
Recall (see [16]) that in order to reduce an elliptic curve E//K modulo p one first obtains a
minimal model for the curve at p, and then reduces the coefficients of this model modulo p.
We denote the resulting curve by EP, and for v € Ok we denote by ~* its image in Ok /p. In
order to obtain our estimate we will use the fact that if ord,(R(v))) < 4 or ord,(R(w)) < 6,
then the model (1) of Ej 5 is minimal at p.
Next note that since
pOx Cp C Ok,
we have that
(Ok/pOk)
= Ok/p,
(p/pOk)
and therefore
p/pOk| =p
Set s = p™~/, and suppose {p1,...ps} is a complete set of distinct coset representatives for
p/pOk. Fix v € Ok. Then for v € Z™ we have that
R(¥)=~ (modp) <= R@W)—v=p; (modpOk) forsomel <i<s.
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m

If we define, for each 1 <i <'s, integers ¢;; (1 < j <m) by v+ p; = >, ¢i jay, then

#{vezZ™: ||v] <t and R(v)" ="}

n = " H# (ki ko ki) € Z7 i+ phy| < tforall 1< 5 < m}
i=1

om¢m tm—l
- o(5)
p! pit

when ¢t > p.

4. THE AVERAGE IN TERMS OF L-SERIES

In this section we prove Lemma 2.3. We begin by recalling the Hurwitz class number (see,
for example, [13]), which is a weighted sum over the equivalence classes of binary quadratic
forms f(z,y) = ax?+bry+cy?® of a given discriminant. More precisely, if we let Ay = b? —4ac
denote the discriminant of f, then for A > 0,

% if some g € [f] is proportional to 2% + 2,
H(A) = Z cg, where ¢ =4+ if some g € [f] is proportional to z* + zy + ¢,
1

(7]

otherwise.
Ap=—A

The Kronecker class number K (—A), meanwhile, is simply the number of equivalence classes
of binary quadratic forms of discriminant —A. For our purposes it will be more convenient
to work with H(A) (note that H(A) = K(—A) + O(1)). We recall (see [5]) that

_ M=AJE)
) HA =23 TR

—A/k?=0,1 (mod 4)
where h(d) and w(d) denote respectively the Dirichlet class number of, and the number of

units in, the imaginary quadratic order of discriminant d. Moreover, Dirichlet’s class number
formula states that

w 1/2
) () = 0 11 ),

Let p > B(r) be prime. Then 4p’ —r% > 0, and for a positive integer k with k% | 72 — 4p/
we have that L(1, xq4,(p)) < logp (see [13, p. 656]). Noting that di(p) = 1 (mod 4) since r
is odd, we therefore obtain the following useful estimate:

L, Xa(p)) < p'/?log” p.

\/4pl — r?
(7) Hip' =)= 3 = L
k2|r2—4pf

Since p > 3, any elliptic curve over F,; may be written in the form

E.p:y =2 +ax+b (a,b e F,).
8



Recalling that Eoy = E,; over F,r if and only if there exists u € F;f such that @' =
uta and b’ = ub, it follows that

’% ifa=0and p/f =1 (mod 3),
#{(d V) €EFY i By 2 Byt = 22 ifb=0andp/ =1 (mod 4),

E—>  otherwise.

Following Schoof [15] we define N(r) to be the number of F,s-isomorphism classes of elliptic

curves with p/ 4+ 1 — r points defined over F ;. Since p { r, by Deuring’s Theorem (see [6]
or [15, Theorem 4.6])

N(r) = K(r* — 4p’) = H(4p" — r*) + O(1).
Letting
Ty (r) == #{(a,b) € F3s : #Eqp(Fpr) = p 1 -7},
we have the following result.
Theorem 4.1 (Deuring). T,/(r) = %f - H(4p! —r?) + O(p/).

Proof. Let E denote an F »r-isomorphism class of elliptic curves. Since there are at most ten
pf-1
2

= > Zl—(pf_l) N(r) + O0(p') = (pfgl)H(4pf—r2>+o<pf).

ap(E)=r (ab)
Eq, bEE

isomorphism classes containing other than curves I, ,, we have that

Our result now follows from (7). O
Proof of Lemma 2.3. Note first that

I RCE D DI SRS >

(ﬁ,w)ect )Ect ()<x

m
=
gy

( b
deg f degp (p)=Ff ap(Ey,

ap(Ez )=

For a prime ideal p of degree f lying above a rational prime p > B(r) we have that

Z = Z ‘Ct<Ea,b)’7

(T,0)€Ct (a,b)eFif
P

ap (B g)=r #anb(pr):pf—H—T
where

Ci(Eap) = {(V,w) € G : Em— ab}
If EY ; = Eap, then either R(¢)P = a and R(@)? = b, or the model (1) is not minimal at p.
Smce in the latter case we have R(?)F = R(W)? = by (4) and Theorem 4.1 it follows that

4mt2m t2m71 pf
— f
> 1= (G o () (e - +00)
(5.0)€C
ap(Eg,5)=r

for t > p.



Next note that the conditions N(p) < x and degy(p) = f together imply that p < z/7.

Then our assumption that ¢ > 2'//, along with (3) and the fact that the prime ideals p lying
above primes p < B(r) do not affect our average, allows us to conclude that

1 r
al > @)
8 @m)ec
1 1 4mt2m t2m_1
Z [(4mt2m + o (t2m+1)) ( p2f + 0 <p2f1)>
B(r)! <N(p)<a
degy (p)=f

- (p;H(élpf ) 4 O(pf))] .

If p is unramified in K, then deg,(p) = f if and only if there are g(p) = m/f primes in O
which lie above p. It follows that

1 .
(8) cl > ml (@)
U @amyec
m ( 1 1 4mt2m t2m—1
Ami2m 2m+1 2f 2f—1
f B(r)<p<ac1/f[ t t p p
g(p)=m/f

: (psz(szf — )+ O(pf))] .

Using the bound in (7), we find that the summand on the right hand side of (8) is

H(4pf — r? 1 log?
(4p 7")+O L dog'p )
2pt

pl o pl
Since t > 2!/, we may therefore write

1 m H(4p) —r?)
(9) oY T =g Y e+ E(xh)
|Ct| . v, W 2f p
(U,W)€ECy B(r)<p§g:1/f
g(p)=m/f

where, by standard estimates,

x3/2 T
1 log’p logloﬁi“r TR f f =1,
(10) E(x,t) < Z (E—FW) < 1+Tg if =2,
B(r)<p<a'/? 1 if f>3.
g(p)=m/f o
Using the equality in (7) we may rewrite the main term on the right hand side of (9) as

m \/Apf — r?
(1) O 2 U

L, Xdk(P))‘
B(T‘)<p§.7:1/f k’2|7"2—4pf
g(p)=m/f

10



Since /4pf —r2 = 2p//2 4+ O ( m) and L(1, Xq,(p)) < logp, upon reversing the order of
summation (and noting that we only need consider k¥ < 2,/x) in (11) we obtain

L(1, Xay(p ]
i Ly Loy Mol oy oy

k’<2f B(r)<p<az'/7 B(r)y<p<al/f k2|r2—apf
g(p)=m/f g(p)=m/f
k2|r2—4pf

The error term in (12) is easily seen to be O(1), and thus can be absorbed into &(z,t).
Moreover, partial summation allows us to replace the main term of (12) with

W\/_logm Z Y LX) logp

k<2f B(r)<p<xl/f
o(p)=m/ ]
k2|7"2 4pf

d 1

B(r) k<2f B(r ))<p7;
g(p)=m
k2|r2—4pf

Setting s = S/, and noting that k? | r> — 4p/ implies that k& < 2v/S, we obtain

|C_1t| Z ngm(x) [\/_logx Z Z L(l Xdy (p )logp

k<2f B(r)<p<z!/!
g(p)=m/f
k2|r2—dpf

/ Z >, L Xaw)logp —< d (\/_logS) ds

k<2f B(r)<p<St/f
g(p)=m/f
k2|7'274pf

+ E(z, t).

Observe that if p > B(r), then p { r. Tt follows that if k? | r? — 4p/, then (k,2r) = 1. Since
g(p) =m/f if and only if p=ay,,...,a5.,1 Or age, (mod By), our result follows. O

5. COMPUTING C\(a,n, k)

Let a,n, k € Z with n, k > 0. In this section we give formulae for evaluating
Cy(a,n, k) = #{b € (Z/4Bnk*Z)* : b= A (mod B) and 4b*> = r* — ak* (mod 4nk?)}.
We utilize the following straightforward consequence of Hensel’s lemma.
Lemma 5.1. Suppose N,s, L € Z with N odd and s, L > 0. Then for any X € Z,
2°M*+ NM =X (mod 25)

has a unique solution M modulo 2.
11



By the Chinese Remainder Theorem

w(a,n, k) H dp.a(n

p prime
p|4Bnk?
where
(13) dpor(n) = > 1
be(Z/p'L)*

b=A (mod p‘1)
4b?=r?2—ak? (mod p’2)

with ¢; = ord,(B), ¢y = ord,(4nk?) and £ = {; + (5.

Lemma 5.2. Let p be a prime such that p | 4Bnk?.
(1) If p is odd and ¢, = 0, then

dpa () = {1 ! ( e > if (r* —ak?,p) = 1,

0 otherwise.

(2) If p is odd and {1 > 0, then

0 otherwise.

B pmin(fl,ZZ) Zf ,,,.2 _ akﬂ = 4A2 (mod pmin(fhfg))’
dp,a k(1) =

(3) If p=2 and {, < 1, then

p ( ) B 2min(£1+4,€—1) Zf 2 _ak?2=14 (mod 2min(5,£2)>7
2ak o otherwise.

(4) If p=2 and {1, > 2, then

J (n) B omin(€1+3,62) if r2 — k2 = 4A2 (mod Qmin(zl+3,42))’
Bk 1o otherwise.

Proof. For the sake of brevity we prove only (4) (the other cases can be handled similarly).
Let w = min(¢; + 3, ¢5). First suppose that there exists an odd integer b such that

(14) b=A (mod2") and 40> = r* — ak® (mod 2).

Then b? = A? (mod 29%1), and therefore 442 = r? — ak?® (mod 2%).
Now suppose 12 — ak? — 4A% = 2% . s for some integer s, and let b € Z be odd. Then b
satisfies (14) if and only if there is an integer M such that b = A + 2 M and

(15) 4A% 4 28 TAM + 220202 =% — ak?  (mod 2),

ie., 203 UAM + 220+2-uf? = 5 (mod 227%). If £y > ¢, + 3, then by Lemma 5.1 this

congruence has a unique solution M modulo 227, and thus (14) has exactly 26~ (12— = gu

solutions modulo 2¢. On the other hand, if ¢, < ¢; + 3, then the congruence in question

holds trivially, and so (14) has exactly 2= = 2¥ solutions modulo 2°. 0
12



6. AVERAGING SPECIAL VALUES OF L-SERIES

In this section we prove the f = 2 case of Lemma 2.4 (for the f = 1 case see [11, Proposition
2.1]). In [5] David and Pappalardi present a proof of the f = 2 case of Lemma 2.4 when
K =Q(i), A= 3 and B =4, and our proof uses similar arguments.

Proof of Lemma 2.4 (for f =2). Let U be a parameter to be determined later. By [5, (4.2)]

- L(L Xaw) = ) (dk(p)> Y <dk—(m) ¥ Cdkép#) |

neN neN

Assume U > 27/1%1og* x. Using that |dy(p)| < 4p?/k?, we obtain

2:% > L Xaup) logp

k<2vz B(r)<p<v=
(k,2r)=1 p=A (mod B)
k2|r2—4p2
(16) 1 d —n/U
k(p) VT
= - 1 @) :
2 X Z( . > 0p+ (bgcx)
k<2vz B(r)<p<yx neN

(k,2r)=1 p=A (mod B)
4p?=r? (mod k?)

We first show that the part of the sum on the right side of (16) with k sufficiently large
can be absorbed into the error term. Let V' be a parameter to be determined later. Then

—n/U d ( ) —n/U 1
e E\D e
1 1 . - 1
BT EIED D C ) TR TR SE D DI D S
V<k<2\x B(r)<p<vz neN V<k<2yz m<\/z
(k‘,2’l")=1 p=A_ (mod B) (k,2r)=1 am2=r2 (mod k2)

4p?2=r2  (mod k2)

e~V 27) : 4h?> = 1%  (mod k? T
< (ogr)- S 3 #{h € (Z/KZ) 42 ( dk:)}'k_\/;

neN

neN V<k<2yz
(k,2r)=1

Denote by v(k) the number of distinct prime divisors of k. Then by the Chinese Remainder
Theorem 4h% = r? (mod k?) has at most 2"(*) solutions h when (k,2r) = 1, and therefore

—n/U d ( ) —n/U 2V(k)
e L(p e
(17) E = E <—n ) logp < (v log) E E R
V<k<2yz B(r)<p<y= neN V<k<2yz
(k,2r)=1 p=A (mod B)
neN 4p?=r2  (mod k?)

Since 2"F) < k€ for any 0 < € < 1 (see [14, Exercise 1.3.2]), it follows that

2v(k) > ]
(13 > e/ o=
v Y

V<k<2\z

V/2—¢ '

To estimate the sum > _ <—— we first note that if U > 1, then

nEN

(-1 1 1
1—eVWW=1- (.>————
‘ 2 Tt T T o

1=0
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and hence
efn/U
(19) Z —— —log(1 — e YY) < logU + log (

neN

< .
5T = 1) <logU +log(2)

Supposing V > log'“™/? 1 and U < v/, (18) and (19) yield

e—n/U 2u(kz) T
Vilogr) Y Y Pl e

log€x’
neN V<k<2\/x
Then by (16) and (17) we conclude that
1
> % > L1, Xau) logp
K<2yF B(r)<p<yiE
(k,2r)=1 p=A (mod B)
(20) k2|r274p2
1 e U di(p) NZ3
— - —2 )1 O .
Sir X (B)eeo(p)
< neN B(r)<p< =
(k,2r)=1 p=A (mod B)

4p2=r2 (mod k2)

Next we show that the portion of the sum on the right hand side of (20) with n large can
be absorbed into the error term. Note first that

> S <« Toetg o L
oy UlogU Jiiogu UlogU
Recalling that U > 27/'%1og x and V < 24/z, we obtain
1 e~V di(p)
Sy e Y (M)
(kary—a V108U i Lo 6

4p2=r2  (mod k2)

< (log ) (UligU) (Valogz) < 1@ ,

og’x

and combining this with (20) yields

Z% > LX) logp

k<2v=z B(r)<p<vz

(k,2r)=1 p=A (mod B)
(21) k2|r2—4p2
1 e U di(p) NS
= - 1 O .
P D DD ( n ) losp O (e
k<V n<UlogU B(r)<p< =
(k,2r)=1 p=A (mod B)

4p2=r2 (mod k2)

Since (E) is periodic modulo 4n, we can rewrite the innermost sum on the right hand side

of (21) as
GRS S

0e(Z/4n7)" B(r)<p<y/7
p=A (mod B)
4p’=r? (mod k?)
di(p)=a (mod 4n)
14



which we may further rewrite as

> () > Un(V, 4Bnk?,b) + O(logn),
n
a€(Z/4nZ)* be(Z/4Bnk?Z)"
b=A (mod B)
4b?>=r2—ak? (mod 4nk?)

where

W (X,C, D) = Z logp
p<X
p=D (mod C)

and the O-term comes from the primes < B(r) and the prime divisors of n (recall that in
the outer sum we have the condition (k,2r) = 1).

If (C,D) =1, then ¢4 (X,C, D) ~ % (see [17, Part 2, §8.2, Theorem 5]). Defining
S(XCD)'—w(XCD)—i
1 )~ — Y1 I (b(C)a

by our work above we have that

dx(p) B ay Cr(a,n, k)
I e 6N a€(Z/4nT)

4p2=r2 (mod k2)

a 2
_ <E> S &.(v/T, 4Bnk?,b) + O(log n).
a€(Z/4AnL)" be(Z/4Bnk?Z)"

b=A (mod B)
4b°=r2—ak? (mod 4nk?)

We now show that the contribution of the last two summands on the right hand side of (22)
to the sum on the right hand side of (21) can be absorbed into the error term. Since

k
k<V n<UlogU k<V n<UlogU
(k,2r)=1 (k,2r)=1

eV <« UlogUlogV,

the contribution of the O-term is < ; f — when U < /z/log™?z. Next note that if we

reverse the order of the summation 1nvolv1ng &1(v/x,4Bnk? b) in (22), then the sum on a
has at most one summand. Thus

(23)
3 (%) 3 E(Vr, 4Bk b) < Y |&(v/x,4Bnk? b)) .

a€(Z/4nZ)" be(Z/4Bnk?L)" be(Z/4Bnk?L)"
b=A (mod B)
4b°=r2—ak? (mod 4nk?)

Applying the Cauchy-Schwarz inequality and the identity
(¢, D)

(24) p(CD) = ¢(C)¢(D)m

15



we obtain

—n/U

Z > Y —— a(/z4Bnk’b)

k<V n<UlogU be(Z/ABnk?7)*
(k,2r)=1

o\ 1/2
(25) SZ%( > @) > Y &(Va,4Bnk? b)?

kE<V n<UlogU n<UlogU be(Z/ABnk2Z)*

1/2

n?  ((4Bn, k?

\/7 $(4Bn) (4Bn,k?) V2
YR ( s 5)

k<V n<UlogU

1/2

> > &(Vw,ABnk? b)*

n<U logU be(Z/4Bnk2Z)*

Clearly

> Y &(WzABnk’ b < ) > &(wnb)

n<UlogU be(Z/ABnk?Z)* n<4Bk2U logU be(Z/nZ)*

and the Barban-Davenport-Halberstam Theorem [2] asserts that if X > Q > X/log’ X for
some ¢ > 0, then

Y Y &(X,sh)? < QXlog X.

s<Q be(Z/sL)*

Assuming from now on that

(26) U:% and V =loglc™/2 ¢,
og T

it follows that

Z Z E(Vx,n,b)* < (K*UlogU)v/zlog

n<4Bk2U logU be(Z/nZ)*

for k¥ < V, and this, along with the inequalities ¢(k?) < k? and ¢(C'D) < C¢(D), implies
that the right side of (25) is

1/2
1

<<x1/4\/U10gU10gx<Zk;> < Z —) )
k<V n<UlogUn

16



This quantity is < z'/4V?1log U\/U log x, which in turn is < log% for our choice of U and
V. Combining this with (21), (22) and (23) we obtain

> % > L xaup) logp

k<2\z B(r)<p<yz
(k,2r)=1 p=A (mod B)
Ic2|'r2—4p2

1Y s Y (D | <o(RE)

k<V n<U10gU a€(Z/AnZ)*
(k,2r)=

Our result therefore follows from the following proposition, which also implies the conver-
gence of our summation formula (2) for C, 4 . O

Proposition 6.1. For any c > 0,

e~V a 1
- - k
Crap = Z Z no(4Bnk?) Z (n) Crla,n k) +0 <logcx>
k<V n<UlogU a€(Z/4AnZ)*
(k,2r)=
when U and V are chosen as in (26).
Proof. We begin with the identity
—n/U a L
0 Y i S 2 () ctans
keN aE(Z/4nZ)*
(k,2r)=
a 1
— ) Ci(a,n, k) + O
=2 7 Z < g 4Bnk2) > (p)o@ni+ (logcx>
(k%ﬁg\] ) a€(Z/AnZ)*

(see [5, p. 198]). Our first aim is to show that the terms in the sum on the left hand side of
(27) with n large can be absorbed into the error term.
Recall that C,(a,n, k) = Hp\4Bnk2 dpar(n). By Lemma 5.2, dy,p(n) < 20092(B)+ and for

odd p, d,qx(n) is at most prdr(B) if p | B, and is at most 2 if p | nk and p t B. It follows
that

Cola,n, k) < 20+ . B
and thus

(28) 3 (%) Co(a,n, k)| < 64Bo(n)2" ).

a€(Z/AnZ)*
Since ¢p(4Bnk?) > ¢(4B)p(n)p(k?), ¢(k?) = kp(k) and 2v(k) < 2v()+(k) by (28) we have

(29)
—n/U v(k) e—n/U2u(n)

Z 2. . no(4Bnk?) 2. (Z)C(“"k<<zk2¢() 2. T

(kkil)\l n>UlogU a€(Z/AnZ)* n>UlogU

17



As 2" <« k1/2 the first factor on the right hand side of (29) is a convergent series, while

e~/U2v(n) 1 © 1 1
> < e~Vdt = €
n VUlogU Jiiegu VU logU log® x

n>U logU
We conclude that

a 1
(30) Z 2 b 4Bnk:2) 2. (E)CT(G’”’k)<<1ong'

(kkel)\T n>U log a€(Z/4AnZ)*
2r

Next we show that the terms in the sum on the left hand side of (27) with n small and &
large can be absorbed into our error term. By our arguments above we have

(31)

2V(k e—n/UQV(n)
DD nq§4Bnk2) > (;)Clann V<L 2 T
(kk2>§/ n<U log a€(Z/4nZ)* n<U10g U
Since & = 1] 21T, 3 < 3y<) have that 20 < -
= % llpk plk % » We have tha k>V k2(k) >V k3 .
Using 3”(k < k¢, it follows that
2v (k) 1
32 <K :
(32) Z 126(k) V2—e

k>V

Moreover, using partial summation and the fact that anT 2v(") <« T'logT [17, Exercise 2,
p. 53], we find that

e~/Uov(n) o U UlegU /o=t/Uogt e ¥Vlogt
> < + +
n U 1 t U

(33) ) it < log? U.

n<UlogU

Now (31), (32) and (33) imply that

a 1
Z Z o 4Bnk‘2) Z (ﬁ) Crla,n, k) < log®z’

n<U log a€(Z/AnZ)*

(k 2r)

and combining this with (30) yields

—n/U

Z 2 no(4Bnk?) 2 (%)Cr(a’”’m

k<V n<UlogU a€(Z/4AnZ)*

(k,2r)=
a 1
— ) Ci(a,n, k) + O )
Z Z = ng( 4Bnk2 Z (n) (a,n, k) + (logcx)
keN aE(Z/4nZ)*
(k,2r)=
Our result now follows from (27) and the definition of C, 4 5. d

18



7. CONSTRUCTING A MULTIPLICATIVE FUNCTION
In this section we construct a function for use in the proof of Lemma 2.5. Let n and k be

positive integers, and suppose (k,2r) = 1. Define n’ by n = 207420/ let

d2,a k(n) .
= if dy g (1 0,
62,(1,]{:(”) — {dQvayk(l) 2, 7k( ) ?A

0 otherwise,

and define

= Y (DY esast) T st

a€(Z/AnZ)* p odd
a=1 (mod 4) pln
(r?—ak?n’)=1

Lemma 7.1. Let q be an odd prime and o a positive integer, and let B = ord, (k).

(1) cx(n) is a multiplicative function, and c,(1) = 1.
(2) Suppose q | B.
(a) If 28 > ord,(B), then

o @9 Bg(q™) if r? =4A%  (mod ¢ PB)) and « is even,
ce(q”) = ;
0 otherwise.

(b) If 28 < ord,(B), then

q
0 otherwise.

o [qemintaordam)-26) (—0"2*4A2>/q2‘3)a if r* =4A% (mod ¢*%),
cr(q”) =

(3) Suppose q1 B.
(a) If q | k, then

er(g®) = 2¢° (g —1) if a is even,
0 if o is odd.

(b) If ¢ 1k, then

gt (%) (g—1) ifq|r and a is odd,
lg®) = —q*! ((%) + 1) if gt r and « is odd,

¢ qg-1) if ¢ | r and « is even,

“ (g —3) if ¢t r and « is even.

(4) cr(27) = (=2).
(5) cx(q®) = cqp(q%)-

Proof. For (1) we refer the reader to [4, p. 173-174], where a similar result is proved. Also,
note that (5) follows immediately from (2) and (3).
19



For the remainder it will be convenient to note that by Lemma 5.2,

(03 a ¢
SCSERD R ) N S

ac(Z/4q%7)* be(Z/q"Z)*

a=1 (mod 4) b=A (mod qzl)

(r*—ak?,q)=1 4b?2=r2—ak® (mod ¢‘2)

ak2=r2_4A2 (mod qmin(él,ZQ))

where, as before, ¢; = ord,(B), ¢, = ord,(4¢“k*) = a+23 and ¢ = {; + (5. Using Lemma 5.2
again to evaluate the inner sum, we obtain

( . «
qmln(h,b) Zae(Z/4qaZ)* <%> if q | B,
a=1 (mod 4)
(T2_a‘k2’q):1
ak2=r2_4A2 (mod qmin(ll,ZQ))

Y ac(2/44°7)" <§> (1 + (T q“kQ)) if ¢t B.
a=1 (mod 4)

\  (r?—ak?,9)=1

(34) (q”) =

(2) I 28 > £1, then
ak? =1? —4A%  (mod ™)) — 12 =447 (mod ¢).
Since ¢ | k and (k,2r) = 1, by (34) this implies that

. qmln (£1,¢2) Z a€(Z/4q°T)* < ) 1f ’["2 = 4A2 (mOd qel)’
Ck(q ) — a=1 (mod 4)

0 otherwise.

On the other hand, if 28 < ¢; and we write k = ¢°k;, then
ak? = 1% — 4A%  (mod ¢minf)) —

r? — 4 A2

r? =4A% (mod ¢*°) and ak? = 2 min(e, 6 — 25))
q

(mod ¢

Hence if r2 = 4A? (mod ¢*?), then

a min a “
cr(g?) = g > (%)
, a€(Z/4q°2)*

k2 I —242A2 (mod 4qmin(a,2172ﬁ))

by (34), and our result follows.
(3a) Suppose g1 B and ¢ | k. Then ¢ 1 r since (k,2r) =1, and so (34) yields

a\” 2¢(q%) if v is even,
@ — 2 — =
(d”) Z (q) {0 if « is odd.
a€(Z/4q°7)*
a=1 (mod 4)

(3b) Suppose ¢ 1 B and ¢ t k. First consider odd «. Then by (34),

r2k—2 a~! r? — ak?
a =it |- (50) 3 () ()
a€(Z/qZ)*
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—1 .
o @ g 1) if g |,
ald") = {qa‘l(q—Q) —q*7! ifgtr

(4) By definition

2 if2f{Banda=1 (mod4),
dooi(l)=<¢4 if2|Banda=1 (mod 4),
0 otherwise.

Set ¢, = ordy(B), fo = ordy(4 - 29k?*) = a+ 2 and £ = ¢, + {5. Suppose ¢; < 1. Since 7 and
k are odd,

r? —ak’ =4 (mod 2"y = 4 =5 (mod 8),

and hence by Lemma 5.2 (3),

Ck(2a) _ Z (g)a d2,a,k(2a) _ Z (_1)a . omin(3,0) _ (_2)0[.

1
a€(Z/20T27)* d2,a,k( ) a€(Z/20127)*
a=1 (mod 4) r2—ak?=4 (mod 2min(5,2+2))
The proof is similar when ¢; > 1. 0

8. COMPUTING THE CONSTANT

In this section we prove Lemma 2.5. We begin by recording several evaluations of d, , x(n)
which follow directly from Lemma 5.2.

Lemma 8.1. Suppose p is a prime such that p 1 2n.

(1) If p| B and p1 k, then d,qx(n) = 1.
(2) Suppose p | k.
(a) If p | B, then

d k(n) B pmin(ordp(B)yordp(ﬁ)) Zf r2 = 4A2 (IIlOd pmin(ordp(B),ordp(kQ))>7
" 0 otherwise.

(b) If pt Br, then dpqx(n) = 2.

If @ = 3 (mod 4), or if (r? — ak? n') # 1, then by definition C,(a,n,k) = 0. We may
therefore write

1 1 a
Crap= kzg z n%m Z <E> H dpai(n).

a€(Z/4nZL)* pl4Bnk?
(k,2r)=1 a=1 (mod 4)
(r2—ak?n")=1

21



If p| B and p { 2nk, then d, ,x(n) = 1 by Lemma 8.1 (1). Moreover, if p | k¥ and p { 2n, then
Lemma 8.1 (2) implies that d,, ,x(n) = dpaxr(1). Hence

1 a
Crap = % m Z (ﬁ) doqr(n) H dpa k(1) Hdp,a,k(l)

a€(Z/AnZ)* p odd plk
(k,2r)=1 a=1 (mod 4) pin pf2n
neN (r2—ak?n)=1

Next note that if p is prime, n € N and dj, (1) = 0, then since ord,(4k*) < ord,(4nk?), by
(13) we have that d,,x(n) = 0. It follows that we may rewrite our last expression for C; 4
as

Z kn¢(4ank:2) Z (%) doai(1)esqr(n) Hdp,m(n) Hdp,cuk(l) ‘

keN a€(Z/AnZ)* p odd plk
(k,2r)=1 a=1 (mod 4) pln pl2n
neN (r2—ak?n')=1

For odd primes p we see from (13) that dp, (1) = dp1(1). Moreover, when (k,2r) = 1 and
a=1 (mod 4), dy4x(1) is independent of k£ and a. Thus we may write

1
(35)  Crap=dy1a(1) > TndABni®) I doaw@) [ | T] doar(D) | ci(n).
keN )

pl(B.k plk
(k727”%\111 pi2n pf2Bn
ne

For ease of notation denote by v(C, D) the number of distinct common prime divisors of C'

and D. If (k,2r) = 1, then by Lemma 8.1 (2b) we have that [] p5 dp1x(1) = 20 -vk25Bn),
pt2Bn
Moreover, it is straightforward to check that

ov(k,B) . o¥(wmm)
2”( (f,;f;)) ”)

for odd k. This, along with (24), allows us to rewrite the expression for C, 4 5 in (35) as

21/(](:72371) _

/(%)
24 [pr,k) dp,l,m)} O((n, 4BK)2 N 7

pi2n
(36) d21.1(1) - cr(n).
(k,2r)=1

Recall that if p is prime, n € N and d, , (1) = 0, then d, ,x(n) = 0. Combining this with
the fact that d, (1) = d,14(1) for odd primes p yields the following useful lemma.

Lemma 8.2. Suppose d,,1 (1) =0 for some odd prime divisor p of n. Then c¢(n) = 0.
For primes p such that p | (B, k,n) let

. {dp,l,k(l) if dy1(1) # 0,
=

1 otherwise.
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By Lemma 8.2, if (k,2r) = 1, then

H dy 121 | cx(n) = (Hp|(3,k) dp,l,k(1)> exl(n),

p|(B.,k) Hp|(B,k,n) fp,k
M2n

and combining this with (24) and (36) yields

dz1,1(1) 3 2"W (4B, k) [Ty, Dpa.(1)

(37) Cras = ~504B) 2B (k%) (4B, 1)

keN
(k,2r)=1

2
o B n)

ol 4z (5
P oo
neN |:Hp|(B,k,n) fp’k:| TLQZ)(TL)(TL7 4Bk )2 (k,B)

Noting that the summand of the inner sum in (37) is multiplicative in n, Lemma 7.1(5)
allows us to rewrite this sum as

] ce(n).

o ampey G )

14 _k_ ja Ck(qa)
q prime a>0 |:Hp\(B,k7q0<) fp’k] qa(b(qa)(qa’éLBka)Z ((k,B):q )

4B)
H(Z Yo 4>B)c<qa>>

gtk \a=0

()

¢((¢*,4Bk*))2 \ 7 o
H Z V( & qﬂ) qurdq(k)(Q)
gk \ a0 [Hp|(B,k,qa) fp,k} q“9(q*)(q*, 4Bk?)2"\ B

4B)
1S A i)

a>0

k,B2) o
((k B)) g )

1o 2 2V<
Z ¢((q 4Bk )) - C ordq (k) (qa)
= [Hm(B,k,qa)fp,k]q%(qa)(quBk?)z”(<kf€B>’q )

11

#((q> AB o
al (Lo o @)
Substituting (38) into (37), our expression for C, 4 g becomes

d21 1 q 4B a QV(k)¢((4B k2)) Hp\(B, )dp,lJc(l)
(39) H (Z q 43) “ (q )> Z ( ov(k,B k’(b(kQ)(ZlBk:kQ)

a>0
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V<(q6132)’qa>
e e R (Y
o> v q g q
H [T, (5.q90) fok]a™¢(a*) (g™ 4Bg?#)2 ((qﬁ*B) ! )
¢((¢*,4B))
¢k (ZO‘ZO q%(qi)(q"AB) cl(q“))

=1

Since the sum on £ in (39) is a sum of multiplicative functions, we may rewrite this sum as
(40)
2[5, d, 1,48 ()] s((4B,4*%))

My 72/ 6(?P) (4B.77) y ¢((¢*,4B¢*))da, 54 (¢°)
¢((¢*,4B))c1(q)
o 6>1 2020 gl g 1) a>0 [Hp\(g,qa)fp,qa} q*¢(q*)(q*, 4B¢*)

where 0, p is equal to % if @ > 0 and g t B, and equal to 1 otherwise. Substituting (40)
into (39), and noting that @) qua if a, j > 0, we obtain

a9 q*¢(q®)
Crap = d(;ngél)) aZZO 612(22:) g QZZO % g QZZO q;?—q:l)
qlr qlr
'WHB §%+;q%i]w) H;%
qf2r

Our result now follows from Lemma 7.1 and the formula for the sum of a geometric series.
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