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Abstract. Let E/Q be an elliptic curve, and let p be a rational prime
of good reduction. Let ap(E) denote the trace of the Frobenius endo-
morphism of E at the prime p. We say p is a champion prime of E if
ap(E) = −

[∣∣2√p∣∣], which occurs precisely when the group of Fp-rational
points is as large as possible in accordance with the Hasse bound. In a
similar vein, we say p is a trailing prime of E if ap(E) = +

[∣∣2√p∣∣],
which occurs precisely when the group of Fp-rational points is as small
as possible in accordance with the Hasse bound. Together, we say that
these primes constitute the extremal primes of E. In this paper we prove
that on average, the number of champion primes of elliptic curves that
are less than X is asymptotically equal to 8

3π · X
1/4/ logX. As an im-

mediate corollary, we also gain asymptotics on the average number of
trailing primes less than X and the average number of extremal primes
less than X.

1. Introduction

For an elliptic curve E/Q and a prime p of good reduction, let Ē/Fp
denote the reduction of the curve E modulo p. In this setting, #Ē/Fp is the
number of Fp-rational points on Ē/Fp, and the trace of Frobenius of E at
p is the integer ap(E) such that #Ē/Fp = p+ 1− ap(E). A classical result
of Hasse (see [Sil86, Theorem V.1.1]) is the bound |ap(E)| ≤ 2

√
p. In this

way, we refer to the interval [−2
√
p, 2
√
p] as the Hasse interval of E at p.

Of particular interest is a statistical investigation of the sequence {ap(E)}
for a fixed curve E. For instance, we can normalize the traces ap(E) by defin-
ing the associated bp(E) := ap(E)/2

√
p. We have a strong understanding

of the distribution of the normalized traces, as shown by the Sato-Tate
conjecture (now a theorem – see [CHT08,Tay08,HSBT10,BLGHT11]).

Theorem 1.1 (Clozel, Harris, Shepherd-Barron, Taylor). Let E/Q be a
curve without complex multiplication, and let [a, b] ⊂ [−1, 1]. Then as X →
∞, we have

#{p < X : bp(E) ∈ [a, b]} ∼ 2

π

(∫ b

a

√
1− t2 dt

)
X

logX
.

The distribution of fixed traces is not as well understood. For an elliptic
curve E/Q and an integer r 6= 0, Lang and Trotter conjecture in [LT76]
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2 L. GIBERSON AND K. JAMES

that

#{p < X : ap(E) = r} ∼ CE,r

√
X

logX
,

where CE,r is an explicitly defined constant depending only on E and r.
In this paper, we investigate the frequency at which the trace of Frobe-

nius ap(E) is maximal or minimal inside the Hasse interval. This has a
slightly different flavor than the Lang-Trotter conjecture mentioned above
seeing that the “target” for the trace of Frobenius is changing with the
prime p.

Let E be an elliptic curve, and let p be a rational prime of good reduction.
We make the following definitions:

(1) p is a champion prime of E if ap(E) = −
[∣∣2√p∣∣];

(2) p is a trailing prime of E if ap(E) = +
[∣∣2√p∣∣];

(3) p is a extremal prime of E if ap(E) = ±
[∣∣2√p∣∣].

The study of extremal primes was initiated by Hedetniemi, James, and
Xue in [HJX14], in which the authors consider primes such that ap(E) =
−
[∣∣2√p∣∣]. They prove the following theorem, which establishes that almost

all elliptic curves have at least one champion prime (and hence at least one
extremal prime). In fact, the same method also establishes that almost all
elliptic curves have at least one trailing prime.

Theorem 1.2 (Hedetniemi, James, Xue). Let X be a positive real number,
and let A := A(X), B := B(X) be positive parameters depending only on
X. For any ε > 0, take

A,B ≥ exp((1/4 + ε)X),

AB ≥ exp((5/4 + ε)X).

For any a, b ∈ Z such that 4a3 + 27b2 6= 0, let E(a, b) be the elliptic curve
given by the affine equation y2 = x3 + ax+ b. Define sets

E(A,B) = {E(a, b) : |a| ≤ A, |b| ≤ B}
E−(A,B) = {E(a, b) ∈ E(A,B) : E(a, b) has a champion prime}.

Then #E−(A,B) ∼ #E(A,B) as X →∞.

In [JTT+16], the authors established an asymptotic on the number of
champion primes up to X for a elliptic curve E/Q with complex multipli-
cation (CM), but this result was conditional on the assumption of the Rie-
mann Hypothesis for certain Hecke L-functions. A recent paper of James
and Pollack (see [JP17]) has removed this assumption.

Theorem 1.3 (James, Pollack). Let E/Q be an elliptic curve with complex
multiplication. The number of champion primes p < X is asymptotically

2X3/4

3π logX
. The number of trailing primes p < X has an identical asymptotic.

Apart from Theorem 1.2, nothing is known about extremal primes on
non-CM curves. In this paper we will focus on counting champion primes
on average over the family of all elliptic curves and mention in passing how

26 Oct 2017 17:44:55 PDT
Version 2 - Submitted to Acta Arith.



EXTREMAL PRIMES ON AVERAGE 3

the results can be used to study trailing and extremal primes as well. For
an elliptic curve E/Q and a positive real number X, we define

πChamp
E (X) = #{p < X of good reduction of E : ap(E) = − [|2√p|]}.

We note that because the Sato-Tate distribution is much different in
the CM versus the non-CM case, the predicted asymptotic for the non-CM
case is much smaller than the asymptotic obtained by James and Pollack
in Theorem 1.3. Arguing heuristically with Sato-Tate, for a non-CM elliptic
curve E, the “probability” that ap(E) = −

[∣∣2√p∣∣] is approximately

2

π

−1+ 1
2
√
p∫

−1

√
1− t2 dt =

2

π

−1+ 1
2
√
p∫

−1

(√
2(1− t)1/2 + O((1− t)3/2))

)
dt

=
2

π

(
2
√

2

3

(
1

2
√
p

)3/2
)

+ O(p−5/4)

=
2

3π
p−3/4 + O(p−5/4),

where in the first equality we have exploited the identity

1− t2 = 2(1− t)− (1− t)2

and subsequently used a first order Taylor approximation on
√

1− t2. As-
suming independence and summing over all primes while ignoring error
terms gives the expectation that

πChamp
E (X) ∼ 2

3π

∑
p<X

p−3/4 ∼ 8X1/4

3π logX
.

The main result of this paper indicates that this heuristic is correct on
average.

Theorem 1.4. For every A,B ≥ 1, we have

1

4AB

∑
|a|≤A
|b|≤B

πChamp
E(a,b) (X) =

8X1/4

3π logX
+ EA,B(X),

where

EA,B(X)� X

B logX
+

X

A logX
+
X9/8 log3X√

AB
+

(A+B)X3/4 log2X

AB
+
X1/4

log2X
.

The same result holds for counting trailing primes on average. Since ex-
tremal primes are the union of champion primes and trailing primes, we get
an nearly identical result when counting extremal primes on average, where
the only change is a constant of 16/3π in the asymptotic.
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4 L. GIBERSON AND K. JAMES

Corollary 1.5. Taking A,B > X3/4 logX and the product AB > X7/4 log10X
in the previous theorem and letting X →∞ gives

1

4AB

∑
|a|≤A
|b|≤B

πChamp
E(a,b) (X) ∼ 8X1/4

3π logX
.

The same result holds for counting trailing primes on average. For counting
extremal primes on average the asymptotic is 16

3π
·X1/4/ logX.

It is worth pointing out that the contribution of complex multiplication
curves to this average is negligible in comparison to the main term because
CM curves have density 0 in the set of all elliptic curves (see [Jam04, Section
1] for a precise argument). In this way the significantly larger asymptotic
in the CM case seen in Theorem 1.3 is not influential in Theorem 1.4, and
therefore we may indeed interpret our result as the average over non-CM
curves.

Using Theorem 1.4, we can prove a result on the variance of πChamp
E(a,b) (X)

from the average 8
3π
·X1/4/ logX.

Theorem 1.6. Upon taking A,B > X log6X and AB > X3 log7X, we
have

1

4AB

∑
|a|≤A
|b|≤B

∣∣∣∣πChamp
E(a,b) (X)− 8X1/4

3π logX

∣∣∣∣2 � X1/2

log3X
.

The Turán normal order method (see [CM05, Ch. 3]) subsequently yields
the following corollary.

Corollary 1.7. Fix d > 1. Upon taking A and B according to the hypotheses
in Theorem 1.6, then with at most O(AB/ logdX) exceptions, every model
E(a, b) with |a| ≤ A and |b| ≤ B satisfies the inequality∣∣∣∣πChamp

E(a,b) (X)− 8X1/4

3π logX

∣∣∣∣ < X1/4

log3/2X
.

Throughout the paper we will use the following notation. For coprime
integers q and b, define

E(y, h; q, b) :=
∑

y<p≤y+h
p≡b (mod q)

log p− h

φ(q)
,

E(y, h; q) := max
(b,q)=1

|E(y, h; q, b)| .

For a real Dirichlet character χ, we let

L(1, χ) :=
∑
n≥1

χ(n)

n
=
∏
`

(
1− χ(`)

`

)−1

L(1, χ;w) :=
∏
`≤w

(
1− χ(`)

`

)−1

.
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EXTREMAL PRIMES ON AVERAGE 5

We remark that using Mertens’ third theorem, we obtain the bound

(1.1) L(1, χ;w)� logw.

We also set ∆p := [|2√p|]2 − 4p, ∆p,k := k2 − 4p, and P+(n) to denote the
largest prime factor of n.

The proof of Theorem 1.4 is similar to related problems in this area, such
as in [FM96, DP99, Jam05, Par15, CDKS16]. In Section 2, we partition the
box of elliptic curves by isomorphism class over Fp and appeal to a result of
Deuring (see [Deu41]) which allows us to count the number of isomorphism
classes of elliptic curves over Fp with precisely p + 1 − r points for any
integer r in terms of Hurwitz class numbers. As a result we reduce Theorem
1.4 to Theorem 2.1, which is a statement about primes in many arithmetic
progressions. In Section 3, we give an outline of Theorem 2.1 conditional on
technical results proved in Sections 4 and 5. In Section 6 we prove Theorem
1.6.

The main difficulty in this work arises from the need to count primes
in short arithmetic progressions – arithmetic progressions so short that not
even the generalized Riemann hypothesis would suffice. However since in
this work we average over many short arithmetic progressions, we are able
to invoke the following result from [Kou15].

Lemma 1.8 (Koukoulopoulos). Fix ε > 0 and R ≥ 1. For 2 ≤ h ≤ x and
1 ≤ Q2 ≤ h/x1/6+ε, we have∫ 2x

x

∑
q≤Q

E(y, h; q) dy � hx

logR x
.

We also employ the following result from [CDKS16, Lemmas 2.2 and
2.3], which allows us to truncate L(1, χ) for most Dirichlet characters χ in
a way conducive to applying Lemma 1.8.

Lemma 1.9. Let α ≥ 1 and H ≥ 3. For convenience in notation, set
z := logH. There is a set of integers Eα(H) ⊂ [1, H] of size at most H2/α

such that if χ is a Dirichlet character of conductor q ≤ H not in Eα(H),
then

L(1, χ) = L(1, χ; z8α2

)

[
1 + O

(
1

zα

)]
.

Moreover, for any u ≥ 1 and w ≥ 10, we have

L(1, χ;w) =
∑
n≤wu

P+(n)≤w

χ(n)

n
+ O

(
logw

eu

)
.

2. From Counting Curves to Counting Primes

We first write

(2.1)
1

4AB

∑
|a|≤A
|b|≤B

πChamp
E(a,b) (X) =

1

4AB

∑
3<p<X

N(A,B; p,− [|2√p|]),
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6 L. GIBERSON AND K. JAMES

where

N(A,B; p, r) := # {|a| ≤ A; |b| ≤ B : ap(E(a, b)) = r} .

For convenience, set ∆p =
[∣∣2√p∣∣]2 − 4p. Based on a classical result of

Deuring, we cite a result of Baier (see [Bai07, Equation 4.5]) that gives

N(A,B; p, [|2√p|]) =
2ABH(∆p)

p
+ ERRA,B(p),

where ERRA,B(p) is asymptotically bounded above by
(2.2)
AB

p
+
ABH(∆p)

p2
+ A+B + (ABH(∆p))

1/2 log3 p+
(A+B)H(∆p)

p1/2
log p,

and where H(d) is the Hurwitz class number associated to the discriminant
d. We remark that from this result and the definition of ∆p, we see that
N(A,B; p,

[∣∣2√p∣∣]) = N(A,B; p,−
[∣∣2√p∣∣]). In this way, studying cham-

pion primes and trailing primes will each lead to an identical asymptotic.
Using the class number formula and the explicit formula for the Hurwitz

class number we have the useful expression

(2.3) H(∆p) =
1

π

∑
f2|∆p

∆p

f2 ≡0,1 (mod 4)

√
|∆p|
f

L

(
1, χ∆p

f2

)
,

where χd := (d|·) is the quadratic character associated with the discriminant
d. We note the convexity bound

(2.4) L(1, χ∆p/f2)� log p

from [Lou93] and also convey the bounds

|∆p| ≤ 4
√
p,(2.5)

H(∆p) � p1/4 log2 p.(2.6)

With these estimates, the error term in (2.2) satisfies

ERRA,B(p)� AB

p
+
AB log2 p

p7/4
+A+B+

√
ABp1/8 log4 p+

(A+B) log3 p

p1/4
.

Substituting this work back into (2.1) gives

(2.7)
1

4AB

∑
|a|≤A
|b|≤B

πChamp
E(a,b) (X) =

∑
3<p<X

H(∆p)

2p
+ EA,B(X),

where EA,B(X) is asymptotically bounded above by

log logX +
X

B logX
+

X

A logX
+
X9/8 log3X√

AB
+

(A+B)X3/4 log2X

AB
.
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EXTREMAL PRIMES ON AVERAGE 7

We now focus solely on the main term of (2.7), which in conjunction
with (2.3) is

(2.8)
1

2π

∑
3<p<X

√
|∆p|
p

∑
f2|∆p

∆p

f2 ≡0,1 (mod 4)

1

f
L

(
1, χ∆p

f2

)
.

As a function of a positive real variable t, the function |∆t| = 4t− [|2
√
t|]2

is sawtooth; it has zeros whenever t or t/4 is a square and is linear with
slope 4 between these zeroes. With this in mind we define intervals

Ik :=

[
k2

4
,
(k + 1)2

4

)
,

where we note that for t ∈ Ik we have |∆t| = |∆t,k| := |k2−4t|. Furthermore,
since we are only concerned with the primes in the real interval (3, X), it

suffices to look at the union of intervals Ik from k = 4 to k = [|2
√
X|].

Partitioning in this manner allows us to write the quantity from (2.8) as

(2.9)
1

2π

∑
3<k<2X1/2

∑
p∈Ik

√
|∆p,k|
p

∑
f2|∆p,k

∆p,k

f2 ≡0,1 (mod 4)

1

f
L

(
1, χ∆p,k

f2

)
+ O(X1/8 log2X),

where the error term arises from potential over counting in the interval
I[|2
√
X|] since the parameter 2

√
X may not be an integer. It can be estimated

naively using (2.4) and (2.5).
Switching the order of summations in (2.9) yields

(2.10)

1

2π

∑
3<k<2X1/2

∑
f≤
√

2k+2

1

f

∑
p∈Sf (Ik)

√
|∆p,k|
p

L

(
1, χ∆p,k

f2

)
+ O(X1/8 log2X),

where we have defined

Sf (Ik) :=

{
p ∈ Ik : ∆p,k ≡ 0 (mod f 2);

∆p,k

f 2
≡ 0, 1 (mod 4)

}
.

The upper bound of f ≤
√

2k + 2 arises because if f >
√

2k + 2 then the
set Sf (Ik) is empty. More explicitly, a prime p ∈ Sf (Ik) only if f 2 | ∆p,k. As

∆p,k ≤ 4
√
p ≤ 2(k + 1), we see that f 2 | ∆p,k occurs only if f ≤

√
2k + 2.

Lastly, we split the sum over 3 < k < 2X1/2 dyadically. The proof of the
next statement spans the remainder of the paper.

Theorem 2.1. For any real number U ≥ 4, set

D(U) :=
∑

U≤k<2U

∑
f≤
√

2k+2

1

f

∑
p∈Sf (Ik)

√
|∆p,k|
p

L

(
1, χ∆p,k

f2

)
.

We have that

D(U) =
2
√

2

3

∫ 2U

U

dt

t1/2 log t
+ O

(
U1/2

log2 U

)
.
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8 L. GIBERSON AND K. JAMES

Putting the result of Theorem 2.1 into (2.10) and integrating gives
√

2

3π

∫ 2X1/2

4

dt

t1/2 log t
+ O

(
X1/4

log2X

)
=

8X1/4

3π logX
+ O

(
X1/4

log2X

)
,

which in the context of (2.7) proves Theorem 1.4 conditional on Theorem
2.1.

3. A Proof of Theorem 2.1

In what follows we let χ denote the quadratic character χ∆p,k/f2 =

(∆p, k/f 2|·). We begin by noting that for p ∈ Ik, a Taylor series approxi-
mation gives

1

p log p
=

1
k2

4
log k2

4

+ O

(
1

k3 log k

)
.

Using this estimate gives
(3.1)

D(U) =
∑

U≤k<2U

1
k2

4
log k2

4

∑
f≤
√

2k+2

1

f

∑
p∈Sf (Ik)

√
|∆p,k| log p·L (1, χ)+O(log2 U),

where the error term was bounded using (2.4) and (2.5).

We truncate the sum over integers f ≤
√

2k + 2 ≤ 3
√
U at a parameter

F := F (U) to be determined later. Using (2.4), (2.5), and the naive bound
#Sf (Ik) � k/f 2 to bound the tail, the inner sums over f ≤

√
2k + 1 and

p ∈ Sf (Ik) of (3.1) contribute∑
f≤F

1

f

∑
p∈Sf (Ik)

√
|∆p,k| log p · L(1, χ) + O

(
k3/2 log2 k

F 2

)
.

Therefore upon taking F := log3/2 U we have
(3.2)

D(U) =
∑

U≤k<2U

1
k2

4
log k2

4

∑
f≤F

1

f

∑
p∈Sf (Ik)

√
|∆p,k| log p ·L (1, χ)+O

(
U1/2

log2 U

)
.

Of interest is to replace the special L-value L(1, χ) with an appropriate
truncated L-value L(1, χ;w) for most characters χ. From the theory of qua-
dratic characters we know that the conductor of χ := (∆p,k/f

2|·) is either
|∆p,k/f

2| or 4|∆p,k/f
2|. Therefore as U < k < 2U , we may use (2.5) to

bound the conductor of χ, denoted Nχ, above by 17U .
Set H := 17U , let α = 4, and let E4(H) be the set of exceptional integers

guaranteed by Lemma 1.9. For convenience, set z := logH. For a prime
p ∈ Sf (Ik), if Nχ ∈ E4(H) then by (2.4), we have

L(1, χ)− L(1, χ; z128)� log p� logU.

On the other hand, if Nχ 6∈ E4(H) then by Lemma 1.9 and (1.1) we have

L(1, χ)− L(1, χ, z128)� L(1, χ; z128)

z4
� log z

z4
� 1

log3 U
.
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EXTREMAL PRIMES ON AVERAGE 9

Lastly we note that as p runs through Sf (Ik) and we compute the conductor
of χ, we never encounter the same conductor more than twice. To see this,
we explicitly bound∑

p∈Sf (Ik)
Nχ=e

1 ≤
∑
m∈Ik

(4m−k2)/f2=e

1 +
∑
m∈Ik

4(4m−k2)/f2=e

1 ≤ 2.

Therefore, for a fixed integer k satisfying U ≤ k < 2U and a fixed integer
f < F we have∑

p∈Sf (Ik)

√
|∆p,k| log p ·

[
L (1, χ)− L

(
1, χ; z128

)]

�
√
U logU

 ∑
p∈Sf (Ik)
Nχ∈E4(H)

logU +
∑

p∈Sf (Ik)
Nχ 6∈E4(H)

1

log3 U


�
√
U logU

[
H1/2 logU +

U

log3 U

]
.

Recalling that H � U gives the entire error above is O(U3/2/ log2 U). There-
fore we have shown D(U) to be equal to
(3.3)∑
U≤k<2U

1
k2

4
log k2

4

∑
f≤F

1

f

∑
p∈Sf (Ik)

√
|∆p,k| log p · L

(
1, χ; z128

)
+ O

(
U1/2

log2 U

)
.

With z = log (17U), one can check that z128 ≥ 10 for any U ≥ 1.
Therefore by Lemma 1.9, with v := 4 log logU , we have

L
(
1, χ; z128

)
=

∑
n≤z128v

P+(n)≤z128

χ(n)

n
+ O

(
1

log3 U

)
.

As a result we see that D(U) is equal to
(3.4)∑
U≤k<2U

1
k2

4
log k2

4

∑
f≤F

n≤z128v

P+(n)≤z128

1

nf

∑
p∈Sf (Ik)

√
|∆p,k| log p · χ(n) + O

(
U1/2

log2 U

)
.

For now we solely investigate the main term of (3.4). As discussed previ-

ously, χ(n) is the Kronecker symbol
(

∆p,k/f
2

n

)
. Using its 4n-periodicity, we

can write

χ(n) =
(a
n

)
for a ≡ ∆p,k/f

2 (mod 4n).

Furthermore, the conditions p ∈ Sf (Ik) and ∆p,k/f
2 ≡ a (mod 4n) are

equivalent to p ∈ Ik, 4p ≡ (k2 − af 2) (mod 4nf 2), and a ≡ 0, 1 (mod 4). In
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10 L. GIBERSON AND K. JAMES

this way, the main term of (3.4) is

(3.5)
∑

U≤k<2U

1
k2

4
log k2

4

∑
f≤F

n≤z128v

P+(n)≤z128

1

nf

∑
a∈Z/4nZ

a≡0,1 (mod 4)
(k2−af2,4nf2)=4

(a
n

) ∑
p∈Ik

p≡ k
2−af2

4
(mod nf2)

√
|∆p,k| log p,

where the condition (k2− af 2, 4nf 2) = 4 is a necessary condition when the
inner sum over primes is non-zero.

The innermost sum counts primes in a short arithmetic progressions
with an awkward weighting function. Using the method shown in [CDKS16,
Lemma 7.1], the following result is proved in Section 4.

Lemma 3.1. Let b, q be coprime integers, and fix an integer k satisfying
U ≤ k < 2U . Define

Λ(k; q, b) :=
∑
p∈Ik

p≡b (mod q)

√
|∆p,k| log p.

For any q ≤ h ≤ U/4, we have

Λ(k; q, b) =
(2k + 1)3/2

6φ(q)
+ O

(
U1/2

h

∫
Ik

|E(y, h; q, b)| dy +
hU1/2 logU

q

)
.

Applying the result of Lemma 3.1 to (3.4) and (3.5) while also rearrang-
ing some finite sums gives the expression

D(U) =
1

6

∑
U≤k<2U

(2k + 1)3/2

k2

4
log k2

4


∑
f≤F

n≤z128v

P+(n)≤z128

1

nfφ(nf 2)

∑
a∈Z/4nZ

a≡0,1 (mod 4)
(k2−af2,4nf2)=4

(a
n

)


+O

(
E1(U, h) + E2(U, h) +

U1/2

log2 U

)
,(3.6)

where

E1(U, h) � U1/2

h

∑
U≤k<2U
f≤F

n≤z128v

P+(n)≤z128

1

k2nf log k

∑
a∈Z/4nZ

a≡0,1 (mod 4)
(k2−af2,4nf2)=4

∫
Ik

∣∣∣∣E (y, h;nf 2,
k2 − af 2

4

)∣∣∣∣dy,

E2(U, h) � h
√
U logU

∑
U≤k<2U

1

k2 log k

∑
f≤F

n≤z128v

P+(n)≤z128

1

n2f 3

∑
a∈Z/4nZ

a≡0,1 (mod 4)
(k2−af2,4nf2)=4

1.

Since v := 4 log logU and z := log (17U), E2(U, h) can be asymptotically
bounded above by

h√
U

∑
n≤z128v

1

n

∑
f<F

1

f 3
� hv log z√

U
� h(log logU)2

√
U

,
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EXTREMAL PRIMES ON AVERAGE 11

so if we take h� U/ log4 U then this error is O(U1/2/ log2 U).
The E1(U, h) term can be bounded using Lemma 1.8. As we have used

before, for U ≤ k < 2U the function 1/(k2 log k) = O(1/(U2 logU)). There-
fore E1(U, h) is asymptotically bounded above by

1

hU3/2 logU

∑
U≤k<2U
f<F

n≤z128v

P+(n)≤z128

1

nf

∑
a∈Z/4nZ

a≡0,1 (mod 4)
(k2−af2,4nf2)=4

∫
Ik

∣∣∣∣E (y, h;nf 2,
k2 − af 2

4

)∣∣∣∣ dy.

Since |E(y, h; q, b)| ≤ max(b,q)=1 |E(y, h; q, b)| =: E(y, h; q), we obtain

E1(U, h)� 1

hU3/2 logU

∑
U≤k<2U

∑
f<F

n≤z128v

P+(n)≤z128

1

f

∫
Ik

E
(
y, h;nf 2

)
dy,

where now as all summands are positive we may relax the conditions on the
sum over integers n to give

E1(U, h)� 1

hU3/2 logU

∑
U≤k<2U

∑
f<F

n≤z128v

1

f

∫
Ik

E
(
y, h;nf 2

)
. dy

Switching sums and integrals is valid as these are all finite quantities. Fur-
thermore, we recall that the intervals IU , IU+1, . . . , I2U partition the real
interval [U2/4, U2]. Lastly, upon fixing an f as n runs through the interval
n ≤ z128v we see moduli of the form nf 2 ≤ z128vf 2. Since all summands are
positive we may extend the sum to all moduli q ≤ z128vf 2. With all these
observations, we continue with

E1(U, h)� 1

hU3/2 logU

∑
f<F

1

f

∑
q<z128vf2

U2∫
U2/4

E (y, h; q) dy.

We recall that h � U/ log4 U , F = log3/2 U , z = log (17U), and v =
4 log logU . For any f < F , (z128vf 2)2 � U δ for any δ > 0, and therefore
the condition (z128vF 2)2 ≤ h/U1/6+ε for some ε > 0 in Lemma 1.8 holds
comfortably by choosing h = CU/ log4 U with a suitably large constant C.
Therefore applying Lemma 1.8 with R = 2 to this quantity gives

E1(U, h)� logF

hU3/2 logU
· hU

2

log2 U
� U1/2

log2 U
.

With both E1(U, h) and E2(U, h) estimated, from (3.6) we have shown that
D(U) is
(3.7)

1

6

∑
U≤k<2U

(2k + 1)3/2

k2

4
log k2

4


∑
f≤F

n≤z128v

P+(n)≤z128

1

nfφ(nf 2)

∑
a∈Z/4nZ

a≡0,1 (mod 4)
(k2−af2,4nf2)=4

(a
n

)
+ O

(
U1/2

log2 U

)
.
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12 L. GIBERSON AND K. JAMES

The quantity in square brackets in (3.7) is almost identical to something
investigated in [DP99, Section 3]; the only difference in the two terms is
our additional constraint of P+(n) ≤ z128. However, seeing as the analysis
is essential identical we omit the proof and give full credit to the authors of
that paper for the fact that∑

f≤F
n≤z128v

P+(n)≤z128

1

nfφ(nf 2)

∑
a∈Z/4nZ

a≡0,1 (mod 4)
(k2−af2,4nf2)=4

(a
n

)
= C · Ck + O

(
1

F 2
+

1

z64v
+

1

z64

)
,

where

C · Ck :=
∏
`

`(`2 − `− 1)

(`− 1)(`2 − 1)
·
∏
`|k

`(`− 1)

`2 − `− 1
.

Note that our choice of parameters F = log3/2 U , v = 4 log logU , and
z = log 17U gives that the entire error above is O(1/ log3 U). As a result,
we apply this result to (3.7) to obtain

D(U) =
C

6

∑
U≤k<2U

(2k + 1)3/2

k2

4
log k2

4

· C(k) + O

(
U1/2

log2 U

)
.

Since U ≤ k < 2U , Taylor series approximations allow us to write

(2k + 1)3/2 = 2
√

2k3/2 + O(k1/2),

1

log k2

4

=
1

2 log k
+ O

(
1

log2 k

)
.

Therefore upon estimating the resulting error terms we have

(3.8) D(U) =
2
√

2C

3

∑
U≤k<2U

C(k)

k1/2 log k
+ O

(
U1/2

log2 U

)
.

The partial sums of C(k) are studied in Section 5.

Lemma 3.2. Let U < K be positive real numbers. We have

S(U,K) :=
∑

U≤k<K

C(k) = C−1(K − U) + O(logK),

where

C−1 :=
∏
`

(
1 +

1

`3 − `2 − `

)
.

Since CC−1 = 1, applying partial summation and then Lemma 3.2 to
the main term of (3.8) gives

2
√

2C

3

[
S(1, 2U)

(2U)1/2 log 2U
− S(1, U)

(U)1/2 logU
−
∫ 2U

U

d

dt

(
1

t1/2 log t

)
S(1, t) dt

]
=

2
√

2

3

[
2U

(2U)1/2 log 2U
− U

(U)1/2 logU
−
∫ 2U

U

d

dt

(
1

t1/2 log t

)
t dt

]
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EXTREMAL PRIMES ON AVERAGE 13

with a negligible error. Integrating by parts gives this quantity as

2
√

2

3

∫ 2U

U

dt

t1/2 log t
,

which completes the proof of Theorem 2.1 conditional on the lemmas used
in the proof.

4. A Proof of Lemma 3.1

In this section we study the quantity

Λ(k; q, b) :=
∑
p∈Ik

p≡b (mod q)

√
|∆p,k| · log p,

where U ≤ k < 2U and the integers b and q are coprime. We also define the
notation

`k :=
2k + 1

4
;

I+
k :=

(k + 1)2

4
;

I−k :=
k2

4
.

We begin by peeling off a small amount from each end of the interval Ik.
Let h ≤ U/4. Since U ≤ k < 2U , we know that I−k + 2h ≤ I−k + U/2 < I+

k .
Using the naive bound #{p ∈ (y, y + z) : p ≡ b (mod q)} � z/q, we have

(4.1) Λ(k; q, b) =
∑

I−k +h<p≤I+
k −h

p≡b (mod q)

√
|∆p,k| · log p+ E1,

where

(4.2) E1 �
h
√
k log k

q
� h
√
U logU

q
:= F.

For any prime p satisfying I−k +h < p ≤ I+
k −h, we can write p = I−k +p0·`k

for some real number p0 satisfying h
`k
< p0 ≤ 1 − h

`k
. Therefore, for such

primes we have √
|∆p,k| =

√
2k + 1 · √p0.

Set η := h/`k. For any t = t0 + O(η), a Taylor series approximation gives∫ t0

t0−η

√
t dt = η

√
t0 + O

(
η2

√
t0

)
.

Therefore for the primes described above, we have√
|∆p,k| =

(2k + 1)3/2

4h

∫ p−I−
k

`k

p−I−
k
−h

`k

√
t dt+ O

 η√
p−I−k
`k

 .
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14 L. GIBERSON AND K. JAMES

Upon putting this work into (4.1), we obtain

Λ(k; q, b) =
(2k + 1)3/2

4h

∑
I−k +h<p≤I+

k −h
p≡b (mod q)

log p

∫ p−I−
k

`k

p−I−
k
−h

`k

√
t dt

+ O(F ) + E2,

where

(4.3) E2 �
h log k√

k

∑
I−k +h<p≤I+

k −h
p≡b (mod q)

1√
p− I−k

�
√
hU logU

q
� F.

Switching the sum and integral gives

(4.4) Λ(k; q, b) =
(2k + 1)3/2

4h

∫ 1−η

0

√
t


∑

I−k +h<p≤I+
k −h

I−k +t`k<p<I
−
k +t`k+h

p≡b (mod q)

log p

 dt+ O(F ).

We aim to extend the limits of the integration to the full interval [0, 1].
For t satisfying η < t < 1 − 2η, the first condition in the summation is
implied by the second condition. For t ∈ [0, 1]\(η, 1− 2η), we have

√
t ·
∑

I−k +h<p≤I+
k −h

I−k +t`k<p<I
−
k +t`k+h

p≡b (mod q)

log p ≤
∑

I−k +t`k<p<I
−
k +t`k+h

p≡b (mod q)

log p� h log k

q
,

and so the full contribution for t ∈ [0, 1]\(η, 1− 2η) is

(2k + 1)3/2

4h

∫
[0,1]\(η,1−2η)

h log k

q
dt� k1/2h log k

q
� U1/2h logU

q
� F.

Returning to (4.4), we now have the expression

(4.5) Λ(k; q, b) =
(2k + 1)3/2

4h

∫ 1

0

√
t

 ∑
I−k +t`k<p<I

−
k +t`k+h

p≡b (mod q)

log p

 dt+ O(F ).

The sum above counts log-weighted primes in a short arithmetic pro-
gression. For an interval (y, y + z] and a pair of coprime integers b and q,
we define a quantity E(y, z; q, b) such that∑

y<p≤y+z
p≡b (mod q)

log p =
z

φ(q)
+ E(y, z; q, b).

Applying this substitution to the weighted sum of primes, we have

Λ(k; q, b) =
(2k + 1)3/2

4h

∫ 1

0

√
t

[
h

φ(q)
+ E(I−k + t`k, h; q, b)

]
dt+ O(F ),
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EXTREMAL PRIMES ON AVERAGE 15

which is

(2k + 1)3/2

6φ(q)
+

(2k + 1)3/2

4h

∫ 1

0

√
t · E(I−k + t`k, h; q, b) dt+ O(F ).

Upon applying the change of variables y := I−k + t`k, the second term is no
larger in absolute value than

k3/2

h

∫ 1

0

∣∣E(I−k + t`k, h; q, b)
∣∣ dt� U1/2

h

∫
Ik

|E(y, h; q, b)| dy,

which completes the proof.

5. A Proof of Lemma 3.2

In this section we study the quantity

S(U,K) :=
∑

U≤k<K

C(k) =
∑

U≤k<K

∏
`|k

`(`− 1)

`2 − `− 1

 ,

however it suffices to prove

(5.1) S(K) :=
∑
k<K

C(k) = C−1K + O(logK),

where C−1 is defined in the statement of the lemma, as then S(U,K) =
S(K)− S(U) gives the desired result.

We note begin by noting that C(k) is multiplicative, and so the identity

C(k) =
∑
d|k

µ2(d)
∏
`|d

1

`2 − `− 1

can be checked by computing on prime powers. With this in tow, we sum
over all k < K to obtain

S(K) =
∑
k<K

C(k)

=
∑
k<K

∑
d|k

µ2(d)
∏
`|d

1

`2 − `− 1

=
∑
de<K

µ2(d)
∏
`|d

1

`2 − `− 1

=
∑
d<K

µ2(d)
∏
`|d

1

`2 − `− 1

 ∑
e<K/d

1


= K

∑
d<K

µ2(d)

d3

∏
`|d

`2

`2 − `− 1
−
∑
d<K

{
K

d

}
µ2(d)

d2

∏
`|d

`2

`2 − `− 1
.

Let ν(d) count the number of prime divisors of d without multiplicity. We
remark that since 1 < `2/(`2 − ` − 1) ≤ 9/5 for any prime ` > 2, the

26 Oct 2017 17:44:55 PDT
Version 2 - Submitted to Acta Arith.



16 L. GIBERSON AND K. JAMES

fractional part {K/d} ≤ 1, and the arithmetic function ν(d) ≤ log d, the
second term above can be bounded above by∑
d<K

µ2(d)

d2
·

[
4 ·
(

9

5

)ν(d)
]
�
∑
d<K

µ2(d)

d2
·
(

9

5

)log d

�
∑
d<K

1

d2
· d� logK.

For the main term, we extend the sum and estimate the tail similarly as

K
∑
d≥K

µ2(d)

d3

∏
`|d

`2

`2 − `− 1
� K

∑
d≥K

µ2(d)

d3
·
(

9

5

)log d

� K
∑
d≥K

1

d2
� 1.

As a result, in full we have

S(K) = K
∞∑
d=1

µ2(d)

d3

∏
`|d

`2

`2 − `− 1
+ O(logK + 1)

= K
∏
l

∞∑
α=0

µ2(`α)

`3α

∏
p|`α

p2

p2 − p− 1
+ O(logK)

= K
∏
`

(
1 +

1

`3
· `2

`2 − `− 1

)
+ O(logK)

= C−1K + O(logK),

which completes the proof of (5.1).

6. A Proof of Theorem 1.6

In this section we study the quantity

V :=
1

4AB

∑
|a|≤A
|b|≤B

∣∣∣∣πChamp
E(a,b) (X)− 8X1/4

3π logX

∣∣∣∣2 .
Upon taking A and B according to the conditions in Corollary 1.5, we see
that

µ :=
1

4AB

∑
|a|≤A
|b|≤B

πChamp
E(a,b) (X) =

8X1/4

3π logX
+ O

(
X1/4

log2X

)
.

Therefore applying the triangle-inequality to the definition of V we see that

V � 1

4AB

∑
|a|≤A
|b|≤B

∣∣∣πChamp
E(a,b) (X)− µ

∣∣∣2 + O

(
X1/2

log4X

)
,

whereupon expanding the product we obtain

(6.1) V � 1

4AB

∑
|a|≤A
|b|≤B

[
πChamp
E(a,b) (X)

]2

− µ2 + O

(
X1/2

log4X

)
.
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EXTREMAL PRIMES ON AVERAGE 17

For now we focus solely on the first term of (6.1). We begin by writing[
πChamp
E(a,b) (X)

]2

= πChamp
E(a,b) (X) +

∑
3<p,q<X
p 6=q

ap(E(a,b))=[|−2
√
p|]

aq(E(a,b))=[|−2
√
q|]

1 + O(1),

where the error term corresponds to the finite number of primes of bad
reduction of E(a, b). Upon averaging over |a| ≤ A and |b| ≤ B and switching
the resulting finite sums this first term of (6.1) is

µ +
1

4AB

∑
3<p,q<X
p 6=q

∑
|a|≤A
|b|≤B

ap(E(a,b))=[|−2
√
p|]

aq(E(a,b))=[|−2
√
q|]

1 + O(1).

For each isomorphism class Ẽ1/Fp and Ẽ2/Fq, choose representative models
E1(a, b) and E2(a, b). Partitioning the models by isomorphism class allows
us to rewrite the above as

µ +
1

4AB

∑
3<p,q<X
p 6=q

∑
Ẽ1/Fp

ap(E1)=[|−2
√
p|]

∑
Ẽ2/Fq

ap(E2)=[|−2
√
q|]

∑
|a|≤A
|b|≤B

E(a,b)∼=pE1(a,b)
E(a,b)∼=qE2(a,b)

1 + O(1).

The inner-most sum above counts models of elliptic curves that are Fp-
isomorphic to E1(a, b) and Fq-isomorphic to E2(a, b). Specializing Lemma 2
of [JS11] to the field K = Q gives this inner sum as

4AB(p− 1)(q − 1)

(pq)2#Autp(E1)#Autq(E2)

+O

(
4AB

pqmin{A,B}
+ (pq)1/2 log2 pq +

A+B

(pq)1/2
· log pq

)
.

As a result the main term of (6.1) is

µ +
∑

3<p,q<X
p 6=q

(p− 1)(q − 1)

(pq)2
·N(p)N(q)

+O

 1

min{A,B}
∑

3<p,q<X
p 6=q

1

pq
·N(p)N(q)



+O

 1

4AB

∑
3<p,q<X
p 6=q

(pq)1/2 log pq

[
log pq +

A+B

pq

]
·N(p)N(q)

 ,

where N(q) denotes the number of isomorphism classes of elliptic curves
Ẽ over Fp with trace ap(Ẽ) = [| − 2

√
p|], weighted by 1/#Autp(Ẽ). Using
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18 L. GIBERSON AND K. JAMES

Deuring’s theorem from [Deu41], for r2 < 4p the number of Fp-isomorphism
classes of elliptic curves with precisely p+ 1− r points is H(r2−4p) + O(1).
Since #Autp(E1) = 2 for all but 10 = O(1) isomorphism classes, the above
simplifies to

µ +
1

4

∑
3<p,q<X
p 6=q

(p− 1)(q − 1)

(pq)2
H(∆p)H(∆q)

+O

 1

min{A,B}
∑

3<p,q<X
p6=q

H(∆p)H(∆q)

pq



+O

 1

4AB

∑
3<p,q<X
p 6=q

(pq)1/2 log pq

[
log pq +

A+B

pq

]
H(∆p)H(∆q)

 ,

where we recall the notation ∆t :=
[∣∣2√t∣∣]2 − 4t. Note from Theorem 1.4

that µ � X1/4/ logX. Using the bound for the Hurwitz class number in
(2.6) implies the total contribution from the first error term above is asymp-
totically smaller than

(6.2)
1

min{A,B}
∑

3<p,q<X
p 6=q

log2 p log2 q

(pq)3/4
� X1/2 log2X

min{A,B}
,

while the second error term is less than

1

4AB

∑
3<p,q<X
p 6=q

(pq)3/4 log5 pq

[
log pq +

A+B

pq

]

� X7/2 log4X

4AB
+X3/2 log3X

[
1

A
+

1

B

]
.(6.3)

Since A,B > X log6X and AB > X3 log7X the quantities in (6.2) and
(6.3) are both bounded above by a constant multiple of X1/2/ log3X. As a
result the main term of (6.1) is[ ∑

3<p<X

H(∆p)

2p

]2

+ O

(
X1/2

log3X

)
.

From (2.7) and Theorem 1.4, we may write[ ∑
3<p<X

H(∆p)

2p

]2

=

[
µ+ O

(
X1/4

log2X

)]2

= µ2 + O

(
X1/2

log3X

)
.

Putting the previous two lines into (6.1) gives the desired result.
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