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1. Introduction

Ever since Dirichlet’s introduction of the analytic class number
formula, special values of L-functions have been the subject of much
study and speculation. In this paper we survey some recent results
about such values that were presented at this conference. Our atten-
tion is essentially restricted to the central values of L-functions asso-
ciated to certain (holomorphic) newforms. These results have many
applications to class numbers of imaginary quadratic fields, Selmer
groups of elliptic curves, and K-groups of real quadratic fields, a few
of which are included.

To describe the problem we will address, we need to introduce
some notation. Let F (z) =

∑∞
n=1 a(n)qn ∈ S2k(M) (q = e2πiz as

usual) be a newform of weight 2k on Γ0(M) with trivial Nebenty-
pus character, and for Re(s) À 0 let L(F, s) =

∑∞
n=1 a(n)n−s be
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its L-function. Let D denote a fundamental discriminant of a qua-
dratic field that is coprime to M ; then χD shall denote the Kronecker
character for the field Q(

√
D).

The D-quadratic twist of F , denoted FD, is given by FD(z) =
∑∞

n=1 χD(n)a(n)qn, and for Re(s) À 0 its L-function is given by
L(FD, s) =

∑∞
n=1 χD(n)a(n)n−s. These L-functions have analytic

continuations to C and satisfy well known functional equations. If
Λ(F, s) = (2π)−sΓ(s)Ms/2L(F, s), then

Λ(F, s) = ε · Λ(F, 2k − s),

where ε = ±1 is the so-called sign of the functional equation, and
the quadratic twists satisfy

Λ(FD, s) = ε · χD(−M)Λ(FD, 2k − s).

The value L(FD, k) is the central value of L(FD, s). Our moti-
vating problem is to describe the behaviour of the family of values
L(FD, k), as a function of D. Notice that if χD(−M)ε = −1, then
L(FD, k) = 0. Therefore at least ‘half’ of the L(FD, k) are trivially
zero. As we shall see, the ‘nontrivial zeros’ (as one varies D) are
quite mysterious. If F is a weight 2 newform associated to an ellip-
tic curve E, then there are infinitely many non-trivial zeros, but in
the case of Ramanujan’s Delta-function F = ∆(z) ∈ S12(1) there are
no known non-trivial zeros.

For X > 0 let

NF (X) = #{D | | D |< X and L(FD, k) 6= 0}.

It is widely believed that

(1) NF (X) ÀF X.

The following conjecture, due to Goldfeld, is more precise.
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Goldfeld’s Conjecture [G]. If F (z) ∈ S2k(M) is a newform, then

∑

|D|<X and (D,M)=1

ords=kL(FD, s)

∼ 1

2
#{D | | D |< X and (D,M) = 1}.

(2)

(Note: This conjecture was posed for weight 2 newforms associated
to modular elliptic curves.)

Goldfeld’s Conjecture is an analytic assertion, and it has been
extensively studied as such, often with the help of sophisticated an-
alytic techniques. Thanks to the work of Katz, Sarnak, Iwaniec,
Kowalski, Michel, R. Murty and K. Murty, and others, much is
known about the general phenomenon of the nonvanishing of val-
ues of L-functions and their derivatives. The results described in
this paper follow from an essentially algebraic approach, based on
the fact that the central value is a critical value (in the sense of
Deligne). More concretely, this means that there exist nonzero com-
plex numbers Ω±

F known as periods for F , such that the quotient

L(FD, k)/Ω
sign(D)
F is an algebraic integer, loosely referred to as the

algebraic part of L(FD, k). Non-vanishing of L(FD, k) is equivalent
to non-vanishing of the algebraic part, and the latter may be studied
by using algebraic techniques. The key to the results in this paper
is the observation that, to show nonvanishing of the central value,
it suffices to show that the algebraic part is nonzero modulo p, for
some prime p.

2. Statement of Results

The first result we wish to describe gives a strong estimate for the
number of quadratic twists of F whose L-functions do not vanish at
s = k. This result was proven by two of the present authors (see
[O-S1]) by using the theory of 2-adic Galois representations and a
congruence modulo the prime 2.
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Theorem 1. [O-S1, Cor. 3]. If F (z) ∈ S2k(M) is a newform,

then

NF (X) ÀF
X

log X
.

Recall that if E/Q is an elliptic curve given by

E : y2 = x3 + Ax + B,

then ED, its D-quadratic twist, is the curve given by

ED : y2 = x3 + AD2x + BD3.

Let L(ED, s) be the Hasse-Weil L-function for ED. For modular E,
Kolyvagin [Ko] proved that if L(ED, 1) 6= 0, then ED has rank zero.
Theorem 1 together with Kolyvagin’s theorem implies:

Corollary 1. If E/Q is a modular elliptic curve, then the number

of |D| ≤ X for which ED has rank zero is ÀE X/ log X.

While Theorem 1 is very strong in that it applies to a general F ,
it falls short of the ‘positive proportion’ estimates predicted by Gold-
feld. However, we will now describe a series of results showing that
it is possible to do better in a class of special cases, namely the class
of forms F for which there exist special congruence relations between
L(FD, k) and class numbers of quadratic fields. When such relations
exist modulo 3, results of Davenport and Heilbronn [D-H], suitably
modified by Horie and Nakagawa [N-H], may be employed to prove
the estimate (1). This approach was first carried out by James [Ja]
for several weight 2 newforms associated to modular elliptic curves.

Using the same ideas, Kohnen [K] proved the following theorem
for eigenforms with respect to the full modular group SL2(Z).

Theorem 2 [K, Cor. 1]. Let k ≥ 6 be even. If ε > 0 and X Àε 0,
then there exists a Hecke eigenform F (z) ∈ S2k(1) for which

NF (X) ≥
(

9 − ε

16gkπ2

)

X

where gk = dim(S2k(1)).
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Corollary 2. Let ∆(z) ∈ S12(1) be Ramanujan’s Delta-function. If

ε > 0 and X Àε 0, then

N∆(X) ≥
(

9 − ε

16π2

)

X.

This technique can also be exploited in the context of certain
elliptic curves with rational torsion points. But before stating the
general theorem, we need to introduce some notation. Let E be a
modular elliptic curve over Q. Assume that E has a rational point
of odd prime order p (so p = 3, 5, or 7), that the level M of E is
squarefree, and that E has good reduction at p. Let q be any prime
with (q,M) = 1 and q ≡ 1 (mod 9) if p = 3 and q ≡ 1 (mod p) if
p = 5 or 7. Let M1 denote the product of primes `|M such that E
has nonsplit multiplicative reduction, and let M2 = qM/M1.

Theorem 3 [V, Th. 0.3]. Let the elliptic curve E be as above.

Then there exists a period Ω− for E such that we have

(1 − χD(q)/q) · τ(χD)
L(ED, 1)

(−2πi)Ω−

≡ 1

2

∏

`|M1

(1 − χD(`)/`)
∏

`|M2

(1 − χD(`)) · L(χD, 0)2 (mod p),

for any D < 0 prime to Mq. Here τ(χD) denotes the usual Gauss

sum associated to χD.

Observe now that L(χD, 0) is essentially the class number h(D) of

Q(
√

D). Thus if D is such that h(D) and the various Euler factors
are nonzero modulo p, then we may conclude that the value L(ED, 1)
is nonzero. The aforementioned results of Davenport-Heilbronn and
Horie-Nakagawa then yield the following result:

Corollary 3. If E is as in Theorem 3 and p = 3, then

#{−X < D < 0 | L(ED, 1) 6= 0)} ÀE X.

Theorem 3 was already predicted by the work of Frey [F], who
shows that the order of p-Selmer groups of certain curves ED are



6 BRUINIER, JAMES, KOHNEN, ONO, SKINNER, AND VATSAL

trivial whenever h(D) is prime to p. Thus our theorem may be viewed
as an analytic counterpart to Frey’s theorem, hence as verification
of a weak form of the Birch and Swinnerton-Dyer Conjecture ‘mod
p’ for rank zero quadratic twists ED.

Work of Waldspurger [W1, W2] shows that the values L(FD, k)
are essentially Fourier coefficients of modular forms of half-integral
weight k + 1

2 . Theorems 1 and 2 are proved by studying the Fourier
coefficients of such half-integral weight modular forms modulo p.
There have been a number of investigations into the indivisibility of
such coefficients in the works of Jochnowitz [J], Ono and Skinner [O-
S2], and most recently Bruinier [B]. Our final theorem is a statement
of the main result in [B]. First let us introduce some notation. Let
k be an integer as before, M a positive integer divisible by 4 and χ
a Dirichlet character modulo M . For convenience put χ∗ = (−1

· )kχ.
If p is a prime, then let vp denote a continuation of the usual p-adic
valuation on Q to a fixed algebraic closure. Write Mk+1/2(M,χ) for
the space of modular forms of weight k + 1/2 with respect to Γ0(M)
and Nebentypus character χ (in the sense of [Sh]).

Theorem 4 [B, Th. 2]. Let f(z) =
∑∞

n=0 a(n)qn ∈ Mk+ 1

2

(M,χ)

be an eigenform of all the Hecke operators T (`2) with corresponding

eigenvalues λ`. If the coefficients a(n) are algebraic integers, p - M
is prime, and there is a positive integer m∗ with vp(a(m∗)) = 0, then

define w(f ; p,m∗) by

w(f ; p,m∗) := min
`

vp

(

λ` −
(

m∗

`

)

χ∗(`)(`k + `k−1)

)

,

Here the minimum is taken over all primes ` with (`,Npm∗) = 1 and

` 6≡ 1 (mod p). Then there exist infinitely many square-free integers

d with vp(a(d)) ≤ w(f ; p,m∗).

There are many immediate consequences of results like Theorem
4. Here we list a few exceptional examples. The deduction of these
corollaries employs the aforementioned results of Waldspurger, which
relate the algebraic parts of the values L(FD, k) to the Fourier coeffi-
cients at square-free integers of certain half-integral weight modular
forms.
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Corollary 4. If E/Q has complex multiplication, then for every

prime p ÀE 0 there are infinitely many D for which

rk(ED) = 0 and p - #X(ED).

Corollary 5. Let E/Q be a modular elliptic curve for which L(E, s)
has a simple zero at s = 1. For all primes p outside a finite set which

is effectively determinable (see [O-S2])

ordp(|X(E)|) ≤ ordp(Sha(E)),

where Sha(E) denotes the order of X(E) as predicted by the Birch

and Swinnerton-Dyer Conjecture.

We also obtain a generalization of results due to Horie on the
existence of certain infinite families of imaginary quadratic fields
[Ho].

Corollary 6 [B, Theorem 7]. Let p1, . . . , pr be distinct odd primes

and ε1, . . . , εr ∈ {−1, 0,+1}. Let p be a prime ≥ 5 such that p
does not divide pj(pj − 1)(pj + 1) for j = 1, . . . , r. Then there are

infinitely many fundamental discriminants D < 0 for which h(D) is

not divisible by p and ( D
pj

) = εj for j = 1, . . . , r.

Applying Theorem 4 to the Cohen-Eisenstein series, we obtain
indivisibility results for certain values of Dirichlet L-series.

Corollary 7 [B, Theorem 6]. Let k be a positive even integer

and p a prime for which p − 1 - 2k and vp(ζ(1 − k)) = 0. Then

there exist infinitely many fundamental discriminants D > 0 with

vp(L(1 − k, χD)) = 0.

Using the work of Mazur and Wiles [M-W] one immediately ob-
tains the following from Corollary 7.

Corollary 8 [B, Cor. 2]. Let p be a prime ≥ 7. Then there exist

infinitely many real quadratic fields F such that the K-group K2AF

of the ring of integers AF of F contains no element of order p.

In the remainder of this paper, we will briefly describe the proofs
of the theorems stated above.
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3. Discussion of Theorem 1

The proof of Theorem 1 (see [O-S1] for details) is based on the

simple observation that if θ(z) = 1 + 2
∑∞

n=1 qn2

is the standard
theta function, then 1 ≡ θ(Nz) (mod 2) for any positive integer N .
This is exploited as follows. The main results of [W1, W2] ensure
the existence of a weight k + 1

2 cusp form f(z) =
∑∞

n=1 c(n)qn of
some level 4M ′ and δF ∈ {±} such that if (D, 4MM ′) = 1 and if
δF D > 0, then c(|D|)2 is essentially the algebraic part of L(FD, k).
More precisely, let P (F ) denote the set of D’s just described. Then
for all D ∈ P (F )

c(|D|) 6= 0 ⇒ L(FD, k) 6= 0.

The form G(z) = f(z)·θ(Nz) =
∑∞

n=1 b(n)qn has integral weight k+
1 and satisfies b(n) ≡ c(n) (mod 2). Thus to show that L(FD, k) 6= 0
for some D ∈ P (F ), it sufficies to show that b(|D|) 6≡ 0 (mod 2).
For simplicity, suppose that c(n) ∈ Z for all n and that G(z) is a
newform. Suppose also that 2 - c(|D0|) for some D0 ∈ P (F ). Write
D0 = p1 · · · pr. Applying the Chebotarev Density Theorem to the
mod 2 Galois representation associated to G, one finds that there
are À X/ log X sets of primes {q1, ..., qr} such that b(qi) ≡ b(pi)
(mod 2), q1 · · · qr < X, δF q1 · · · qr ∈ P (F ). As

b(q1 · · · qr) ≡ b(q1) · · · b(qr)

≡ b(p1) · · · b(pr) ≡ b(|D0|) (mod 2),

the desired result follows. The proof in the general case is similar,
but made more complicated by having to work in a general number
field and by the fact that G is not usually a newform.

4. Discussion of Theorem 2

In this section we briefly sketch the proof of Theorem 2 (see
[K] for details). Essentially, one uses a sufficiently explicit form
of the Shimura correspondence and Waldspurger’s theorem, due to



TOPICS IN NUMBER THEORY 9

Kohnen-Zagier, to find explicit relations between the twisted L-
values and clas numbers of quadratic fields. One concludes the proof
by using the Davenport-Heilbronn theorem, as mentioned previously.

Sketch of Proof of Theorem 2: Let k be even and S+
k+1/2 be the

space of cusp forms of weight k + 1/2 w.r.t. Γ0(4) having a Fourier
expansion of the form

∑

n≥1 c(n)qn with c(n) = 0 unless n ≡ 0, 1

(mod 4). The spaces S+
k+1/2 and S2k = S2k(1) are isomorphic as

modules over the Hecke algebra. If f(z) =
∑

n≥1 a(n)qn is a nor-

malized Hecke eigenform in S2k and g =
∑

n≥1 c(n)qn is a Hecke

eigenform in S+
k+1/2 corresponding to it, then for every fundamental

discriminant D > 0 one has

| c(D) |2
〈g, g〉 =

(k − 1)!

πk
Dk−1/2 L(f,D, k)

〈f, f〉 ,

where 〈g, g〉 and 〈f, f〉 are appropriately normalized Petersson scalar
products (cf. [K-Z]; the above identity is a more precise version of
Waldspurger’s formula [W1] in the special case of the full modular
group). For k ≥ 4 let

Gk(z) =
1

2
ζ(1 − k) +

∑

n≥1

σk−1(n)qn

(σν(n) :=
∑

d|n dν) be the Eisenstein series of weight k and level 1,

and let θ(z) =
∑

n∈Z qn2

be the standard theta series of weight 1/2.

We put

δk(z) :=
1

4πi

(

(
k

2
− 1)Gk−2(4z)θ′(z) − G′

k−2(4z)θ(z)
)

and write αk(n) for the Fourier coefficients of δk (cf. [K-Z], p. 187).
One has δk ∈ S+

k+1/2; in fact, up to normalization δk is the first

Rankin-Cohen bracket of Gk−2(4z) and θ(z).
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For simplicity let’s suppose that k is not congruent to 1 modulo
3. It is easy to see that it is sufficient to prove that

#{0 < D < X,D ≡ −1 (mod 3), αk(D) 6= 0} ≥
(

9 − ε

16π2

)

X.

To do this one first shows the congruence

αk(D) ≡ ukh(−3D) (mod 3) (D ≡ −1 (mod 3))

where uk = −1 resp 1 for k ≡ 0 (mod 3) resp. k ≡ 2 (mod 3).
Except for some elementary calculations modulo 3, the above con-

gruence follows from an identity of Siegel which relates a certain finite
sum involving σ1 to the second generalized Bernoulli number of χD,
and a classical formula of Lerch relating this Bernoulli number to
the class number h(−3D) modulo 3.

The proof then is finished using the results of [D-H] and [N-H], in
a similar way as in [Ja]. Let m and N be positive integers, N odd
and such that if p is an odd prime dividing (m,N), then p2 | N and
p2 does not divide m. Denote by N−

2 (X,m,N) (X > 0) the number
of fundamental discriminants D with −X < D < 0 and D ≡ m
(mod N).

The main result of [D-H, N-H] implies that

∑

−x<D<0,D≡m (mod N),(h(D),3)=1

1 ≥ (
1

2
−ε)N−

2 (X,m,N) (X Àε 0).

Applying the latter formula with m = 3 and N = 9 and observing
that N−

2 (3X, 3, 9) ∼ 9
8π2 X for X → ∞ (cf. e.g. [N-H], Prop. 2), the

assertion of Theorem 2 easily follows.
Q.E.D.

5. Discussion of Theorem 3.

We now sketch the proof of Theorem 3 (see [V] for details). The
idea of the proof is simple: we will show that there exists a congru-
ence modulo p between E and a suitable Eisenstein series G, and
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then relate the L-values of E to those of G. The latter are products
of Dirichlet L-functions, and the special values are Bernoulli numbers
whose relationship to class numbers is well-documented.

Proof of Theorem 3: Let ρ0 denote the representation of Gal(Q/Q)
on the p-division points E[p] of E. Our hypotheses imply that there
is an exact sequence

0 → Z/pZ → E[p] → µp → 0.

Let f(z) =
∑

an(f)qn be the newform associated to E; then the
exact sequence above implies that aq(f) ≡ q + 1 (mod p), for each
prime q not dividing pM . Now let G be the non-holomorphic Eisen-
stein series of weight 2 and level 1. Thus we have

G(z) − 1

8πy
=

−1

24
+
∑

σ(n)qn,

where σ(n) =
∑

d|n d. Therefore σ(n) ≡ an(f) (mod p) for all n

with (n, pM) = 1. Observe also that we have the equality

τ(χD)
L(1, GD)

(−2πi)
=

1

2
L(χD, 0)2.

Now theorem (3.3) of [V] shows how to modify f and G to obtain
forms f∗ =

∑

an(f)∗qn and G∗ =
∑

an(g)∗qn of level Mq such
that the congruence an(f)∗ ≡ an(g)∗ (mod p) is valid at all integers
n. Furthermore the Eisenstein series G∗ has the property that the
constant term in the Fourier expansion at every cusp is a rational
integer divisible by p.

Put Γ = Γ1(Mq) and let δ ∈ H1(Γ, Z) be the cocycle obtained
by integrating G∗. Then δ vanishes modulo p on parabolic elements
and we obtain a parabolic cocycle δ ∈ H1(Γ, Z/p). Furthermore, it
may be shown that δ lies in the minus eigenspace H1(Γ, Z)− for the
action of complex conjugation.

Let T be the Hecke ring generated over Zp in the space of cusp-
forms for Γ = Γ1(Mq). Let m be the the maximal ideal determined
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by f∗. It can be shown that there is an isomorphism θ : S2(Γ, Zp)m
∼=

H1(Γ, Zp)
−
m (see Theorem 2.7 in [V]). Thus we may define a canon-

ical cocycle δ∗ = θ(f∗) ∈ H1(Γ, Zp)
−. One checks that there is a

period Ω− such that Ω−δ∗ = (ω)−, where ω is the differential form
on X1(Nq) associated to f∗. It is a consequence of a theorem of
Washington that the image of δ∗ in H1(Γ, Z/p) coincides up to unit
with the Eisenstein cocycle δ defined previously. Our Theorem 3
now follows upon computing the twisted L-values of δ∗ and δ, using
the definition for the former, and the theory of Dedekind sums for
the latter (see [St], Lemma 2.2).

Q.E.D.
Applying Theorem 3 along with the techniques developed in [Ja]

to all elliptic curves having a torsion point of order 3 and whose
conductor is less than or equal to 50, we have compiled the following
table. For each curve E, we list a Weierstrass equation for E, the
conductor NE of E, and a lower bound δE for

lim inf
x→∞

[

#{D | | D |< X and L(ED, 1) 6= 0}
2X

]

.

E NE δE

y2 = x3 + x2 + 72x − 368 14 21/64π2

y2 = x3 + 4x2 − 144x − 944 19 19/80π2

y2 = x3 + x2 + 4x + 4 20 15/72π2

y2 = x3 + x2 − 72x − 496 26 39/112π2

y2 = x3 − 432 27 3/8π2

y2 = x3 + x2 + 24x + 144 30 15/128π2

y2 = x3 + x2 − 48x + 64 34 17/48π2

y2 = x3 + 4x2 + 144x + 80 35 35/192π2

y2 = x3 + 1 36 3/4π2

y2 = x3 + 4x2 − 368x − 3184 37 37/114π2

y2 = x3 + x2 + 152x + 5776 38 19/160π2

y2 = x3 + x2 + 3x − 1 44 11/48π2

y2 = x3 + 5x2 − 200x − 14000 50 5/8π2
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5. Discussion of Theorem 4

Here we describe the main ideas of the proof of Theorem 4 (see
[B] for details). A related result and some more applications to
elliptic curves are obtained in [O-S2] via the theory of p-adic Galois
representations.

Here f denotes an element of Mk+1/2(M,χ) with algebraic integer
Fourier coefficients a(n). Define vp(f) = infn(vp(a(n)) and denote
the usual Fricke involution by WM . Using the q-expansion principle
one may deduce that f |WM also has algebraic Fourier coefficients
and moreover that vp(f) = vp(f |WM ) for every prime p not dividing
M ([B], Lemma 1).

Now let ` be a prime not dividing M and suppose that f is an
eigenform of the Hecke operator T (`2). Then taking into account
the lemma above and the properties of various operators defined on
modular forms (in particular the commutation relation of a quadratic
twist and WM ), it can be shown that a certain set of congruences
modulo p for the Fourier coefficients implies a congruence for the
Hecke eigenvalue λ`. Since this result might be of independent in-
terest, let us state part of it in a more precise form.

Theorem 4′ [B, Theorem 1]. Let ` be a prime not dividing M ,

ε ∈ {±1}, and ν > 0. Further let p be a prime with (p,N`(`− 1)) =
1 and vp(f) = 0. Suppose that f is an eigenform of T (`2) with

corresponding eigenvalue λ`. If vp(a(n)) ≥ ν for all n with (n
` ) = −ε,

then the congruence vp

(

λ` − εχ∗(`)(`k + `k−1)
)

≥ ν holds.

As a corollary to Theorem 4’ one infers that there always is an inte-
ger mε with (mε

` ) = −ε and vp(a(mε)) ≤ vp

(

λ` − εχ∗(`)(`k + `k−1)
)

.

Proof of Theorem 4: We may choose a prime ` with (`,Mpm∗) = 1,
` 6≡ 1 (mod p) and

vp

(

λ` −
(

m∗

`

)

χ∗(`)(`k + `k−1)

)

= w(f ; p,m∗).

Then according to the above corollary there is an m with ( m
` ) =

−(m∗

` ) and vp(a(m)) ≤ w(f ; p,m∗). In fact, by an inductive argu-
ment ([B], Lemma 3) it can be seen that there are infinitely many
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such m with mutually distinct square-free part. Now, using the mul-
tiplicative properties of the Fourier coefficients the assertion can be
deduced.

Q.E.D.
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