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Abstract. We consider a speci�c family of elliptic curves with rational 3-torsion sub-

group. We arithmetically de�ne 3-Selmer groups through isogeny and 3-descent maps,

then associate the image of the 3-descent maps to solutions of homogeneous cubic poly-

nomials a�liated with the elliptic curve E and an isogenous curve E′. Thanks to the

work of Cohen and Pazuki, we have solubility conditions for the homogeneous poly-

nomials. Using these conditions, we give a graphical approach to the size of 3-Selmer

groups then translate the conditions on graphs into a question concerning ranks of

matrices. Finally, we give an upper bound for the rank of the elliptic curve E, by

calculating the size of the Selmer groups.

1. Introduction

One of the major open problems in number theory involves calculating the rank of an

elliptic curve. By calculating the size of the Selmer group, we can give an upper bound

for the rank of a given elliptic curve. The goal of this paper is to bound the size of the

3-Selmer groups for a family of elliptic curves with 3-torsion given by

Eab : y2 = x3 + (ax+ b)2

and its 3-isogenous curve given by

E ′ab′ : y2 = x3 − 3(ax+ b′)2
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with b′ = 27−4a3

9
and therefore provide a bound for the rank of Eab. Speci�cally, we

analyze the 3-Selmer groups associated to 3-descent by isogeny of such elliptic curves

by relating them to graphs with certain properties then translate the graph theory into

a problem involving matrix analysis. Our methods use an elementary approach involv-

ing algebra and combinatorics. These methods have been employed to study 2-Selmer

groups which arise from 2-descent for the family of �Congruent Number� curves, pos-

sessing 2-torsion [4], [3], but not for curves with 3-torsion or for 3-Selmer groups. For

related work, we refer the reader to [5], [6], [7], [8] and [12].

Mordell's Theorem [11] asserts that for a general elliptic curve, E/Q, the group of

rational points, E(Q), is a �nitely generated abelian group, i.e.

E(Q) ∼= Zr ⊕ E(Q)tors,

where E(Q)tors is a �nite abelian group and r is the rank of the elliptic curve. The

torsion part, E(Q)tors, is well understood. We have the following deep theorem of Mazur

[10, Chapter 8, Theorem 7.5] which completely characterizes the possibilities for the

torsion subgroup.

Theorem 1.1 (Mazur). If E is an elliptic curve, then E(Q)tors is one of the following

15 groups:

(1) Z/nZ, with 1 ≤ n ≤ 10 or n = 12.

(2) Z/2mZ× Z/2Z, with 1 ≤ m ≤ 4.

Further, given a speci�c elliptic curve E, E(Q)tors is easily computable by the Nagell-

Lutz Theorem [10, Chapter 8, Corollary 7.2].



THREE SELMER GROUPS FOR ELLIPTIC CURVES WITH 3-TORSION 3

On the other hand, not much is known about the rank. For example, the famous

Birch and Swinnerton-Dyer Conjecture (see [1] or [9]) predicts that the rank of E/Q

equals the order of vanishing of its L-series, L(E, s), at s = 1. In general, the rank of an

elliptic curve is very di�cult to compute. The only way, in practice, to give an upper

bound for the rank of E/Q has been to prove upper bounds for the size of the m-Selmer

group, Selm(E) (see [9] for more details). More precisely, for every natural number m

we have an exact sequence [10, Theorem 10.4.2]

0→ E(Q)/mE(Q)→ Selm(E)→XE[m]→ 0,

where XE is the Tate-Shafarevich group and A[φ] denotes the kernel of φ in the group

A. Combining this with Mordell's theorem we have that

E(Q)/mE(Q) ∼= (Z/mZ)r ⊕ E(Q)[m].

In particular, we show in Section 2 that [Eab(Q) : 3Eab(Q)] = 3r+1.

We begin by giving an overview of 3-descent maps and their relation to the rank of an

elliptic curve with rational 3-torsion. Following the treatment given in [2], we associate

the following homogeneous polynomials of degree 3 to Eab and E
′
ab′ respectively

Fu(X, Y, Z) = u1X
3 + u2Y

3 + u3Z
3 − 2aXY Z

and

Fu′(X, Y, Z) =
(
γ
(
X + Y

√
−3
)3 − γ

(
X − Y

√
−3
)3
)
/
√
−3

+2aZ
(
X + Y

√
−3
) (
X − Y

√
−3
)

+ (2b′/N(γ))Z3.
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Using these polynomials, we arithmetically de�ne 3-Selmer groups as opposed to the

usual de�nition involving Galois cohomology. Finding integer solutions is di�cult, so we

relax the condition and de�ne the 3-Selmer groups, Sel(φ)(Eab) and Sel(φ̂)(E ′ab′), to be the

set of u ∈ Q∗/(Q∗)3 (respectively, u′ ∈ Q∗(
√
−3)/(Q∗(

√
−3))3) for which Fu(X, Y, Z) =

0 (respectively Fu′(X, Y, Z) = 0) has local solutions for all p. Once we de�ne Selmer

groups in the above manner, it is natural to investigate when we obtain local solutions.

We discuss the local solubility of the homogeneous polynomials associated to Eab in

Section 3. Many of these conditions involve checking if ratios of the coe�cients of the

homogeneous polynomials are cubes modulo a given prime.

After completely characterizing when we obtain local solutions, we begin exploring

this question in terms of graph theory. Feng and Xiong [4] introduce the notion of �odd

graphs� to produce certain families of congruent numbers and Faulkner and James [3]

use their ideas to compute the corresponding 2-Selmer groups. We extend their methods

to the computation of 3-Selmer groups of elliptic curves with 3-torsion.

For the elliptic curve, Eab, we construct a directed graph G′ with subgraph G. The

vertices of G and G′ are comprised of the primes dividing 2b and the discriminant of the

curve. We draw directed edges between primes where local solutions are not guaranteed

and label each directed edge with a cubic root of unity. Next we introduce the idea of

a �three-balanced� partition, (S1, S2, S3), of the subgraph G. We identify each set in

the partition with a coe�cient associated to the homogeneous polynomial, Fu(X, Y, Z).

The general idea is that a partition of a graph is three-balanced if the ratios of the

associated coe�cients are cubes modulo a given prime. The prime p = 3 is slightly more

complicated, so we introduce the idea of �three-quasi-balanced� partitions as well. We

show that given a three-balanced partition, we can construct an element in the 3-Selmer
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group, Sel(φ)(Eab), associated to the elliptic curve Eab.

For example, consider the family of elliptic curves

En/Q : y2 = x3 + n2,

and its auxiliary family

E ′n : y2 = x3 − 27n2.

There are isogenies φ : En → E ′n given by

φ(P ) = φ((x, y)) =

(
x3 + n2

x2
,
y(x3 − 8n)

x3

)
.

We realize a concrete identi�cation between the associated Selmer group, Sel(φ)(En), and

the subgroup of Q∗/(Q∗)3 consisting of equivalence classes [u] with u = u1u
2
2 for which

the equation

u1x
3 + u2y

3 +
2n

u1u2

z3 = 0

has non-trivial solutions over R and Qp for every prime p. Casting this condition into the

language of graph theory, we construct a directed graph G′ with subgraph G where the

vertices of G are exactly the prime divisors of 2n and the prime 3. Partitioning G into 3

possibly empty sets, (S1, S2, S3), if this partition is three-balanced, then u =
∏
p∈S1

p
∏
p∈S2

p2

is an element in Sel(φ)(En). In fact, we have the following theorem.

Theorem 1.2. Let En : y2 = x3 + n2. Suppose that n is odd, square-free, and divisible

by 3, and de�ne G to be the associated digraph. Then

∣∣∣Sel(φ)(En)
∣∣∣ = #{three-balanced partitions of G}.
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For E ′ab′ , we take a slightly di�erent approach. In this setting we construct a graph

G′′ with subgraphs G′ and G. The vertices of G, G′ and G′′ are comprised of the primes

dividing 2b′ and the discriminant. However, in this case, we place primes in di�erent sub-

graphs depending on their classi�cation; split primes, inert primes and rami�ed primes

in Q(ζ3). The subgraph G consists only of split primes which divide 2b′. Again, we

draw directed edges between primes for which local solutions are not guaranteed and

label each with a cubic root of unity. Due to complications associated with the local

solubility of the primes 2 and 3, we do not require local solutions in Q2 and Q3. Hence

we introduce the group Sel
(φ̂)
S (E ′ab′), the set of local solutions for all primes not in S

where S contains 2 and 3. Once we have constructed the graph, we introduce the notion

of a �good� labeling on the vertices of the subgraph G. We label each vertex in G with

a 0, 1 or 2 and identify the primes labeled with a 0 or a 1 to the parameters γ and γ in

Fu′(X, Y, Z). The idea is that a good labeling will produce an element in the modi�ed

3-Selmer group, Sel
(φ̂)
S (E ′ab′), associated to the isogenous elliptic curve E ′ab′ .

Finally, we use the associated graphs to construct a characteristic matrix. Indexing

the rows and columns by primes in the vertex set, we can relate the notion of a three-

balanced partition and a good labeling to a Laplacian matrix. The primes associated

with the columns will be those primes which are the heads of the directed edges and

the primes associated with rows will be the primes which are the tails of the directed

edges. The entries of the matrix will consist of cubic roots of unity and zeros. If a

prime is associated with both a row and column, this entry will either be the sum of

the other entries in the row or the negative of this sum, reduced modulo 3. Looking at

the kernel of a submatrix of the Laplacian matrix, we can construct an element of the

Selmer group (or modi�ed Selmer group in the isogenous case). Employing the results

of the rank-nullity theorem, we can bound the size of the 3-Selmer group. Therefore,
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combining this result with the fact that the rank of the elliptic curve is bounded by the

product of the sizes of the 3-Selmer groups, Sel(φ)(Eab) and Sel(φ̂)(E ′ab′), we can give an

upper bound for the rank of Eab.

2. An overview of 3-descent

In this section, we will give a summary of the development of the 3-Selmer group

through 3-descent. We will follow closely the treatment given in [2] and we refer the

reader there for a detailed account. We consider the more general family of elliptic

curves

ED : y2 = x3 +D(ax+ b)2,

with 3-torsion points {O, T ,−T } where T = (0, b
√
D).

Lemma 2.1. [2, Lemma 1.2] There exists a unique equation of E of the form y2 =

x3 +D(ax+ b)2, where a, b, and D are in Z, D is a fundamental discriminant (including

1), b > 0 and if we write b = b1b
3
3 with b1 cube-free, then (a, b3) = 1.

From now on, we will assume that the equation of the curve satis�es the conditions

of the above lemma. We will soon specialize to the case D = 1.

We recall the notion of an isogeny between elliptic curves.

De�nition 1. An isogeny between the elliptic curves E and E ′ is a morphism φ : E →

E ′ satisfying φ(O) = O′. The dual isogeny to φ is the isogeny φ′ : E ′ → E, satisfying

φ (φ′ (P )) = [deg(φ)]P .

We de�ne the following auxiliary family of curves as in [2]

E ′D : y2 = x3 +D′ (a′x+ b′)
2
,
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where D′ = −3D, a′ = a, and b′ = 27b−4a3D
9

. The explicit isogeny φ : E → E ′ is given by

φ(P ) = φ((x, y)) =

(
x3 + 4D(a2x2/3 + abx+ b2)

x2
,
y(x3 − 4Db(ax+ 2b))

x3

)
for P 6= O and P 6= ±T , and φ(P ) = O′ if P = O or P = ±T . The dual isogeny φ̂

is obtained by applying the same formula to E ′ and then dividing the x-coordinate by

9 and the y-coordinate by 27. The key fact is that the composition of φ and φ̂ gives

multiplication by 3, according to the following lemma.

Lemma 2.2. [2, Proposition 1.4] The maps φ and φ̂ are group homomorphisms, and

φ ◦ φ̂ and φ̂ ◦ φ are multiplication by 3 maps on E ′ and E, respectively. The kernel of φ

is {O,±T }, and that of φ̂ is {O′}.

We recall the following exact sequence [10, Remark X.4.7 (pp. 300-301)]

0→ E ′(Q)

φ(E(Q))
→ E(Q)

3E(Q)
→ E(Q)

φ̂(E ′(Q))
→ 0,

where the second map is induced from φ̂ and the third is induced from the identity.

This exact sequence along with Mordell's Theorem tells us that if the rank of E is r,

then we have

3r+δ = [E(Q) : 3E(Q)] = [E(Q) : φ̂(E ′(Q))][φ̂(E ′(Q)) : φ̂(φ(E(Q)))], (2.1)

where

δ =


1 E has rational point of order 3

0 otherwise

.

Lemma 2.2 gives the kernels of φ and φ̂. In order to compute the rank of E, it is

su�cient to understand the images of φ and φ̂.
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Let K = Q
(√

D
)
. When D = 1, let G3 = Q∗/(Q∗)3, otherwise, let G3 denote the

subgroup of K∗/(K∗)3 of classes whose norms are cubes. We recall the de�nition of the

3-descent map α : E(Q)→ G3 de�ned by
α(O) = 1,

α((0, b)) = 1/(2b) if D = 1,

α((x, y)) = y −
√
D(ax+ b).

One also de�nes α′ : E ′(Q)→ K∗/(K∗)3 analogously, where K = Q
(√
−3D

)
. Now, we

have the following useful proposition.

Proposition 2.3. [2, Proposition 1.4.2] The 3-descent maps α and α′ are group homo-

morphisms. Furthermore, ker (α) = Im(φ̂) and ker (α′) = Im (φ).

One immediately obtains the following corollary.

Corollary 2.4.

E(Q)

φ̂(E ′(Q))
∼= Im (α) ,

E ′(Q)

φ(E(Q))
∼= Im (α′) .

Using Theorem 2.1 and a bit of algebra we have the following result.

Proposition 2.5. [2, Proposition 2.2]

3r+δ = [E(Q) : 3E(Q)] = |Im(α)||Im(α′)|.

Hence to calculate r, the rank of E, it is su�cient to understand the images of the

3-descent maps α and α′.

From now on we will specialize to the cases where D = 1, that is to elliptic curves of

the form Eab : y2 = x3 + (ax + b)2 and the isogenous curve is of the form E ′ab′ : y2 =
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x3 − 3(ax+ b′)2 with b′ = 27b−4a3

9
. For D = 1, Cohen and Pazuki [2] prove the following

theorem describing the group Im (α).

Theorem 2.6. [2, Theorem 3.1] Let [u] ∈ Q∗/(Q∗)3. Write [u] = u1u
2
2 where u1 and u2

are square-free, coprime integers in Z. Then [u] ∈ Im (α) if and only if u1u2 | 2b and

the homogeneous cubic equation Fu(x, y, z) = 0 has an integer solution, where

Fu(x, y, z) = u1x
3 + u2y

3 +
2b

u1u2

z3 − 2axyz. (2.2)

The proof of the above theorem can be found in [2].

Remark 1. (1) The divisibility of 2b by u1u2 gives an upper bound on |Im(α)|.

(2) When we speak of a solution to a homogeneous equation, we mean a non-trivial

solution and thus when we speak of the solution set of such a homogeneous equa-

tion being non-empty we mean that there are non-trivial solutions.

For an integral domain R and F ∈ R[x, y, z], let

CF (R) = {(x, y, z) ∈ R3 \ {(0, 0, 0)} | F (x, y, z) = 0}.

In light of Theorem 2.6, we would like to determine CFu(Z) for each u = u1u
2
2 with

(u1u2)|(2b). In general, however, this is not possible due to obstructions in the 3 part

of the Tate-Shafarevich group. Thus we are motivated to de�ne the Selmer group

Sel(φ)(Eab) as

Sel(φ)(Eab) = {[u] ∈ Q∗/(Q∗)3 | CFu(R) 6= ∅;CFu(Qp) 6= ∅ for all primes p},

where Fu(X, Y, Z) is de�ned for Eab in equation (2.2).
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Cohen and Pazuki [2] also also give criteria in the isogenous case. As usual, OK

denotes the ring of integers of K = Q(
√
−3). The following theorem describes the group

Im (α′).

Theorem 2.7. Let G3 be the subgroup of Q∗(ω)/(Q∗(ω))3 of classes whose norms are

cubes where ω is a primitive cubic root of unity. Let [u′] ∈ G3. Write u′ = γγ2 with

γ = c + dω ∈ Z[ω] and N(γ) = γγ is only divisible by split primes. Then [u′] ∈ Im(α′)

if and only if N(γ) | (2b′) and the homogeneous cubic equation Fu′(x, y, z) = 0 has an

integer solution where

Fu′(X, Y, Z) := 2aX2Z−2aXY Z+2aY 2Z+
2b′

N (γ)
Z3−dX3−dY 3−3cXY 2+3cX2Y+3dXY 2.

(2.3)

From Theorem 2.7 we are motivated to de�ne the Selmer group Sel(φ̂)(E ′ab′) as

Sel(φ̂)(E ′ab′) = {[u′] ∈ Q∗(
√
−3)/(Q∗(

√
−3))3 | CFu′ (R) 6= ∅;CFu′ (Qp) 6= ∅ for all primes p},

where Fu′(X, Y, Z) is de�ned for E ′ab′ in equation (2.3).

3. Local Solubility

We will study local solubility for both Eab : y2 = x3 + (ax + b)2 and E ′ab′ : y2 =

x3 − 3(ax+ b′)2 where b′ = 27b−4a3

9
. For additional details, we refer the reader to [2].

Let vp(n), n ∈ N, be the largest power of p that divides n, i.e. vp(n) = − logp |n|p.

We set vp(0) =∞. So by Lemma 2.1, we may assume that either vp(a) = 0 or vp(b) ≤ 2

for E.
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3.1. The Elliptic Curve Eab. The following two propositions give the local solubility

criteria for the polynomial

Fu(X, Y, Z) = u1X
3 + u2Y

3 + u3Z
3 − 2aXY Z

associated with Eab.

Proposition 3.1. [2] Assume p 6= 3. Let

Fu(X, Y, Z) = u1X
3 + u2Y

3 + u3Z
3 − 2aXY Z

with p-integral coe�cients where u1 and u2 are square-free and coprime and u3 =
2b

u1u2

.

(1) If p 6= 2, vp(b) = 0 and vp (27b− 4a3) = 0, then Fu(X, Y, Z) = 0 has a solution

in Qp.

(2) If p 6= 2, vp(b) = 0 and vp (27b− 4a3) > 0, then Fu(X, Y, Z) = 0 has a solution

in Qp if and only if ui/uj is a cube in F∗p for some i 6= j.

(3) If p 6= 2 and vp(b) > 0, then Fu(X, Y, Z) = 0 has a solution in Qp if and only if

one of the following is ful�lled:

(a) vp(a) = 0,

(b) vp(a) > 0 and exactly one of {u1, u2, u3} is divisible by p and the ratio of the

other two is a cube in F∗p,

(c) vp(a) > 0 and exactly two of {u1, u2, u3} are divisible by p and their ratio is

a cube in F∗p.

(4) If p = 2, then Fu(X, Y, Z) = 0 has a solution in Q2 if and only if one of the

following is ful�lled:

(a) exactly one of {u1, u2, u3} is divisible by 2 and the ratio of the other two is

a cube in F∗2,
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(b) exactly two of {u1, u2, u3} is divisible by 2 each exactly once and their ratio

is a cube in F∗2.

Proposition 3.2. [2] Let

Fu(X, Y, Z) = u1X
3 + u2Y

3 + u3Z
3 − 2aXY Z

with 3-integral coe�cients where u1 and u2 are square-free and coprime and u3 =
2b

u1u2

.

(1) If v3(a) = 0, then Fu(X, Y, Z) = 0 has a solution in Q3.

(2) If v3(a) ≥ 2 and v3(b) = 0 then Fu(X, Y, Z) = 0 has a solution in Q3 if and only

if ui/uj is a cube mod 9 for some i 6= j.

(3) If v3(a) ≥ 2 and exactly one of {u1, u2, u3} is divisible by 3, say ui, then Fu(X, Y, Z) =

0 has a solution in Q3 if and only if either the ratio of the other two is a cube

mod 9 or v3(ui) = 1.

(4) If v3(a) ≥ 2 and exactly two of {u1, u2, u3} are divisible by 3, then Fu(X, Y, Z) = 0

has a solution in Q3 if and only if their ratio is a cube mod 9.

(5) If v3(a) = 1 and exactly one of {u1, u2, u3} is divisible by 3, then Fu(X, Y, Z) = 0

has a solution in Q3 if and only if either the ratio of the other two is a cube mod

9 or there exists s1, s2 ∈ {±1} such that 2a ≡ s1u1 + s2u2 + s1s2u3 (mod 9).

(6) If v3(a) = 1 and two of {u1, u2, u3} are divisible by 3, then Fu(X, Y, Z) = 0 has

a solution in Q3.

(7) If v3(a) = 1, v3 (b) = 0 and ui/uj is a cube mod 9 for some i 6= j, then

Fu(X, Y, Z) = 0 has a solution in Q3.

(8) If v3(a) = 1, v3 (b) = 0 and ui/uj is not a cube mod 9 for all i 6= j then

Fu(X, Y, Z) = 0 has a solution in Q3 if and only if there exists s1, s2 ∈ {±1}

such that 2a ≡ s1u1 + s2u2 + s1s2u3 (mod 27).
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3.2. The Isogenous Curve E ′ab′. The following propositions give the local solubility

criteria for the polynomial

Fu′(X, Y, Z) := 2aX2Z − 2aXY Z + 2aY 2Z +
2b′

N (γ)
Z3

−dX3 − dY 3 − 3cXY 2 + 3cX2Y + 3dXY 2

associated to the isogenous elliptic curve, E ′ab′ . Note that since we are working over

Q
(√
−3
)
, p = 3 is the only rami�ed prime. If p ≡ 2 (mod 3), then p is an inert prime.

And if p ≡ 1 (mod 3), then p is a split prime.

Proposition 3.3. [2, Corollary 6.3] Let p be any split prime. Then there exists dp ∈ Qp

such that d2
p = −3. Then Fu′(X, Y, Z) = 0 has a solution in Qp if and only if the cubic

u1X
3 + u2Y

3 + u3Z
3 − cXY Z = 0

does, where u1 =

(
c− d

2

)
− d

2
dp, u2 =

(
c− d

2

)
+
d

2
dp, u3 =

2b′

γγ
dp and c = 2adp.

Making some minor adjustments to Proposition 3.1, we have all the conditions neces-

sary to �nd a solution for Fu′(X, Y, Z) = 0 in Qp where p is a split prime. Before stating

our Corollary, we make the following observation.

Lemma 3.4. Let ∆′ = 27b′ + 12a3. If p ≡ 1 (mod 3), p | ∆′ and p - b′, then 2b′
√
−3 is

a cube mod p.

So we can conclude that if ui/uj is a cube for some i 6= j, then this is true for all

i 6= j.
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Corollary 3.5. Let p be any split prime. Then we can write p = ππ where π ≡

2 (mod 3) and is in the upper-half plane. Let

Fu′(X, Y, Z) = u1X
3 + u2Y

3 + u3Z
3 − cXY Z = 0

where u1 =

(
c− d

2

)
− d

2

√
−3, u2 =

(
c− d

2

)
+
d

2

√
−3, u3 =

2b′

γγ

√
−3 and c = 2a

√
−3

with (c, d) = 1.

(1) If vp(b
′) = 0 and vp(27b′+ 12a3) = 0, then Fu′(X, Y, Z) = 0 has a solution in Qp.

(2) If vp(b
′) = 0 and vp(27b′ + 12a3) > 0, then Fu′(X, Y, Z) = 0 has a solution in Qp

if and only if u1/u2 is a cube in F∗p.

(3) If vπ(b′) > 0, then Fu′(X, Y, Z) = 0 has a solution in Q(ω)π if and only if one of

the following is true

(a) vπ(a) = 0,

(b) vπ(a) > 0, π divides exactly one of {u1, u2, u3} and the ratio of the other

two is a cube mod π,

(c) vπ(a) > 0, π divides two of {u1, u2, u3} and their ratio is a cube mod π.

Recall that γγ is only divisible by split primes. So we have the following solubility

propositions.

Proposition 3.6. Assume p 6= 2, p ≡ 2 mod 3 and let Fu′(X, Y, Z) be as in equation

(2.3).

(1) If vp (γγ) = 0, vp(2b
′) = 0 and vp (27b′ + 12a3) = 0, then Fu′(X, Y, Z) = 0 has a

solution in Qp.

(2) If vp(2b
′) = 0 and vp (27b′ + 12a3) > 0, then Fu′(X, Y, Z) = 0 has a solution in

Qp if and only if
γ

γ
is a cube in F∗p2.
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(3) If vp(2b
′) > 0 and vp (γγ) = 0, then Fu′(X, Y, Z) = 0 has a solution in Qp if and

only if one of the following is satis�ed:

(a) vp(2a) = 0.

(b) vp(2a) > 0 and the class of
γ

γ
mod p is a cube in F∗p2.

Proposition 3.7. Let p = 2 and Fu′(X, Y, Z) be as in equation (2.3).

(1) If v2(2b′) ≤ 2, then Fu′(X, Y, Z) = 0 has a solution in Q2 if and only if the class

of
γ

γ
mod 2 is a cube in Z∗[ω]/2Z∗[ω] ∼= F∗4. Note that the only cube in F∗4 is 1.

(2) If v2(2b′) ≥ 3, then

(a) if d ≡ 0 (mod 4) and c ≡ ±1 (mod 4), then Fu′(X, Y, Z) = 0 has a solution

in Q2.

(b) if d ≡ 2 (mod 4) and c ≡ ±1 (mod 4) then Fu′(X, Y, Z) = 0 has a solution

in Q2.

(c) if d ≡ 1 (mod 2), then Fu′(X, Y, Z) = 0 has a solution in Q2 if and only if

either v2(2b′) ≥ 4 or v2(a) > 0.

Proposition 3.8. Let p = 3 and Fu′(X, Y, Z) be as in equation (2.3).

(1) If v3(2a) = 0, then Fu′(X, Y, Z) = 0 has a solution in Q3 if and only if one of

the following conditions is satis�ed:

(a) v3 (d) > 0,

(b) v3 (d) = v3

(
2a+

2b′

N(γ)

)
= 0.

(2) If v3(2a) ≥ 2, then Fu′(X, Y, Z) = 0 has a solution in Q3 if and only if one of

the following conditions is satis�ed:

(a) v3(d) ≥ 2,

(b) v3(d) = v3(b) = 1,

(c) v3(d) = 0 and
2b′

dN(γ)
is a cube mod 9,



THREE SELMER GROUPS FOR ELLIPTIC CURVES WITH 3-TORSION 17

(d)
2b′

N(γ)
≡ ± (6c− 3d) mod 27.

(3) If v3(2a) = 1, then Fu′(X, Y, Z) = 0 has a solution in Q3 if and only if one of

the following is satis�ed:

(a) v3(d) ≥ 2,

(b) v3(d) = v3

(
2a+

2b′

N(γ)

)
= 1,

(c) v3(d) = 0 and

(
2b′

N(γ)
+ 2a

)
/d is a cube mod 9,

(d) v3

(
2b′

N(γ)

)
= 1, v3(d) = 0 and there exists s ∈ {±1} such that (d − 2c) ≡

s

(
2b′

3N(γ)
+ 2a

)
(mod 27) and s(2c− d) ≡ 2a/3 (mod 3),

As one can see, the local solubility results associated with the primes 2 and 3 are

complex. Therefore we exclude them when looking for solutions and de�ne a larger

group than the Selmer group.

4. Graph Theory

We can use the propositions from the previous section to give a characterization of the

Selmer group in terms of graphs. For each elliptic curve, we construct a directed graph

whose edges are labeled by cubic roots of unity. In the case of Eab : y2 = x3 + (ax+ b)2,

if we de�ne a �three-balanced� partition in terms of the following labeling, then the size

of Sel(φ)(Eab) corresponds to the number of �three-balanced� partitions of the graph.

Conversely, for E ′ab′ : y2 = x3 − 3(ax + b′)2, we de�ne the notion of a �good� labeling.

Then the size of Sel(φ̂)(E ′ab′) is bounded by the number of �good� labellings. We will

make these notions more precise below.

4.1. The Elliptic Curve Eab. We will begin by studying elliptic curves with rational

3-torsion, of the form

y2 = x3 + (ax+ b)2
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whose discriminant is

∆ = 16b3∆′

where ∆′ = 4a3−27b. Recall by Lemma 2.1, we know that either vp(b) ≤ 2 or vp(a) = 0.

Let ω be a primitive cubic root of unity. If p ≡ 1 (mod 3) is a rational prime (i.e. p

splits in Z[ω]), then we will write p = ππ where π ≡ 2 (mod 3) and π is in the upper-half

plane. Recall that if p ≡ 2 (mod 3), then every number is a cube modulo p.

Using these conventions, let p and q be primes. Then we de�ne the following:

χp(q) =


( q
π

)
3

if p ≡ 1 (mod 3)

1 if p ≡ 2 (mod 3) .

Recall that we have the following properties of χp:

(1) χp(q) = 1 if and only if q is a cube in F∗p

(2) χp(ab) = χp(a)χp(b).

So the above is true for all primes, p, not equal to 3. For p = 3, notice that (Z/9Z)∗ is

cyclic and generated by 2. De�ne χ3 on (Z/9Z)∗ by

χ3(q) = ωt

where q = 2t ∈ (Z/9Z)∗. Note that even though we are working mod 9, we will still use

χ3 to avoid confusion later.

One important concept to notice is that for those primes, q, which divide ∆′, but do

not divide 2b, we can conclude that

2b ≡
(
2
(
3−1
)
a
)3

(mod q)
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or equivalently that χq (2b) = 1.

Using this observation we can conclude that

χq (u2/u3) = χq (u3/u1)

= χq (u1/u2)

and

χq (u1/u3) = χq (u3/u2)

= χq (u1/u2)

where u1, u2 and u3 are as de�ned in Proposition 3.1. Also χq (ui/uj) = 1 if and only if

χq (uj/ui) = 1 for i 6= j. Therefore it is enough to show u1/u2 is a cube modulo a given

prime.

For clarity, we will consider di�erent families of elliptic curves.

4.1.1. The Family of Curves E1. Consider the family E1 of elliptic curves given by

Eab/Q : y2 = x3 + (ax+ b)2

where 3 - b and ∆ = 16b3∆′, with ∆′ = 27b− 4a3.

Let G be a graph with g vertices where

g = 1 +
∑
p|b

vp(b).
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Let G′ be the graph containing G with g′ vertices where

g′ = g +
∑
p|∆′

p-(2b)

1.

So

V (G) = {p : p | b} ∪
{
p : p2 | b

}
∪ {2}

and

V (G′) = V (G) ∪ {p : p | ∆′, p - (2b)} .

Draw directed edges from all primes p ∈ V (G′) \ V (G) to all primes q ∈ V (G). Addi-

tionally draw directed edges from all primes p ∈ V (G) to q ∈ V (G) where p | ∆′ and

p 6= q. Label each directed edge from p to q as

`(p, q) := χp(q).

A partition of V (G) into three parts is an ordered triple of subsets (S1, S2, S3) such

that S1 ∪ S2 ∪ S3 = V (G) and S1 ∩ S2 = S1 ∩ S3 = S2 ∩ S3 = ∅. We will allow for the

possibility that S1, S2 or S3 is empty.

De�nition 2. A partition, (S1, S2, S3), of V (G) is called three-balanced if and only

if the following �ve conditions are satis�ed:

(1) if p ∈ S1∪S2 and p2 || 2b, then the additional copy of p is in S3 for all p ∈ V (G)

(2) if 4 | b, then all copies of 2 are in S3

(3) for every p ∈ Sν such that the prime, p, is only in Sν and p | ∆′, we have ∏
pj∈Sν+1

`(p, pj)

 ∏
pk∈Sν+2

`(p, pk)
2

 = 1

where we cycle the indices of the partitions (i.e. S1 = S4, ect.)
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(4) for every p ∈ Sη, η = 1, 2 such that p is also in S3 and p | ∆′, we have ∏
pj∈Sη
pj 6=p

`(p, pj)


 ∏
pk∈S3
pk 6=p

`(p, pk)
2

 = 1

(5) for every p ∈ V (G′) \ V (G) ∏
pj∈S1

`(p, pj)

( ∏
pk∈S2

`(p, pk)
2

)
= 1.

We will also need another de�nition.

De�nition 3. A partition, (S1, S2, S3), of V (G) is called three-quasi-balanced at 3

if and only if the following conditions are satis�ed:

(1) (S1, S2, S3) satis�es condition (1) for a three-balanced partition for all primes and

satis�es the remainder of the conditions for all primes except 3

(2) Exclusively we have ∏
pj∈S1

`(3, pj)

( ∏
pk∈S2

`(3, pk)
2

)
= 1

or there exists s1, s2 ∈ {±1} such that

2a ≡ s1

(∏
pi∈S1

pi

)
+ s2

 ∏
pj∈S2

pj

+ s1s2

( ∏
pk∈S3

pk

)
(mod 27) .

Using these de�nitions, we have the following lemma.

Lemma 4.1. Suppose (S1, S2, S3) is a partition of V (G). Let

u1 =
∏

pi∈S1

pi and u2 =
∏

pj∈S2

pj.
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Then the homogeneous equation

u1X
3 + u2Y

3 +
2b

u1u2

Z3 − 2aXY Z = 0 (4.1)

has a solution in every local �eld Qp if and only if v3(a) = 1 and (S1, S2, S3) is three-

quasi-balanced at 3 or v3(a) 6= 1 and (S1, S2, S3) is three-balanced.

Proof. Let u3 = 2b/(u1u2). We will begin by assuming (S1, S2, S3) is a three-balanced

partition. By Proposition 3.1, there are three conditions we check. First, for every prime

p ∈ Sν , if p is only in Sν and p | ∆′, then χp (uν+1/uν+2) = 1 where we cycle the indicies.

Second for every p ∈ Sη with η = 1 or η = 2, such that p is also in S3 and p | ∆′, we

have χp (uη/u3) = 1. In addition, we must also show that for every p ∈ V (G′) \ V (G),

χp(u1/u2) = 1.

We will only prove one case since the remainding ones follow in a similar manner.

Notice that for every p ∈ Sν , which is only in Sν and p | ∆′, we have

χp (uν+1/uν+2) = χp (uν+1)χp (uν+2)2

=

 ∏
pj∈Sν+1

χp(pj)

 ∏
pk∈Sν+2

χp(pk)
2


=

 ∏
pj∈Sν+1

`(p, pj)

 ∏
pk∈Sν+2

`(p, pk)
2


= 1

since (S1, S2, S3) is three-balanced. So uν+1/uν+2 is a cube modulo p and therefore we

have a solution.

Conversely, suppose that (S1, S2, S3) is not three-balanced or if 3 || a, it is not three-

quasi-balanced at 3 as well. There are a few cases we need to consider. We include one
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of the cases here since the remaining ones follow either trivially or in a similar manner.

Suppose there exists p in some Sν with p not in any other Sη and p | ∆′, such that ∏
pj∈Sν+1

`(p, pj)

 ∏
pk∈Sν+2

`(p, pk)
2

 6= 1.

Then

χp (uν+1/uν+2) = χp (uν+1)χp (uν+2)2

=

 ∏
pj∈Sν+1

χp(pj)

 ∏
pk∈Sν+2

χp(pk)
2


=

 ∏
pj∈Sν+1

`(p, pj)

 ∏
pk∈Sν+2

`(p, pk)
2


6= 1,

where we cycle the indices. Hence by Proposition 3.1, equation (4.1) does not have a

solution in Qp.

�

So we obtain the following theorem giving the size of the Selmer group, Sel(φ)(Eab),

for the family E1.

Theorem 4.2. Let Eab : y2 = x3 + (ax + b)2 with 3 - b. Let G and G′ be de�ned as

above. Then if 3 || a, we have

∣∣∣Sel(φ)(Eab)
∣∣∣ = # {three− quasi− balanced at 3 partitions of V (G)} .

Otherwise, we have

∣∣∣Sel(φ)(Eab)
∣∣∣ = # {three− balanced partitions of V (G)} .
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4.1.2. The Family of Curves E2. Next, consider the family E2 of elliptic curves given by

Eab/Q : y2 = x3 + (ax+ b)2

where 3 | b and ∆ = 16b3∆′, with ∆′ = 27b− 4a3. Again, recall that we may assume for

every prime p, either vp(a) = 0 or vp(b) ≤ 2.

Let G be a graph with g vertices where

g = 1 +
∑
p|b

vp(b).

Let G′ be the graph, containing G, with g′ vertices where

g′ = g +
∑
p|∆′

p-(2b)

1.

So

V (G) = {p : p | b} ∪
{
p : p2 | b

}
∪ {2}

and

V (G′) = V (G) ∪ {p : p | ∆′, p - (2b)} .

Draw directed edges from all primes p ∈ V (G′) \ V (G) to all primes q ∈ V (G). Addi-

tionally draw directed edges from all primes p ∈ V (G) to q ∈ V (G) where p | ∆′ and

p 6= q. Label each directed edge from p to q as

`(p, q) := χp(q).

Again, a partition of V (G) into three parts is an ordered triple of subsets (S1, S2, S3)

such that S1 ∪ S2 ∪ S3 = V (G) and S1 ∩ S2 = S1 ∩ S3 = S2 ∩ S3 = ∅. We will allow for

the possibility that S1, S2 or S3 is empty.
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De�nition 4. A partition, (S1, S2, S3), of V (G) is called three-balanced if and only

if the following conditions are satis�ed:

(1) if p ∈ S1∪S2 and p2 || 2b, then the additional copy of p is in S3 for all p ∈ V (G)

(2) if 4 | b, then all copies of 2 are in S3

(3) for every p ∈ Sν, with p | ∆′ and p 6= 3, such that the prime, p, is only in Sν, we

have  ∏
pj∈Sν+1

`(p, pj)

 ∏
pk∈Sν+2

`(p, pk)
2

 = 1

where we cycle the indices of the partitions (i.e. S1 = S4, ect.)

(4) for every p ∈ Sη, with p | ∆′, η = 1 or 2 and p 6= 3, such that p ∈ S3, we have ∏
pj∈Sη
pj 6=p

`(p, pj)


 ∏
pk∈S3
pk 6=p

`(p, pk)
2

 = 1

(5) for every p ∈ V (G′) \ V (G), ∏
pj∈S1

`(p, pj)

( ∏
pk∈S2

`(p, pk)
2

)
= 1

We will need two other de�nitions.

De�nition 5. A partition, (S1, S2, S3), of V (G) is called three-quasi-balanced at 3

if and only if the following conditions are satis�ed:

(1) (S1, S2, S3) is three-balanced

(2) if p = 3 is in only one Sν, then either ∏
pj∈Sν+1

`(3, pj)

 ∏
pk∈Sν+2

`(3, pk)
2

 = 1
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where we cycle the indices of the partitions (i.e. S1 = S4, ect.)

or there exists s1, s2 ∈ {±1} such that

2a ≡ s1

(∏
pi∈S1

pi

)
+ s2

 ∏
pj∈S2

pj

+ s1s2

( ∏
pk∈S3

pk

)
(mod 9) .

De�nition 6. A partition, (S1, S2, S3), of V (G) is called three-quasi-balanced at 9

if and only if the following conditions are satis�ed:

(1) (S1, S2, S3) is three-balanced

(2) if 9 | b and 3 6∈ S1 ∪ S2 then ∏
pj∈S1

`(3, pj)

( ∏
pk∈S2

`(3, pk)
2

)
= 1.

Using our de�nitions for this family of elliptic curves E2, we have the following lemma.

Lemma 4.3. Suppose (S1, S2, S3) is a partition of V (G). Let

u1 =
∏

pi∈S1

pi and u2 =
∏

pj∈S2

pj.

Then the homogeneous equation

u1X
3 + u2Y

3 +
2b

u1u2

Z3 − 2aXY Z = 0 (4.2)

has a solution in every local �eld Qp if and only if 3 - a and (S1, S2, S3) is three-balanced

or if 3 || a and (S1, S2, S3) is three-quasi-balanced at 3 or if 9 | a and (S1, S2, S3) is

three-quasi-balanced at 9.

The proof is similar to that of Lemma 4.1, so we omit it.

The following theorem gives us the size of the Selmer group Sel(φ)(Eab) in terms of

graphs for the family of elliptic curves E2.
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Theorem 4.4. Let Eab : y2 = x3 + (ax + b)2 with 3 | b. Let G and G′ be de�ned as

above. Then if 3 - a, we have

∣∣∣Sel(φ)(Eab)
∣∣∣ = # {three− balanced partitions of V (G)} .

If 3 || a, then

∣∣∣Sel(φ)(Eab)
∣∣∣ = # {three− quasi− balanced partitions at 3 of V (G)} .

Otherwise, if 9 | a, then

∣∣∣Sel(φ)(Eab)
∣∣∣ = # {three− quasi− balanced partitions at 9 of V (G)} .

4.2. The Isogenous Curve E ′ab′. In this section, we will be studying elliptic curves of

the form

y2 = x3 − 3(ax+ b′)2

whose discriminant is

∆ = −144
(
(b′)3∆′

)
where ∆′ = 27b′ + 12a3. Recall by Lemma 2.1, we know that for every prime, p, either

vp(b
′) ≤ 2 or vp(a) = 0.

Once again, let ω be a primitive cubic root of unity. If p ≡ 1 (mod 3), then we know

that we can write p = ππ with π ≡ 2 (mod 3) and π in the upper-half plane. De�ne

χp(q) = χπ(q) =
( q
π

)
3
.

For p ≡ 2 (mod 3), de�ne

χp2(δ) = ωi

where δ(p2−1)/3 ≡ ωi (mod p).
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Recall that we have the following properties of χp:

(1) χp(q) = 1 if and only if q is a cube in F∗p

(2) χp(ab) = χp(a)χp(b).

So the above is true for all primes, p, not equal to 3. For p = 3, notice that (Z/9Z)∗

is cyclic and generated by 2. De�ne χ3 on (Z/9Z)∗ by

χ3(q) = ωt

where q = 2t ∈ (Z/9Z)∗. Note that even though we are working mod 9, we will still use

χ3 to avoid confusion later.

Recall

Fu′(X, Y, Z) = 2aX2Z − 2aXY Z + 2aY 2Z +
2b′

γγ
Z3

−dX3 − dY 3 − 3cXY 2 + 3cX2Y + 3dXY 2

with γ = c+ dω where γγ is only divisible by primes p ≡ 1 (mod 3).

Consider the family E3 of elliptic curves given by

E ′ab′ : y2 = x3 − 3(ax+ b′)2.

Let G be a graph with vertex set V (G) = {p : p ≡ 1 (mod 3) , p | (2b′)}. Additionally,

let G′ be a graph containing G with vertex set

V (G′) = {q : q satis�es one of (1), (2) below} ∪ V (G)

(1) q ≡ 2 (mod 3), q | ∆′

(2) q ≡ 1 (mod 3), q | ∆′ and q - (2b′).
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Finally, let G′′ be a graph containing G′ with

V (G′′) = V (G′) ∪ {q : q satis�es one of (3), (4), (5), (6) below} ∪ {
√
−3}

(3) q ≡ 1 (mod 3), q2 | (2b′)

(4) q 6≡ 1 (mod 3), q2 | (2b′)

(5) q = 2, q3 | (2b′)

(6) q | b′, q = 3.

Clearly, if v2(b′) < 2, then we do not need the additional copy of 2. And similarly, with

the prime q = 3, we only include it if 3 | b′.

Draw directed edges from all primes p ∈ V (G′′) to q ∈ V (G′′) where p | (2b′), p | ∆′

and q | (2b′
√
−3).

Draw directed edges from all primes p ∈ V (G′) with p - (2b′)
√
−3 to primes q ∈ V (G).

Label each directed edge from p to q as

`(p, q) =


χπ(q) p ≡ 1 (mod 3) , p | (2b′)

χp(q) p ≡ 1 (mod 3) , p - (2b′)

χp2(q) p ≡ 2 (mod 3)

.

For each point p in V (G), label it with L(p) ∈ {0, 1, 2}.

Let S1 = {p ∈ V (G) : L(p) = 1} and S2 = {p ∈ V (G) : L(p) = 2}.

De�ne

u1 =
∏
p∈S1
p=ππ

π
∏
p∈S2
p=ππ

π

and

u2 =
∏
p∈S1
p=ππ

π
∏
p∈S2
p=ππ

π.
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Then

u3 =
2b′
√
−3

u1u2

.

De�nition 7. We say a labeling, L, on V (G) is good if and only if it satis�es the

following properties:

(1) For all p ∈ V (G) with p | ∆′, if L(p) = 0, then∏
q∈S1
q=ηη

`(p, η)`(p, η)2


∏
q∈S2
q=ηη

`(p, η)`(p, η)2

 = 1.

(2) For all p ∈ V (G) with p | ∆′, if L(p) = 1 and p 6∈ V (G′′) \ S1, then∏
q∈S1
q=ηη

`(p, η)


∏
q∈S2
q=ηη

`(p, η)


 ∏
q∈V (G′′)\(S1∪S2)

q|2b′
√
−3

`(p, q)2

 = 1.

(3) For all p ∈ V (G) with p | ∆′, if L(p) = 2 and p 6∈ V (G′′) \ S2, then∏
q∈S1
q=ηη

`(p, η)


∏
q∈S2
q=ηη

`(p, η)


 ∏
q∈V (G′′)\(S1∪S2)

q|2b′
√
−3

`(p, q)2

 = 1.

(4) For all p ∈ V (G) with p | ∆′, if L(p) = 1 and p ∈ V (G′′) \ S1, then ∏
q∈S1\{p}
q=ηη

`(p, η)


∏
q∈S2
q=ηη

`(p, η)


 ∏
q∈V (G′′)\(S1∪S2∪{p})

q|2b′
√
−3

`(p, q)2

 = 1.
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(5) For all p ∈ V (G) with p | ∆′, if L(p) = 2 and p ∈ V (G′′) \ S2, then∏
q∈S1
q=ηη

`(p, η)


 ∏
q∈S2\{p}
q=ηη

`(p, η)


 ∏
q∈V (G′′)\(S1∪S2∪{p})

q|2b′
√
−3

`(p, q)2

 = 1.

(6) For all q ∈ V (G′) \ V (G), q 6= 2, then∏
p∈S1
p=ππ

`(q, π)`(q, π)2


∏

p∈S2
p=ππ

`(q, π)`(q, π)2

 = 1.

Using this de�nition, we have the following lemma.

Lemma 4.5. Suppose L is a labeling of V (G). Then the homogeneous cubic equation

Fu′(X, Y, Z) = 0 has a solution in every local �eld Qp with p 6= 2, 3 if and only if L is a

good labeling.

Proof. Let

u1 =
∏
p∈S1
p=ππ

π
∏
p∈S2
p=ππ

π

and

u2 =
∏
p∈S1
p=ππ

π
∏
p∈S2
p=ππ

π.

Then, when necessary, let

u3 =
2b′
√
−3

u1u2

.

Assume that L is a good labeling. We need to check the following for every prime

p ∈ V (G) with p | ∆′,

(1) if L(p) = 0, then χp(u1/u2) = 1.

(2) if L(p) = 1, p 6∈ V (G′) \ S1, then χp(u2/u3) = 1.
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(3) if L(p) = 2, p 6∈ V (G′) \ S2, then χp(u1/u3) = 1.

(4) if L(p) = 1 and p ∈ V (G′) \ S1, then χp(u1/u3) = 1.

(5) if L(p) = 2 and p ∈ V (G′) \ S2, then χp(u2/u3) = 1.

Additionally, we must check for every q ∈ V (G′) \ V (G), q 6= 2, then χq(u1/u2) = 1.

We will just check one condition. Assume p ∈ V (G) with p | ∆′. Suppose L(p) = 0,

then

χπ(u1/u2) = χπ(u1)χπ(u2)2

=

∏
q∈S1
q=ηη

χπ(η)χπ(η)2


∏
q∈S2
q=ηη

χπ(η)χπ(η)2



=

∏
q∈S1
q=ηη

`(p, η)`(p, η)2


∏
q∈S2
q=ηη

`(p, η)`(p, η)2


= 1.

Therefore u1/u2 is a cube modulo p and hence we have a solution.

The remaining cases follow in a similar fashion.

Conversely assume L is not a good labeling of V (G). There are a few cases we need

to consider. Once again, we will go through one case since the remaining ones follow

easily.

Suppose there exists a p ∈ V (G) such that p | ∆′, L(p) = 1, p 6∈ V (G′) \ S1 and∏
q∈S1
q=ηη

`(p, η)


∏
q∈S2
q=ηη

`(p, η)


 ∏
q∈V (G′′)\(S1∪S2)

q|2b′
√
−3

`(p, q)2

 6= 1.
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But this implies that χπ(u2/u3) 6= 1, so u2/u3 is not a cube mod π. This violates

Corollary 3.5.3.b, so we would not have a solution in Qp. �

Let G3 = Q∗
(√
−3
)
/
(
Q∗
(√
−3
))3

. Let S be a set of primes containing 2 and 3.

De�ne

Sel
(φ̂)
S (E ′ab′) =

{
[u′] ∈ G3 : CFu′ (R) 6= ∅, CFu′ (Qp) 6= ∅ ∀ p 6∈ S

}
.

One can check that Sel
(φ̂)
S (E ′ab′) is a group.

The following theorem bounds the size of the Selmer group Sel(φ̂)(E ′ab′).

Theorem 4.6. Let E ′ab′ : y2 = x3 − 3(ax + b′)2. Let G, G′ and G′′ be the graphs with

vertices de�ned above. Let S = {2, 3}. Then

∣∣∣Sel(φ̂)(E ′ab′)
∣∣∣ ≤ ∣∣∣Sel(φ̂)

S (E ′ab′)
∣∣∣ = #{good labeling of V (G)}.

5. Linear Algebra

Given a graph G with vertex set V (G), as de�ned in the previous section, we can

construct a characteristic matrix.

5.1. The Elliptic Curve Eab. Consider an elliptic curve Eab : y2 = x3 + (ax+ b)2 with

∆′ = 27b − 4a3. Assume we have a graph G′ with vertex set V (G′) and subgraph G

with vertex set V (G), as de�ned in the Sections 4.1.1 and 4.1.2. We want to construct a

characteristic matrix to relate the graph theory problem with three-balanced and three-

quasi-balanced partitions to a linear algebra problem.

We will index the rows and columns of the characteristic matrix by primes and we

begin by ordering primes. Let p1, . . . , pl be the distinct primes which divide 2b exactly

once and divide ∆′. Let pl+1, . . . , pr be the distinct primes which divide 2b exactly twice

and divide ∆′. Next, let pr+1, . . . , pn be the distinct primes which divide 2b but do
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not divide ∆′. Also, let pn+1, . . . , pt be the second copy of the primes which divide 2b

exactly twice. If v2(b) = 2, then 2 is not one of the primes, pi, for 1 ≤ i ≤ n, so let

pt+1 = pt+2 = pt+3 = 2. Let q1, . . . , qm be the distinct primes dividing ∆′, but not 2b.

De�ne

t′ =


t if v2(b) < 2

t+ 3 if v2(b) = 2

r′ =


r if v2(b) < 2

r + 1 if v2(b) = 2

and

pr′ =


pr if v2(b) < 2

2 if v2(b) = 2

.

De�ne the (r′ +m)× t′ matrix A(G′) by

aij =


logω (` (pi, pj)) 1 ≤ i ≤ r′, 1 ≤ j ≤ t′, pi 6= pj

logω (` (qi−r′ , pj)) r′ + 1 ≤ i ≤ r′ +m, 1 ≤ j ≤ t′

0 otherwise

.

Let D(G′) be the (r′ +m)× t′ matrix with entries

dij =



t′∑
k=1

aik 1 ≤ i ≤ l, i = j

−
t′∑
k=1

aik l + 1 ≤ i ≤ r, i = j

0 otherwise

.

Let

L′ (G′) = A(G′)−D(G′)
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and de�ne L(G) be the (r′ +m) × n submatrix of L′(G′) with the n + 1 to t′ columns

removed.

Remark 2. Notice that kerL(G) =
{
~w : (~w, 0, . . . , 0)T ∈ kerL′(G′)

}
.

Let ~w = (w1, w2, . . . , wn)T ∈ Fn3 . For each ~w, associate subsets as follows:

S1 = {pi : wi = 1}

S2 = {pi : wi = 2}

and

S3 = {pi : wi = 0} ∪ {pn+1, . . . , pt′} .

Now we will reduce to the case given in Section 4.1.1.

5.1.1. The Family of Curves E1. Assume Eab has the property that 3 - b.

Then, if v3(a) = 1, then we need to make the following adjustments. In this case

we know that 3 must be one of the qi's, so assume qm = 3. De�ne L3(G′) to be the

(r′ +m− 1)× n submatrix of L′(G′) with the m-th row removed as well as the n+ 1 to

t′ columns removed.

Remark 3. Again, notice that kerL3(G′) =
{
~w : (~w, 0, . . . , 0)T ∈ kerL′(G′)

}
.

The following lemma gives the relationship between partitions of the graph G and the

submatrices L(G) and L3(G′) of the Laplacian matrix L′(G′).

Lemma 5.1. (1) If v3(a) 6= 1, then the partition (S1, S2, S3) corresponding to the

vector ~w is three-balanced if and only if ~w ∈ kerL(G).

(2) If v3(a) = 1, then the partition (S1, S2, S3) corresponding to the vector ~w is three-

quasi-balanced if and only if either ~w ∈ ker (L(G)) or ~w ∈ ker (L3(G′)) and there
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exists s1, s2 ∈ {±1} such that

2a ≡ s1

∏
pi∈S1

pi|2b

pi

+ s2

 ∏
pj∈S2

pj |2b

pj

+ s1s2

 ∏
pk∈S3

pk|2b

pk

 (mod 27) .

Proof. Assume that v2(b) < 2, so 2 is one of the primes p1, . . . , pr and p′r = pr. Next

assume that pi ∈ S1 for 1 ≤ i ≤ l. So there is only one copy of pi. It is enough to show

that L′(G′)~w′ = ~0 with ~w′ = (w1, . . . , wt′)
T = (~w, 0, . . . , 0)T . Then

(L′(G′)~w′)i =
t′∑
j=1
pj 6=pi

logω (` (pi, pj))wj −
t′∑
j=1
pj 6=pi

logω (` (pi, pj))wi

=
t′∑
j=1
pj 6=pi

logω (` (pi, pj)) (wj − wi)

=
∑
wj=2

logω (` (pi, pj)) +
∑
wj=0

2 logω (` (pi, pj)) .

This is equivalent to zero mod 3 if and only if ∏
pj∈S2

` (pi, pj)

( ∏
pk∈S3

` (pi, pk)
2

)
= 1.

The cases that pi ∈ S2 and pi ∈ S3 with 1 ≤ i ≤ l are identical.
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Now assume pi ∈ S1 with l+ 1 ≤ i ≤ r. So we know that pi appears in more than one

Sj. Then

(L′(G′)~w′)i =
t′∑
j=1
pj 6=pi

logω (` (pi, pj))wj +
t′∑
j=1
pj 6=pi

logω (` (pi, pj))wi

=
t′∑
j=1
pj 6=pi

logω (` (pi, pj)) (wj + wi)

=
∑
wj=0

logω (` (pi, pj)) +
∑
wj=1

2 logω (` (pi, pj)) .

This is equivalent to zero mod 3 if and only if ∏
pj∈S3

pj 6=pi

` (pi, pj)


 ∏
pk∈S1
pk 6=pi

` (pi, pk)
2

 = 1.

Once again, the cases that pi ∈ S2 and pi ∈ S3 follow in a similar manner.

The case that v2(b) = 2 requires a slight adjustment, but follows easily. Additionally,

one can check the conditions on the remaining cases.

�

Corollary 5.2. (1) If v3(a) 6= 1, the number of three-balanced partitions of G is 3n−s

where s is the rank of the (r′ +m)× n matrix L(G).

(2) If v3(a) = 1, then the number of three-quasi-balanced partitions of G is between

3n−s1 and 3n−s where s is the rank of the (r′ +m)×n matrix L(G) and s1 is the

rank of the (r′ +m− 1)× n matrix L3(G′).

As a result of Lemma 5.1 and Corollary 5.2, we can construct an element of Sel(φ)(Eab)

for the family of elliptic curves E1.
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Corollary 5.3. (1) If v3(a) = 1, then
∣∣∣Sel(φ)(Eab)

∣∣∣ = 3n−s where s is the rank of the

(r′ +m)× n matrix L(G).

(2) If v3(a) 6= 1, then 3n−s1 ≤
∣∣∣Sel(φ)(Eab)

∣∣∣ ≤ 3n−s where s is the rank of the

(r′ +m) × n matrix L(G) and s1 is the rank of the (r′ +m− 1) × n matrix

L3(G′), with possible equality on the right.

5.1.2. The Family of Curves E2. Now we will assume that Eab has the property that

3 | b. Construct the matrix L′(G′) as before.

So in this case, we know that 3 is one of the primes pi with 1 ≤ i ≤ t. Let L(G′)

be the (r′ +m− 1)× t′ submatrix of L′(G′) with the logω (` (3,−)) row removed. Then

de�ne L3(G) to be the (r′ +m− 1)×n submatrix of L(G′) with the n+ 1 to t′ columns

removed.

Remark 4. Notice that kerL3(G) =
{
~w : (w, 0, . . . , 0)T ∈ kerL(G′)

}
.

Recall given ~w = (w1, w2, . . . , wn)T ∈ Fn3 , for each ~w, we associate subsets as follows:

S1 = {pi : wi = 1}

S2 = {pi : wi = 2}

and

S3 = {pi : wi = 0} ∪ {pn+1, . . . , pt′} .

Lemma 5.4. (1) If v3(a) = 0, then the partition (S1, S2, S3) corresponding to the

vector ~w is three-balanced if and only if ~w ∈ kerL(G).

(2) If v3(a) = 1, then the partition (S1, S2, S3) corresponding to the vector ~w is three-

quasi-balanced at 3 if and only if one of the following holds:

(a) pi = 3 is in only one Sj and ~w ∈ kerL(G)
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(b) pi = 3 is in only one Sj, ~w ∈ kerL3(G) and there exists s1, s2 ∈ {±1} such

that

2a ≡ s1

∏
pi∈S1

pi|2b

pi

+ s2

 ∏
pj∈S2

pj |2b

pj

+ s1s2

 ∏
pk∈S3

pk|2b

pk

 (mod 9) .

(c) pi = 3 is in two Sj's and ~w ∈ kerL(GE).

(3) If v3(a) = 2, then the partition (S1, S2, S3) corresponding to the vector ~w is three-

quasi-balanced at 9 if and only if one of the following holds:

(a) if v3(b) = 2, pi = 3 is in S3 only then ~w ∈ kerL(G)

(b) if v3(b) 6= 2 or pi = 3 is in more than one Sj then ~w ∈ kerL3(G).

The proof of this lemma is similar to that of Lemma 5.1.

Corollary 5.5. (1) If v3(a) = 0, the number of three-balanced partitions of G is 3n−s

where s is the rank of the (r′ +m)× n matrix L(G).

(2) If v3(a) > 0, then the number of three-quasi-balanced partitions at 3 of G is

between 3n−s1 and 3n−s where s is the rank of the (r′ +m)× n matrix L(G) and

s1 is the rank of the (r′ +m− 1)× n matrix L3(G).

As a result of Lemma 5.4 and Corollary 5.5, we can construct an element of Sel(φ)(Eab)

for the family of elliptic curves E2.

Corollary 5.6. (1) If v3(a) = 0, then
∣∣∣Sel(φ)(Eab)

∣∣∣ = 3n−s where s is the rank of the

(r′ +m)× n matrix L(G).

(2) If v3(a) > 0, then 3n−s1 ≤
∣∣∣Sel(φ)(Eab)

∣∣∣ ≤ 3n−s where s is the rank of the

(r′ +m) × n matrix L(G) and s1 is the rank of the (r′ +m− 1) × n matrix

L3(G), with possible equality on the right.
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5.2. The Isogenous Curve E ′ab′. Consider a graph G′′ with vertex set V (G′′) and

subgraphs G′ and G with vertex sets V (G′) and V (G) respectively, as de�ned in the

previous section. Once again, we want to construct a characteristic matrix to relate the

graph theory problem to a linear algebra problem.

We will index the rows and columns of the characteristic matrix by primes and we

begin by ordering the primes which will correspond to the columns of the characteristic

matrix. Let p1, . . . , pn be the distinct primes equivalent to 1 mod 3 which divide 2b′.

Let pn+1, . . . , pl be the second copy of primes equivalent to 1 mod 3 which divide 2b′.

Next, let pl+1, . . . , pt be all copies of primes not equivalent to 1 mod 3 which divide 2b′.

Finally, we will also need pt+1 =
√
−3.

Next, we will order the primes which will correspond to the rows of the characteristic

matrix. Let q1, . . . , qν be the distinct primes equivalent to 1 mod 3 which divide 2b′

exactly once and divide ∆′ = 27b′ + 12a3. Let qν+1, . . . , qm be the distinct primes

equivalent to 1 mod 3 which divide 2b′ exactly twice and divide ∆′. Next, let qm+1, . . . , ql

be the distinct primes equivalent to 1 mod 3 which divide ∆′, but do not divide 2b′.

Finally, let ql+1, . . . , qr be the distinct primes equivalent to 2 mod 3, not including 2,

which divide ∆′.

Now we are ready to de�ne the r× (t+ 1) matrix, A(G′′). De�ne the entries of A(G′′)

by

aij =


logω(`(qi, pj)) 1 ≤ i ≤ m, 1 ≤ j ≤ t+ 1, qi 6= pj

logω(`(qi, pj)) m+ 1 ≤ i ≤ r, 1 ≤ j ≤ l, qi 6= pj

0 otherwise

.
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Let D(G′′) be the r × (t+ 1) diagonal matrix with entries

dij =



t+1∑
k=0

aik 1 ≤ i ≤ ν, i = j

−
t+1∑
k=0

aik ν + 1 ≤ i ≤ m, i = j

0 otherwise

.

Let

L′(G′′) = A(G′′)−D(G′′)

and de�ne L(G′′) to be the r × n submatrix of L′(G′′) with the n + 1 through t + 1

columns removed.

Remark 5. Notice that kerL(G′′) =
{
~w : (~w, 0, . . . , 0)T ∈ kerL′(G′′)

}
.

Let ~w = (w1, . . . , wn)T ∈ F n
3 . Recall p1, . . . , pn are the distinct prime equivalent to 1

mod 3 which divide 2b′. For 1 ≤ i ≤ n, let

S1 = {pi : wi = 1}

S2 = {pi : wi = 2}

and

S3 = {pi : wi = 0} ∪ {pn+1, . . . , pt+1} .

De�ne the labeling L on V (G) by L(pi) = wi. Then we have the following lemma.

Lemma 5.7. The labeling L of V (G) corresponding to ~w is good if and only if ~w ∈

kerL(G′′).

Proof. Without loss of generality, assume wi = 1 for 1 ≤ i ≤ ν. So there is only

one copy of pi which divides 2b′. It is enough to show that L′(G′′)~w′ = ~0 with ~w′ =
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(w1, . . . , wt′)
T = (~w, 0, . . . , 0)T . Then

L′(G′′)~w =
t+1∑
j=1
pj 6=qi

logω (` (qi, pj))wj −
t+1∑
j=1
pj 6=qi

logω (` (qi, pj))wi

=
t+1∑
j=1
pj 6=qi

logω (` (qi, pj)) (wj − wi)

=
∑
wj=2

logω (` (qi, pj)) +
∑
wj=0

2 logω (` (qi, pj)) .

This is equivalent to zero mod 3 if and only if

∏
p∈S1
p=ηη

`(qi, η)


∏
p∈S2
p=ηη

`(qi, η)


 ∏
p∈V (G′′)\(S1∪S2)

p|2b′
√
−3

`(p, q)2

 = 1.

The cases that wi = 2 and wi = 0 are identical.

Similar arguments can be used to verify the remainder of the proof. �

Corollary 5.8. The number of good labellings of V (G) is 3n−s where s is the rank of

the r × n matrix L(G).

Therefore, as a result of Lemma 5.7 and Corollary 5.8, we can construct an element

in the modi�ed Selmer group, Sel
(φ̂)
S (E ′ab′).

Corollary 5.9.

∣∣∣Sel(φ̂)(E ′ab′)
∣∣∣ ≤ ∣∣∣Sel(φ̂)

S (E ′ab′)
∣∣∣ = 3n−s, where s is the rank of the r × n

matrix L(G) and S = {2, 3}.
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6. Conclusion

Let L1(G) and L31(G
′) be the matrices de�ned in Section 5.1.1. Similarly, let L2(G)

and L32(G) be the matrices de�ned in Section 5.1.2. Finally, let L(G) be the matrix de-

�ned in Section 5.2. Then combining Corollaries 5.3, 5.6 and 5.9 we obtain the following

results:

Theorem 6.1. (1) If 3 - b and v3(a) = 0, then

r ≤ n1 + n2 − s1 − s− 1

where s1 is the rank of the (r′1 +m1) × n1 matrix L1(G), s is the rank of the

r2 × n2 matrix L(G) and r is the rank of Eab.

(2) If 3 - b and v3(a) > 0, then

r ≤ R1 +R2 − 1

where

n1 + n2 − s2 − s ≤ R1 +R2 ≤ n1 + n2 − s1 − s

and s1 is the rank of the (r′1 +m1) × n1 matrix L1(G), s2 is the rank of the

(r′1 +m1 − 1)× n2 matrix L31(G
′), s is the rank of the r2 × n2 matrix L(G) and

r is the rank of Eab.

(3) If 3 | b and v3(a) = 1, then

r ≤ n1 + n2 − s1 − s− 1

where s1 is the rank of the (r′1 +m1) × n1 matrix L2(G), s is the rank of the

r2 × n2 matrix L(G) and r is the rank of Eab.
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(4) If 3 | b and v3(a) 6= 1, then

r ≤ R1 +R2 − 1

where

n1 + n2 − s2 − s ≤ R1 +R2 ≤ n1 + n2 − s1 − s

where s1 is the rank of the (r′1 +m1) × n1 matrix L2(G), s2 is the rank of the

(r′1 +m1 − 1)× n matrix L32(G), s is the rank of the r2× n2 matrix L(G) and r

is the rank of Eab.

Remark 6. Once one has computed Sel
(φ̂)
S (E ′ab′) using linear algebra, applying Proposi-

tions 3.7 and 3.8 to the elements of Sel
(φ̂)
S (E ′ab′), one can compute Sel(φ̂)(E ′ab′).
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