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ABSTRACT. We consider a specific family of elliptic curves with rational 3-torsion sub-
group. We arithmetically define 3-Selmer groups through isogeny and 3-descent maps,
then associate the image of the 3-descent maps to solutions of homogeneous cubic poly-
nomials affiliated with the elliptic curve F and an isogenous curve E’. Thanks to the
work of Cohen and Pazuki, we have solubility conditions for the homogeneous poly-
nomials. Using these conditions, we give a graphical approach to the size of 3-Selmer
groups then translate the conditions on graphs into a question concerning ranks of
matrices. Finally, we give an upper bound for the rank of the elliptic curve E, by

calculating the size of the Selmer groups.

1. INTRODUCTION

One of the major open problems in number theory involves calculating the rank of an
elliptic curve. By calculating the size of the Selmer group, we can give an upper bound
for the rank of a given elliptic curve. The goal of this paper is to bound the size of the

3-Selmer groups for a family of elliptic curves with 3-torsion given by
Eu v = 2° + (ax + b)?
and its 3-isogenous curve given by

Byt =2 —3(ax +V)?
1
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with b = % and therefore provide a bound for the rank of F,. Specifically, we
analyze the 3-Selmer groups associated to 3-descent by isogeny of such elliptic curves
by relating them to graphs with certain properties then translate the graph theory into
a problem involving matrix analysis. Our methods use an elementary approach involv-
ing algebra and combinatorics. These methods have been employed to study 2-Selmer
groups which arise from 2-descent for the family of “Congruent Number” curves, pos-

sessing 2-torsion [4], [3], but not for curves with 3-torsion or for 3-Selmer groups. For

related work, we refer the reader to [5], [6], [7], [8] and [12].

Mordell’s Theorem [11] asserts that for a general elliptic curve, E/Q, the group of

rational points, F(Q), is a finitely generated abelian group, i.e.

E(Q) = ZT S5 E(Q)torm

where E(Q)os is a finite abelian group and r is the rank of the elliptic curve. The
torsion part, F(Q)ors, is well understood. We have the following deep theorem of Mazur
[10, Chapter 8, Theorem 7.5 which completely characterizes the possibilities for the

torsion subgroup.

Theorem 1.1 (Mazur). If E is an elliptic curve, then E(Q)ps is one of the following

15 groups:

(1) Z/nZ, with 1 <n <10 orn = 12.
(2) Z)2mZ x )27, with 1 < m < 4.

Further, given a specific elliptic curve E, E(Q);os is easily computable by the Nagell-
Lutz Theorem [10, Chapter 8, Corollary 7.2]|.
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On the other hand, not much is known about the rank. For example, the famous
Birch and Swinnerton-Dyer Conjecture (see [1] or [9]) predicts that the rank of F/Q
equals the order of vanishing of its L-series, L(FE,s), at s = 1. In general, the rank of an
elliptic curve is very difficult to compute. The only way, in practice, to give an upper
bound for the rank of F'/Q has been to prove upper bounds for the size of the m-Selmer
group, Sel,,(E) (see [9] for more details). More precisely, for every natural number m

we have an exact sequence [10, Theorem 10.4.2]
0 — E(Q)/mE(Q) — Sel,,(E) — Ig[m| — 0,

where 11l is the Tate-Shafarevich group and A[¢] denotes the kernel of ¢ in the group

A. Combining this with Mordell’s theorem we have that
E(Q)/mE(Q) = (Z/mZ)" & E(Q)[m].
In particular, we show in Section 2 that [Fu;(Q) : 3E,4(Q)] = 371
We begin by giving an overview of 3-descent maps and their relation to the rank of an

elliptic curve with rational 3-torsion. Following the treatment given in [2], we associate

the following homogeneous polynomials of degree 3 to E,, and E!,, respectively
Fu XY, Z) =u1 X? +upY? +us 2 — 2aXY Z
and

FoX.Y,2) = (F(X+YV=3)" = (X ~¥v=3)") V=3

+2aZ (X +YV=3) (X —=YV=3) + (20 /N(v)) Z°.
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Using these polynomials, we arithmetically define 3-Selmer groups as opposed to the
usual definition involving Galois cohomology. Finding integer solutions is difficult, so we
relax the condition and define the 3-Selmer groups, Sel (E,;) and Sel(‘g)(E;b,), to be the
set of u € Q*/(Q*)? (respectively, u' € Q*(v/=3)/(Q*(v/—3))?) for which F,(X,Y,Z) =
0 (respectively F,(X,Y,Z) = 0) has local solutions for all p. Once we define Selmer
groups in the above manner, it is natural to investigate when we obtain local solutions.
We discuss the local solubility of the homogeneous polynomials associated to E,, in
Section 3. Many of these conditions involve checking if ratios of the coefficients of the
homogeneous polynomials are cubes modulo a given prime.

After completely characterizing when we obtain local solutions, we begin exploring
this question in terms of graph theory. Feng and Xiong [4] introduce the notion of “odd
graphs” to produce certain families of congruent numbers and Faulkner and James |3]
use their ideas to compute the corresponding 2-Selmer groups. We extend their methods
to the computation of 3-Selmer groups of elliptic curves with 3-torsion.

For the elliptic curve, E,, we construct a directed graph G’ with subgraph G. The
vertices of G and G’ are comprised of the primes dividing 2b and the discriminant of the
curve. We draw directed edges between primes where local solutions are not guaranteed
and label each directed edge with a cubic root of unity. Next we introduce the idea of
a “three-balanced” partition, (57, 52, S3), of the subgraph G. We identify each set in
the partition with a coefficient associated to the homogeneous polynomial, F,, (XY, 7).
The general idea is that a partition of a graph is three-balanced if the ratios of the
associated coefficients are cubes modulo a given prime. The prime p = 3 is slightly more
complicated, so we introduce the idea of “three-quasi-balanced” partitions as well. We

show that given a three-balanced partition, we can construct an element in the 3-Selmer
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group, Sel(¢)(Eab), associated to the elliptic curve F,.

For example, consider the family of elliptic curves
E,/Q:y* =2’ +n?,

and its auxiliary family

By =2 —2Tn?,

There are isogenies ¢ : E,, — E! given by

9

B(P) = d((x,y)) = ( oyl - ).

2 3

We realize a concrete identification between the associated Selmer group, Sel(® (E,), and
the subgroup of Q*/(Q*)? consisting of equivalence classes [u] with u = uju3 for which
the equation

n
2 =0
U U2

ulx?’ + uzy3 +

has non-trivial solutions over R and Q, for every prime p. Casting this condition into the
language of graph theory, we construct a directed graph G’ with subgraph G where the
vertices of G are exactly the prime divisors of 2n and the prime 3. Partitioning G into 3
possibly empty sets, (51, S2, S3), if this partition is three-balanced, then u = [] p [] p?

PEST PpES2
is an element in Sel® (E,). In fact, we have the following theorem.

Theorem 1.2. Let E, : y?> = 23 + n?. Suppose that n is odd, square-free, and divisible
by 3, and define G to be the associated digraph. Then

(se1<¢> (E,)

= #{three-balanced partitions of G}.
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For E!,,, we take a slightly different approach. In this setting we construct a graph
G" with subgraphs G’ and G. The vertices of G, G’ and G” are comprised of the primes
dividing 20" and the discriminant. However, in this case, we place primes in different sub-
graphs depending on their classification; split primes, inert primes and ramified primes
in Q(¢3). The subgraph G consists only of split primes which divide 20. Again, we
draw directed edges between primes for which local solutions are not guaranteed and
label each with a cubic root of unity. Due to complications associated with the local
solubility of the primes 2 and 3, we do not require local solutions in Q; and Q3. Hence
we introduce the group Selg))( '), the set of local solutions for all primes not in 8
where S contains 2 and 3. Once we have constructed the graph, we introduce the notion
of a “good” labeling on the vertices of the subgraph G. We label each vertex in G with
a 0, 1 or 2 and identify the primes labeled with a 0 or a 1 to the parameters v and 7 in
F.(X,Y,Z). The idea is that a good labeling will produce an element in the modified
3-Selmer group, Selc(f) (E',), associated to the isogenous elliptic curve E/,,.

Finally, we use the associated graphs to construct a characteristic matrix. Indexing
the rows and columns by primes in the vertex set, we can relate the notion of a three-
balanced partition and a good labeling to a Laplacian matrix. The primes associated
with the columns will be those primes which are the heads of the directed edges and
the primes associated with rows will be the primes which are the tails of the directed
edges. The entries of the matrix will consist of cubic roots of unity and zeros. If a
prime is associated with both a row and column, this entry will either be the sum of
the other entries in the row or the negative of this sum, reduced modulo 3. Looking at
the kernel of a submatrix of the Laplacian matrix, we can construct an element of the
Selmer group (or modified Selmer group in the isogenous case). Employing the results

of the rank-nullity theorem, we can bound the size of the 3-Selmer group. Therefore,
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combining this result with the fact that the rank of the elliptic curve is bounded by the
product of the sizes of the 3-Selmer groups, Sel'” (E,;) and Sel'” (E!,,), we can give an

upper bound for the rank of E,.

2. AN OVERVIEW OF 3-DESCENT

In this section, we will give a summary of the development of the 3-Selmer group
through 3-descent. We will follow closely the treatment given in 2] and we refer the
reader there for a detailed account. We consider the more general family of elliptic
curves

Ep :y* = 2° + D(az +b)?,
with 3-torsion points {O, 7, =T} where 7 = (0,5v/D).
Lemma 2.1. [2, Lemma 1.2] There exists a unique equation of E of the form y* =

23+ D(ax+b)?, where a,b, and D are in Z, D is a fundamental discriminant (including

1), b > 0 and if we write b = byb3 with by cube-free, then (a,bs) = 1.

From now on, we will assume that the equation of the curve satisfies the conditions
of the above lemma. We will soon specialize to the case D = 1.

We recall the notion of an isogeny between elliptic curves.

Definition 1. An isogeny between the elliptic curves E and E' is a morphism ¢ : E —
E' satisfying ¢(O) = O'. The dual isogeny to ¢ is the isogeny ¢' : E' — E, satisfying
¢ (¢ (P)) = [deg(¢)] P.

We define the following auxiliary family of curves as in [2]

Ep:y? =2+ D (dz+V)?,
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where D' = —3D, d’ = a, and V/ = M. The explicit isogeny ¢ : £ — E’ is given by

J

3

23 +4D(a*2?/3 + abx + bv*) y(2® — 4Db(ax + 2b)))
x? ‘

oP) = ol(z.)) =
for P# O and P # =T, and ¢(P) = O" if P = O or P = 7. The dual isogeny )
is obtained by applying the same formula to £’ and then dividing the xz-coordinate by
9 and the y-coordinate by 27. The key fact is that the composition of ¢ and 5 gives

multiplication by 3, according to the following lemma.

Lemma 2.2. |2, Proposition 1.4] The maps ¢ and ngﬁ are group homomorphisms, and
¢o gE and ggo ¢ are multiplication by 3 maps on E' and E, respectively. The kernel of ¢
is {O, T}, and that of ¢ is {O'}.

We recall the following exact sequence [10, Remark X.4.7 (pp. 300-301)]

B(Q | BQ  _EBQ

— = — 0,

(E@Q)  3EQ)  4(E(Q))

0—

where the second map is induced from gg and the third is induced from the identity.
This exact sequence along with Mordell’s Theorem tells us that if the rank of F is r,

then we have

3 = [B(Q) : 3E(Q)] = [E(Q) : $(E'(Q)][(F'(Q) : (6(E@)],  (21)
where

1 F has rational point of order 3
)=

0 otherwise

Lemma 2.2 gives the kernels of ¢ and (E In order to compute the rank of FE, it is

sufficient to understand the images of ¢ and ngﬁ
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Let K = Q (\/5) When D =1, let Gz = Q*/(Q*)?, otherwise, let G5 denote the
subgroup of K*/(K*)? of classes whose norms are cubes. We recall the definition of the

3-descent map « : E(Q) — Gj3 defined by

a((0,0)) =1/(2b) D=1,

a((,y)) =y~ vD(az +0).
One also defines o : E'(Q) — K*/(K*)* analogously, where K = Q (v/—3D). Now, we

have the following useful proposition.

Proposition 2.3. |2, Proposition 1.4.2] The 3-descent maps a and o are group homo-

~

morphisms. Furthermore, ker (o) = Im(¢) and ker (o) = Im ().
One immediately obtains the following corollary.
Corollary 2.4.

E'(Q)
H(E'(Q)) (E(Q))

>~ Im (o).
Using Theorem 2.1 and a bit of algebra we have the following result.
Proposition 2.5. |2, Proposition 2.2]

377 = [B(Q) : 3E(Q)] = [Im(a)||Im(a)].

Hence to calculate r, the rank of E, it is sufficient to understand the images of the
3-descent maps « and o'.
From now on we will specialize to the cases where D = 1, that is to elliptic curves of

the form E,, : y?> = 2° + (ax + b)? and the isogenous curve is of the form E/,, : y* =
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3 — 3(ax +)? with b’ = M. For D = 1, Cohen and Pazuki [2]| prove the following

theorem describing the group Im ().

Theorem 2.6. [2, Theorem 3.1] Let [u] € Q*/(Q*)3. Write [u] = uju3 where uy and us
are square-free, coprime integers in Z. Then [u] € Im(«) if and only if uyus | 2b and

the homogeneous cubic equation F,(x,y,z) = 0 has an integer solution, where

b
25 — 2awyz. (2.2)

Fu(z,y,2) = w4+ ugy® +
U1Uo

The proof of the above theorem can be found in [2].
Remark 1. (1) The divisibility of 2b by ujuy gives an upper bound on |Im(c)|.
(2) When we speak of a solution to a homogeneous equation, we mean a non-trivial

solution and thus when we speak of the solution set of such a homogeneous equa-

tion being non-empty we mean that there are non-trivial solutions.

For an integral domain R and F' € R|x,y, z|, let

Cr(R) ={(z,y.2) € R*\{(0,0,0)} | F(x,y,2) = 0}.

In light of Theorem 2.6, we would like to determine CF,(Z) for each u = wyu3 with
(urug)|(20). In general, however, this is not possible due to obstructions in the 3 part
of the Tate-Shafarevich group. Thus we are motivated to define the Selmer group

Sel”(E,,) as

Sel)(Eyy) = {[u] € @/(Q)? | Cr.(R) # 0: Cr, (Q,) # 0 for all primes p},

where F,(X,Y,Z) is defined for E,, in equation (2.2).
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Cohen and Pazuki |2| also also give criteria in the isogenous case. As usual, O

denotes the ring of integers of K = Q(v/—3). The following theorem describes the group
Im (o).

Theorem 2.7. Let Gy be the subgroup of Q*(w)/(Q*(w))? of classes whose norms are
cubes where w is a primitive cubic root of unity. Let [u'] € Gs. Write u' = 7 with
v =c+dw € Z|w]| and N(v) = 7 is only divisible by split primes. Then [u'] € Im(d/)
if and only if N(v) | (20') and the homogeneous cubic equation Fy(x,y,z) = 0 has an
integer solution where

/

2b
Fu(X,Y,Z) :=2aX?Z—2aXY Z+2aY?Z+

73 —dX>?—dY?3—3cXY?+3cX?Y +3dXY?2.
N ()

(2.3)

From Theorem 2.7 we are motivated to define the Selmer group Sel@(E{lb,) as
Sel®(EL) = {[v] € Q' (V=3)/(Q (V=3))* | Cr,(R) # 5 Cr,(Q) £ 0 for all primes p},

where F,,(X,Y, Z) is defined for E’,, in equation (2.3).

3. LOCAL SOLUBILITY

We will study local solubility for both E,, : y* = 2° + (ax + b)? and E/}, : y* =
z3 — 3(ax + b')* where b/ = M. For additional details, we refer the reader to [2].

Let vy(n), n € N, be the largest power of p that divides n, i.e. vy(n) = —log, |n|,.
We set v,(0) = co. So by Lemma 2.1, we may assume that either v,(a) = 0 or v,(b) < 2
for E.
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3.1. The Elliptic Curve E . The following two propositions give the local solubility

criteria for the polynomial

FuX,Y,Z) = u1 X? + upY? +us 2% — 2aXY Z

associated with F,,.

Proposition 3.1. [2] Assume p # 3. Let

FuX,Y,Z) =u1 X? +upY?® +us 2> — 2aXY Z

2b

with p-integral coefficients where uy and us are square-free and coprime and us = .
U1U2

(1) If p # 2, vy(b) = 0 and v, (27b — 4a®) = 0, then F,(X,Y,Z) = 0 has a solution

in Q.
(2) If p # 2, vy(b) = 0 and v, (27b — 4a®) > 0, then F,(X,Y,Z) = 0 has a solution
in Qp if and only if u;/u; is a cube in Fy for some i # j.
(3) If p # 2 and v,(b) > 0, then F,(X,Y,Z) =0 has a solution in Q, if and only if
one of the following is fulfilled:
(a) vp(a) =0,
(b) vy(a) > 0 and exactly one of {u1,us, uz} is divisible by p and the ratio of the
other two is a cube in F,
(c) vp(a) > 0 and exactly two of {u1, us,us} are divisible by p and their ratio is
a cube in [Fy.
(4) If p = 2, then F,(X,Y,Z) = 0 has a solution in Qy if and only if one of the
following s fulfilled:
(a) exactly one of {uy,us, ug} is divisible by 2 and the ratio of the other two is

a cube in 3,
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(b) ezactly two of {uy,us, us} is divisible by 2 each exactly once and their ratio

is a cube in F3.

Proposition 3.2. [2] Let

FuX,Y,Z) =u1 X? +upY?® +us 2> — 2aXY Z

2b

U1U2-

with 3-integral coefficients where uy and us are square-free and coprime and uz =

(1) If vs(a) =0, then F,(X,Y,Z) =0 has a solution in Q.

(2) If vg(a) > 2 and v3(b) =0 then F,(X,Y,Z) =0 has a solution in Q3 if and only
if wi/uj is a cube mod 9 for some i # j.

(3) Ifvs(a) > 2 and exactly one of {uy, ug, us} is divisible by 3, say u;, then F,(X,Y, Z) =
0 has a solution in Qs if and only if either the ratio of the other two is a cube
mod 9 or vs(u;) = 1.

(4) Ifvs(a) > 2 and exactly two of {uy, us, us} are divisible by 3, then F,(X,Y,Z) =0
has a solution in Qs if and only if their ratio is a cube mod 9.

(5) Ifvs(a) =1 and exactly one of {uq,usz,us} is divisible by 3, then F,(X,Y,Z) =0
has a solution in Qs if and only if either the ratio of the other two is a cube mod
9 or there exists s1, sy € {£1} such that 2a = syuy + Sous + $152uz (mod 9).

(6) If vs3(a) = 1 and two of {uy,us,us3} are divisible by 3, then F,(X,Y,Z) =0 has
a solution in Q5.

(7) If v3(a) = 1, v3(b) = 0 and w;/u; is a cube mod 9 for some i # j, then
F.(X,Y,Z) =0 has a solution in Q3.

(8) If vz(a) = 1, v3(b) = 0 and w;/u; is not a cube mod 9 for all i # j then
F.(X,Y,Z) = 0 has a solution in Qs if and only if there exists si,s2 € {£1}

such that 2a = syuy + Saus + s182uz (mod 27).
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3.2. The Isogenous Curve E!,,. The following propositions give the local solubility
criteria for the polynomial

20

N (7)
—dX? —dY? —3¢XY? +3¢X?Y +3dXY?

ZS

Fu(X,Y,Z) = 2aX?7Z —2aXYZ+2aY?*Z +

associated to the isogenous elliptic curve, E!,,. Note that since we are working over
Q (\/—3), p = 3 is the only ramified prime. If p =2 (mod 3), then p is an inert prime.

And if p=1 (mod 3), then p is a split prime.

Proposition 3.3. |2, Corollary 6.3| Let p be any split prime. Then there exists d, € Q,
such that df) = —3. Then F,(X,Y,Z) =0 has a solution in Q, if and only if the cubic

X3+ uY? +usZ® —cXYZ =0

d d d d 20
e — — _— = ey —_ — — Q = — — 2 .
does, where uy (c 2) 2dp, Us (c 2) + 2dp, U3 Pﬁdp and c ady,

Making some minor adjustments to Proposition 3.1, we have all the conditions neces-
sary to find a solution for Fi,(X,Y, Z) = 0in Q, where p is a split prime. Before stating

our Corollary, we make the following observation.

Lemma 3.4. Let A' =270 +12a3. If p=1 (mod 3), p| A" and ptV, then 20'\/—3 is

a cube mod p.

So we can conclude that if u;/u; is a cube for some i # j, then this is true for all

i .
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Corollary 3.5. Let p be any split prime. Then we can write p = w7 where 7

2 (mod 3) and is in the upper-half plane. Let

Fo(X,Y,Z) = wyX?+upY?+u3Z® — eXYZ =0

d d
where uy = (c— 5) — 5\/—3, Uy = (

with (c,d) = 1.

_d
€73

d 20
) + 5,/_3, uz = —v—3 and ¢ = 2ay/—3
7Y

(1) If v, (b)) = 0 and v,(27V' +12a®) = 0, then F/(X,Y, Z) = 0 has a solution in Q,.
(2) If vp(b') = 0 and v, (27Y +12a*) > 0, then F (X,Y,Z) = 0 has a solution in Q,
if and only if uy/ug is a cube in .
(3) If ve (b)) > 0, then Fy(X,Y,Z) =0 has a solution in Q(w), if and only if one of
the following is true
(a) v(a) =0,
(b) vz(a) > 0, 7 divides exactly one of {uy,us,us} and the ratio of the other
two 1s a cube mod m,

(c) vr(a) >0, m divides two of {uy,us,us} and their ratio is a cube mod 7.

Recall that 4% is only divisible by split primes. So we have the following solubility

propositions.

Proposition 3.6. Assume p # 2, p = 2 mod 3 and let F,,(X,Y,Z) be as in equation
(2.3).
(1) If v, (v7) = 0, v,(20') = 0 and v, (270" 4+ 12a*) = 0, then F,(X,Y,Z) =0 has a
solution in Q,.
(2) If v,(20") = 0 and v, (270 + 12a®) > 0, then F,(X,Y,Z) = 0 has a solution in

Q, if and only ifz is a cube in F,.
Y
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(3) If v,(20') > 0 and v, (vy) =0, then Fy(X,Y,Z) =0 has a solution in Q, if and
only if one of the following is satisfied:
(a) vy(2a) = 0.

(b) v,(2a) > 0 and the class ofl mod p is a cube in F7,.
Y

Proposition 3.7. Let p =2 and F,(X,Y, Z) be as in equation (2.3).
(1) If va(2b') < 2, then Fy(X,Y,Z) =0 has a solution in Qy if and only if the class
ofz mod 2 is a cube in Z*|w]/27*|w] = F;. Note that the only cube in F} is 1.
(2) [va(%’) > 3, then
(a) ifd=0 (mod 4) and ¢ = £1 (mod 4), then F(X,Y,Z) = 0 has a solution
in Q.
(b) ifd=2 (mod 4) and ¢ = £1 (mod 4) then F,,(X,Y,Z) =0 has a solution
in Q.
(c) ifd=1 (mod 2), then F,(X,Y,Z) =0 has a solution in Qq if and only if

either va(2b") > 4 or ve(a) > 0.

Proposition 3.8. Let p =3 and F,(X,Y, Z) be as in equation (2.3).
(1) If v3(2a) = 0, then Fu(X,Y,Z) = 0 has a solution in Qs if and only if one of
the following conditions s satisfied:
(a) v3(d) >0,
20’
(b) Vs (d) = U3 2a + =0.

N(7)
(2) If v3(2a) > 2, then F,,(X,Y,Z) = 0 has a solution in Qs if and only if one of

the following conditions s satisfied:
(a) vs(d) =2,
(b) vs(d) = v3(b) =1,

20
(c) v3(d) =0 and NG

15 a cube mod 9,
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20

d
I
(3) If v3(2a) = 1, then F.(X,Y,Z) = 0 has a solution in Qs if and only if one of

= + (6¢ — 3d) mod 27.

the following is satisfied:

(a) vs(d) > 2,

(b) vs(d) = 2a + 20 =1
B N C) A

(c) v3(d) =0 and ( 20

+ 2@) /d is a cube mod 9,

N(7)
2 /
(d) v (N(b )) =1, v3(d) = 0 and there exists s € {£1} such that (d — 2c) =
Y
20’
s| =——+2a| (mod 27) and s(2c —d) = 2a/3 (mod 3),
(3 +20) (mod 27) and s(2e ) = 20/3 (mod 3

As one can see, the local solubility results associated with the primes 2 and 3 are
complex. Therefore we exclude them when looking for solutions and define a larger

group than the Selmer group.

4. GRAPH THEORY

We can use the propositions from the previous section to give a characterization of the
Selmer group in terms of graphs. For each elliptic curve, we construct a directed graph
whose edges are labeled by cubic roots of unity. In the case of Ey, : y* = 2 + (az + )2,
if we define a “three-balanced” partition in terms of the following labeling, then the size
of Sel?(E,,) corresponds to the number of “three-balanced” partitions of the graph.
Conversely, for E!,, : y*> = 2% — 3(ax + V')?, we define the notion of a “good” labeling.
Then the size of Sel(‘g’)(E;b,) is bounded by the number of “good” labellings. We will

make these notions more precise below.

4.1. The Elliptic Curve E,,. We will begin by studying elliptic curves with rational
3-torsion, of the form

y* = 2° + (azx + b)*
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whose discriminant is

A = 16b°A’

where A’ = 4a® —27b. Recall by Lemma 2.1, we know that either v,(b) < 2 or v,(a) = 0.
Let w be a primitive cubic root of unity. If p =1 (mod 3) is a rational prime (i.e. p

splits in Z[w]), then we will write p = 77 where 7 = 2 (mod 3) and 7 is in the upper-half
plane. Recall that if p = 2 (mod 3), then every number is a cube modulo p.

Using these conventions, let p and ¢ be primes. Then we define the following:

- (2)3 if p=1 (mod 3)

Xp(g) =4 7
1 if p=2 (mod 3).

Recall that we have the following properties of x,:
(1) xp(q) = 1 if and only if ¢ is a cube in

(2) xp(ab) = xp(a)xp(b).
So the above is true for all primes, p, not equal to 3. For p = 3, notice that (Z/9Z)" is

cyclic and generated by 2. Define y3 on (Z/9Z)" by

t

X3(Q) =w

where ¢ = 2! € (Z/9Z)". Note that even though we are working mod 9, we will still use

x3 to avoid confusion later.

One important concept to notice is that for those primes, ¢, which divide A’, but do

not divide 2b, we can conclude that

2b=(2(37") a)3 (mod q)
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or equivalently that y, (2b) = 1.

Using this observation we can conclude that
Xq (u2/us) = Xxq(us/u1)
= Xq(u1/us)
and
Xq (u1/us) = Xxq(us/uz)
= Xq(u1/us)

where uy, uy and uz are as defined in Proposition 3.1. Also x, (u;/u;) = 1 if and only if
Xq (uj/u;) =1 for i # j. Therefore it is enough to show u;/uy is a cube modulo a given
prime.

For clarity, we will consider different families of elliptic curves.

4.1.1. The Family of Curves £ . Consider the family &; of elliptic curves given by
Eu/Q :y* =2 + (ax + b)?

where 31 b and A = 16b3A’, with A’ = 27b — 4a3.

Let G be a graph with g vertices where

g=1+ va(b).

plb
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Let G’ be the graph containing G with ¢’ vertices where

g'=g+21.

)
So
V(G)={p:p|b}U{p:p*|b} U{2}
and

V(G) =V(G)U{p:p|Apt(20)}.

Draw directed edges from all primes p € V(G') \ V(G) to all primes ¢ € V(G). Addi-
tionally draw directed edges from all primes p € V(G) to ¢ € V(G) where p | A’ and

p # q. Label each directed edge from p to q as

Up,q) == xp(q)

A partition of V(G) into three parts is an ordered triple of subsets (57, Ss, S3) such
that S; U S, U S3 =V(G) and S; NSy = S1NS3 = 5,NS3 = 0. We will allow for the
possibility that Sp, Sy or S3 is empty.

Definition 2. A partition, (51, S2,53), of V(G) is called three-balanced if and only
if the following five conditions are satisfied:
(1) if p € S1USy and p? || 2b, then the additional copy of p is in Ss for all p € V(G)
(2) if 4| b, then all copies of 2 are in Ss

(3) for every p € S, such that the prime, p, is only in S, and p | A', we have

[I tw.p) IT ww)?| =1

P;E€ESy+1 PLESy42

where we cycle the indices of the partitions (i.e. Sy = Sy, ect.)
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(4) for every p € S,, n =1,2 such that p is also in S5 and p | A, we have

II two) | | II tm)®| = 1

Dpj ES?} PLES3
P;#£D PLFD

(5) for every p € V(G') \ V(Q)
I1 “w.pp) (H f(p,pkf) = 1.
Pi€S1 PrES2

We will also need another definition.

Definition 3. A partition, (S1,S2,S3), of V(G) is called three-quasi-balanced at 3

if and only if the following conditions are satisfied:

(1) (Sy,Sq, S3) satisfies condition (1) for a three-balanced partition for all primes and
satisfies the remainder of the conditions for all primes except 3

(2) Ezclusively we have

I ) (I o) =
pjEST PLES?2
or there exists sy, sy € {£1} such that
2a531(H pi> + 89 H D) —|—5132<H pk> (mod 27).
p;ESL p;ES2 prLESs3

Using these definitions, we have the following lemma.
Lemma 4.1. Suppose (S1,Ss,S3) is a partition of V(G). Let

w =[] pi and uy= [ p;.
Pi€EST ;€S2
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Then the homogeneous equation

2b
7% —2aXYZ =0 (4.1)
U1Us

w X3 4 w3 +

has a solution in every local field Q, if and only if vs(a) = 1 and (51, S2,S3) is three-

quasi-balanced at 3 or vs(a) # 1 and (S, Sz, S3) is three-balanced.

Proof. Let us = 2b/(ujuz). We will begin by assuming (51, S2,53) is a three-balanced
partition. By Proposition 3.1, there are three conditions we check. First, for every prime
p €S, if pisonlyin S, and p | A, then x,, (uy+1/u,12) = 1 where we cycle the indicies.
Second for every p € S, with n = 1 or n = 2, such that p is also in S3 and p | A’, we
have x, (u,/us) = 1. In addition, we must also show that for every p € V(G') \ V(G),
Xp(u1/uz) = 1.

We will only prove one case since the remainding ones follow in a similar manner.

Notice that for every p € S,, which is only in S, and p | A’, we have

2
Xp (uu+1/uu+2) = Xp (uV-i-l)Xp (uv+2)
= H Xp(Dj) H Xp(Pr)°
P;E€ESy+1 PrESv+2
= | I] “w.p) II ‘)
PiESL+1 PEESy42
=1

since (51, S9,53) is three-balanced. So w,11/u,12 is a cube modulo p and therefore we
have a solution.
Conversely, suppose that (S, S, S3) is not three-balanced or if 3 || a, it is not three-

quasi-balanced at 3 as well. There are a few cases we need to consider. We include one
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of the cases here since the remaining ones follow either trivially or in a similar manner.

Suppose there exists p in some S, with p not in any other S, and p | A’, such that

II tw.ry) II e | # 1

P;E€ESy+1 PLESL 42
Then
Xp (Upg1/Uus2) = Xp (Uui1) Xp (uu+2>2
= II %) IT @)
PjE€Sy+1 PLESy+2
P;E€ESy+1 PLESL 42
41,

where we cycle the indices. Hence by Proposition 3.1, equation (4.1) does not have a
solution in Q,.

O

So we obtain the following theorem giving the size of the Selmer group, Sel(E,,),

for the family &;.

Theorem 4.2. Let Ey @ y* = 2° + (ax + b)? with 31 b. Let G and G' be defined as

above. Then if 3 || a, we have
‘Sel(d’)(Eab)‘ = # {three — quasi — balanced at 3 partitions of V(G)}.
Otherwise, we have

‘Sel(d))(Eab)} = # {three — balanced partitions of V(G)} .



24 T. FENG, K. JAMES, C. KIM, E. RAMOS, C. TRENTACOSTE, AND H. XUE

4.1.2. The Family of Curves &. Next, consider the family &, of elliptic curves given by
E,/Q:y?* = 2° + (ax + b)?

where 3 | b and A = 16b3A/, with A’ = 27b — 4a®. Again, recall that we may assume for
every prime p, either v,(a) = 0 or v,(b) < 2.

Let G be a graph with g vertices where

=1+ va(b).

plb

Let G’ be the graph, containing GG, with ¢’ vertices where

g’=g+21.

)
So
V(G)={p:p|d}u{p:p* b} U{2}
and

V(G)=V(G)U{p:p|A,pt(20)}.

Draw directed edges from all primes p € V(G') \ V(G) to all primes ¢ € V(G). Addi-
tionally draw directed edges from all primes p € V(G) to ¢ € V(G) where p | A" and

p # q. Label each directed edge from p to q as

U(p,q) = xp(q).

Again, a partition of V(G) into three parts is an ordered triple of subsets (57, Ss, S3)
such that S; U S, US3 =V(G) and S; NSy =51 NS5 =5,N85;=0. We will allow for

the possibility that Sy, Sy or S3 is empty.
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Definition 4. A partition, (51, 52,53), of V(G) is called three-balanced if and only
if the following conditions are satisfied:
(1) if p € S1USy and p? || 2b, then the additional copy of p is in Ss for all p € V(G)
(2) if 4 | b, then all copies of 2 are in Ss
(3) for every p € S, with p | A" and p # 3, such that the prime, p, is only in S, we

have
IT “w.p) I ww)?| =1
PjESL+1 PLESu12

where we cycle the indices of the partitions (i.e. Sy = Sy, ect.)

4) for everyp € S,, withp | A', n =1 or 2 and p # 3, such that p € Ss, we have
"

II ¢ || I] toom)*| = 1

p; €Sy PLES3
PiFp PRFP

(5) for every p € V(G')\ V(G),

11 “w.p) (H f(p,pk)2> = 1

p;€S1 PLES2

We will need two other definitions.

Definition 5. A partition, (Si1,S2,S3), of V(G) is called three-quasi-balanced at 3

if and only if the following conditions are satisfied:

(1) (Sy,S9,83) is three-balanced

(2) if p=13is in only one S,, then either

IT «Gp) I @w)?| =1

PjESy41 PrESy 12
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where we cycle the indices of the partitions (i.e. S; = Sy, ect.)

or there exists 1,59 € {£1} such that

2a551<Hpi>+52 Hpj +8182<Hpk> (mod 9) .

pi€ST p; €S2 PLES3

Definition 6. A partition, (S1,52,S53), of V(G) is called three-quasi-balanced at 9

if and only if the following conditions are satisfied:

(1) (Sy,S9,S3) is three-balanced
(2) if9|b and 3 ¢ S; US, then

IT «3.p) (H E(B,pk)2> = 1.
p; €51 PrES2

Using our definitions for this family of elliptic curves &, we have the following lemma.

Lemma 4.3. Suppose (S1,Ss,S3) is a partition of V(G). Let

w=[[ p and wp= ] p;.

pi€S1 DPFES

Then the homogeneous equation

2b

U U2

u X° + uY? + 73 —2aXYZ =0 (4.2)

has a solution in every local field Q, if and only if 31 a and (S1, S2,S3) is three-balanced
or if 3 || a and (Si,S2,S3) is three-quasi-balanced at 3 or if 9 | a and (S1,S2,S3) is

three-quasi-balanced at 9.

The proof is similar to that of Lemma 4.1, so we omit it.
The following theorem gives us the size of the Selmer group Sel®(E,;) in terms of

graphs for the family of elliptic curves &.
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Theorem 4.4. Let Ey : y* = 23 + (ax + b)? with 3 | b. Let G and G’ be defined as

above. Then if 31 a, we have
‘Sel(d))(Eab)) = # {three — balanced partitions of V(G)} .
If 31| a, then
‘Sel(d’)(Eab)‘ = # {three — quasi — balanced partitions at 3 of V(G)}.
Otherwise, if 9 | a, then
‘Sel((b)(Eab)‘ = # {three — quasi — balanced partitions at 9 of V(G)}.

4.2. The Isogenous Curve E!,,. In this section, we will be studying elliptic curves of
the form
y? = 2° — 3(ax +b')?
whose discriminant is
A =—144 ((v')*A")
where A’ = 270 + 12a3. Recall by Lemma 2.1, we know that for every prime, p, either
v,(b') <2 or vy(a) = 0.
Once again, let w be a primitive cubic root of unity. If p =1 (mod 3), then we know

that we can write p = 77 with 7 = 2 (mod 3) and 7 in the upper-half plane. Define

Xp(2) = Xr(q) = (2>3‘

T
For p =2 (mod 3), define
Xp2(0) = w

where §®*~D/3 = i (mod p).
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Recall that we have the following properties of x,:

(1) xp(g) = 1if and only if ¢ is a cube in F;

(2) xplab) = xp(a)xp(b).

So the above is true for all primes, p, not equal to 3. For p = 3, notice that (Z/9Z)"

is cyclic and generated by 2. Define y3 on (Z/9Z)" by

Xs(q) = '

where ¢ = 2! € (Z/9Z)". Note that even though we are working mod 9, we will still use
x3 to avoid confusion later.

Recall

20’
Fu(X,Y,Z) = 2aX*Z—2aXYZ+2aY*Z + =73
ol

—dX3 —dY? —3¢XY? 4+ 3¢X?Y +3dXY?

with 7 = ¢ + dw where 77 is only divisible by primes p =1 (mod 3).

Consider the family &; of elliptic curves given by
vyt = x° —3(ax + b))

Let G be a graph with vertex set V(G) ={p:p=1 (mod 3), p| (2')}. Additionally,

let G’ be a graph containing G with vertex set
V (G') = {q : q satisfies one of (1),(2) below} UV (G)

(1) ¢ =2 (mod 3), q | A
(2) ¢=1 (mod 3), ¢ | A" and ¢ 1 (2V').
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Finally, let G” be a graph containing G’ with
V(G") =V (G")U{q: qsatisfies one of (3),(4),(5),(6) below} U {v/—3}

3) ¢=1 (mod 3), ¢* | (2V)
g # 1 (mod 3), ¢* | (2')

Clearly, if v5(b') < 2, then we do not need the additional copy of 2. And similarly, with
the prime g = 3, we only include it if 3 | /.

Draw directed edges from all primes p € V (G”) to ¢ € V (G") where p | (2V'), p | A’
and ¢ | (2b'v/=3).

Draw directed edges from all primes p € V(G’) with p{ (20')y/=3 to primes ¢ € V(G).

Label each directed edge from p to q as

Xx(¢) p=1 (mod3), p](20)

Up,0) = 4 xp(q) p=1 (mod3),pt(2) -

Xp2(¢) p=2 (mod 3)

For each point p in V(G), label it with L(p) € {0, 1,2}.
Let Sy ={peV(G): L(p) =1} and Sy ={p € V(G) : L(p) = 2}.
Define
U = H s H T
pGSL pESg
Pp=nT p=TT
and

UQZHWHW.

pES1  pES?
P=TT P=TT
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Then

2b'/—3

UU2

uUs =

Definition 7. We say a labeling, L, on V(G) is good if and only if it salisfies the

following properties:

(1) For allp € V(G) with p | A, if L(p) =0, then

IT to.new.n? | | T ¢ mew.n)® | = 1.

q€S1 qeS2
q=nm q=nn

(2) For allp €e V(G) withp | A, if L(p) =1 and p & V(G") \ S1, then

I | | IT o 1T ((p,q)? | =1.

9€51 q€S2 g€V (G")\(S1US2)
q=n1 q=ni ql2t' V=3

(3) For allp € V(G) withp | A, if L(p) =2 and p & V(G") \ Ss, then

IT o | | I] ¢ Up,q)* | = 1.
qeSY qeS2 qGV G// 51U52
q=nn q=nn q|2b’

(4) For allp € V(GQ) withp | A, if L(p) =1 and p € V(G") \ S, then

H {(p,n) H U(p,7 lp,q)? | =1.

q€S1\{p} qeS2 q€V(G") \(51 USzu{p})
q=1 a=nn ql2v' /=3
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(5) For allp € V(GQ) withp | A, if L(p) =2 and p € V(G") \ Sa, then

I1 tw.m) II “ww 11 Up,q)? | = 1.

q€S1 q€S2\{p} g€V (G")\(51US2U{p})
q=nn q=nn q|2b' /=3

(6) For allq e V(G")\ V(G), q # 2, then

11 tame@=? | | ] “amtg.n)? | =1.

pESL pESz
P=TT P=TT

Using this definition, we have the following lemma.

Lemma 4.5. Suppose L is a labeling of V(G). Then the homogeneous cubic equation
Fu(X,Y,Z) =0 has a solution in every local field Q, with p # 2,3 if and only if L is a

good labeling.

Proof. Let
w=Tl+ 1l
pES1  pES:2
pP=TT pP=TT
and

UQZHWHW.

pES1  pES?
pP=TT pP=TT

Then, when necessary, let
_ 203

U U2

Uus
Assume that £ is a good labeling. We need to check the following for every prime
p € V(G) with p | A,
(1) if L(p) =0, then x,(uy/us) = 1.
(2) it L(p) =1, p & V(G")\ Sy, then x,(ug/us) = 1.
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(3) if L(p) =2, p & V(G')\ S, then xp(ur/ug) = 1.
(4) it L(p) =1 and p € V(G') \ Sy, then x,(u1/uz) = 1.
(5) if L(p) =2 and p € V(G') \ Sy, then y,(us/uz) = 1.

Additionally, we must check for every ¢ € V(G') \ V(G), q # 2, then x,(u1/u2) = 1.
We will just check one condition. Assume p € V(G) with p | A’. Suppose L(p) =0,

then

Xr(ur/ug) = Xw(ul)xw(u2)2

= | TT xex=@?* | | TT x=@xe(n)?

qGSl qESz
q=mm q=nm

= | [T tw.mewn? | | T . mew,n)?
q€S1 qE€S2
q=nn q=nn

Therefore uy /uy is a cube modulo p and hence we have a solution.

The remaining cases follow in a similar fashion.

Conversely assume L is not a good labeling of V(G). There are a few cases we need
to consider. Once again, we will go through one case since the remaining ones follow
easily.

Suppose there exists a p € V(G) such that p | A, L(p) =1, p € V(G') \ S; and

I | | 1w II ‘wao*|#1

q€S1 q€S2 g€V (G")\(51US2)
q=nn q=nn q|2v'/ =3
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But this implies that x,(uz/usz) # 1, so us/uz is not a cube mod w. This violates

Corollary 3.5.3.b, so we would not have a solution in Q,. O

Let G5 = Q* (\/—3) / (Q* (\/—3))3. Let 8§ be a set of primes containing 2 and 3.
Define

Sell? (E.,) = {[u] € G5 : Cp, (R) #0,Cr, (Qy) #BY p &8}

One can check that Seléq;) (E!,) is a group.

The following theorem bounds the size of the Selmer group Sel(‘g)(Eéb,).

Theorem 4.6. Let E!,, : y* = 2® — 3(ax + V')?. Let G, G' and G" be the graphs with
vertices defined above. Let 8§ = {2,3}. Then

’Sel@(E;b,)‘ < ‘Selg’) (E')

= #{good labeling of V(G)}.

5. LINEAR ALGEBRA

Given a graph G with vertex set V(G), as defined in the previous section, we can

construct a characteristic matrix.

5.1. The Elliptic Curve E . Consider an elliptic curve Ey, : y? = 2 + (ax + b)? with
A’ = 27b — 4a®. Assume we have a graph G’ with vertex set V(G’) and subgraph G
with vertex set V(G), as defined in the Sections 4.1.1 and 4.1.2. We want to construct a
characteristic matrix to relate the graph theory problem with three-balanced and three-
quasi-balanced partitions to a linear algebra problem.

We will index the rows and columns of the characteristic matrix by primes and we
begin by ordering primes. Let pq,...,p; be the distinct primes which divide 20 exactly
once and divide A’. Let p;,1,...,p, be the distinct primes which divide 2b exactly twice

and divide A’. Next, let p,i1,...,p, be the distinct primes which divide 2b but do
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not divide A’. Also, let p,41,...,p: be the second copy of the primes which divide 2b
exactly twice. If vy(b) = 2, then 2 is not one of the primes, p;, for 1 < i < n, so let

Dis1 = Pryo = Pra3 = 2. Let qq, ..., gy be the distinct primes dividing A’ but not 2b.
Define

(
t if Ug(b) < 2
t' =
t+3 if ve(b) =2
\
T if v9(b) < 2
r =
r+1 if vy(b) =2
\
and
Dr if ’Ug(b) <2
Dr =

2 if vy(b) =2
Define the (' +m) x ¢’ matrix A(G’) by

)
log,, (¢ (pi, p;)) 1<i<r1<j<t p#p,

aij = § log, (£ (qi—r,p;)) 7 +1<i<r'4+m,1<j<t-

\ 0 otherwise

Let D(G') be the (' +m) x ¢ matrix with entries

(

k=1
t/

dig=9 - ay l+1<i<ri=j-
k=1

0 otherwise

\

Let
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and define L(G) be the (' +m) x n submatrix of L'(G’) with the n + 1 to ¢’ columns

removed.
Remark 2. Notice that ker L(G) = {@U: (i,0,...,0)" € ker L’(G’)}.

Let @ = (wy, ws, . .. ,wn)T € 3. For each w, associate subsets as follows:
Sy =A{pi:w; =1}

So = {pi r w; = 2}
and
Sy =A{pi:wi =0 U{ppt1,...,pr}.
Now we will reduce to the case given in Section 4.1.1.

5.1.1. The Family of Curves &. Assume E,, has the property that 31 b.

Then, if vs(a) = 1, then we need to make the following adjustments. In this case
we know that 3 must be one of the ¢;’s, so assume ¢,, = 3. Define L3(G’) to be the
(r' +m — 1) x n submatrix of L'(G") with the m-th row removed as well as the n+ 1 to

t" columns removed.
Remark 3. Again, notice that ker L3(G") = {15 - (1,0, ...,0)" € ker L’(G’)}.

The following lemma gives the relationship between partitions of the graph GG and the
submatrices L(G) and L3(G’) of the Laplacian matrix L'(G").

Lemma 5.1. (1) If vs(a) # 1, then the partition (Sy,S2,S3) corresponding to the
vector W is three-balanced if and only if W € ker L(G).

(2) Ifvs(a) =1, then the partition (S1, Sa, S3) corresponding to the vector W is three-

quasi-balanced if and only if either 0 € ker (L(G)) or @ € ker (L3(G")) and there
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erists s1, 50 € {£1} such that

20 = s; Hpi + 89 Hpj + 5159 Hpk (mod 27) .

PiE€S1 pjES2 PLES3
pi|2b p;]2b Pr|2b

Proof. Assume that ve(b) < 2, so 2 is one of the primes py,...,p, and p/. = p,. Next
assume that p; € S7 for 1 <1 < [. So there is only one copy of p;. It is enough to show
that L' (G = 0 with @ = (wy,...,wy)" = (,0,...,0)". Then

(L(G);, = Z log,, (¢ (pi, p;)) wj — Z log,, (¢ (pi; pj)) wi

Pj#Di PiF£Pi

= Z log,, (¢ (pi, ;) (w; — wy)

D;#Pi
w;=2 w;=0

This is equivalent to zero mod 3 if and only if

H ¢ (pis ;) <H g(piypkf) =1

p;jE€S2 PLES3

The cases that p; € Sy and p; € S3 with 1 <4 <[ are identical.
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Now assume p; € S7 with [+1 < i < r. So we know that p; appears in more than one

S;. Then

t/

t/

(LG, = Y log, (¢(pipy)wi+ Y log, (¢(pi.p;) w;
=1 =1

p?-sépi p]ﬂfpi

— Z log,, (¢ (pi, pj)) (w; + w;)

PjF#Pi
= Z logw (g(plvpj))—i_ Z 210gw (g(p“pj>>
w;=0 w;=1

This is equivalent to zero mod 3 if and only if

I ¢wip) | | 11 ¢@ipe)® | = 1.
PjES3 PLES
PjF#Pi PLFDi
Once again, the cases that p; € Sy and p; € S3 follow in a similar manner.
The case that vy(b) = 2 requires a slight adjustment, but follows easily. Additionally,

one can check the conditions on the remaining cases.

O

Corollary 5.2. (1) Ifvs(a) # 1, the number of three-balanced partitions of G is 3"*
where s is the rank of the (r' +m) x n matriz L(G).

(2) If vs(a) = 1, then the number of three-quasi-balanced partitions of G is between

3% and 3"° where s is the rank of the (r' +m) x n matriz L(G) and s, is the

rank of the (" +m — 1) x n matriz L3(G').

As a result of Lemma 5.1 and Corollary 5.2, we can construct an element of Sel® (E,,)

for the family of elliptic curves &;.
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Corollary 5.3. (1) Ifvs(a) =1, then ‘Sel(‘b)(Eab)‘ = 3""° where s is the rank of the
(r' +m) x n matriz L(G).

(2) If vs(a) # 1, then 3" < ‘Sel(d))(Eab)) < 3"7° where s is the rank of the

(r'+m) x n matrizx L(G) and sy is the rank of the (r' +m —1) X n matriz

L3(G"), with possible equality on the right.

5.1.2. The Family of Curves &. Now we will assume that E,, has the property that
3| b. Construct the matrix L'(G’) as before.

So in this case, we know that 3 is one of the primes p; with 1 < ¢ < ¢. Let m
be the (1 +m — 1) x ¢’ submatrix of L'(G") with the log,, (¢ (3,—)) row removed. Then

define L3(G) to be the (1’ +m — 1) x n submatrix of L(G’) with the n+ 1 to ¢’ columns

removed.
Remark 4. Notice that ker L3(G) = {117 - (w,0,...,0)" € ker L(G’)}.

Recall given o = (wq, wo, . .. ,wn)T € [y, for each W, we associate subsets as follows:
S1=A{pi:w; =1}

Szz{piiwz':Z}
and

ng{pi:wizo}U{an,...,ptl}.

Lemma 5.4. (1) If vs(a) = 0, then the partition (Sy,S2,S3) corresponding to the
vector W is three-balanced if and only if W € ker L(G).
(2) Ifvs(a) =1, then the partition (S1, Sa, S3) corresponding to the vector W is three-
quasi-balanced at 3 if and only if one of the following holds:

(a) p; = 3 is in only one S; and W € ker L(Q)
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b) p; = 3 is in only one S;, W € ker L3(G) and there exists s,,s9 € {X1} such
J
that

2a = s; Hpi + 89 Hpj + 8189 Hpk (mod 9) .

Pi€S1 pjES? PrES3
pi|2b p;|2b Pk|2b

(¢) pi =3 is in two S;’s and W € ker L(GE).
(3) Ifvs(a) = 2, then the partition (S1, Sa, S3) corresponding to the vector W is three-
quasi-balanced at 9 if and only if one of the following holds:
(a) if v3(b) =2, p; = 3 is in S5 only then W € ker L(G)
(b) if v3(b) # 2 or p; = 3 is in more than one S; then W € ker L3(G).

The proof of this lemma is similar to that of Lemma 5.1.

Corollary 5.5. (1) Ifvs(a) = 0, the number of three-balanced partitions of G is 3"*
where s is the rank of the (r' +m) x n matriz L(G).

(2) If vs(a) > 0, then the number of three-quasi-balanced partitions at 3 of G is

between 3% and 3"~° where s is the rank of the (' +m) x n matriz L(G) and

s1 is the rank of the (r' +m — 1) x n matriz L3(G).

As a result of Lemma 5.4 and Corollary 5.5, we can construct an element of Sel® (E,;)

for the family of elliptic curves &,.

Corollary 5.6. (1) If vs(a) =0, then ‘Sel(‘b)(Eab)‘ = 3""° where s is the rank of the
(r' +m) x n matriz L(G).

(2) If vs(a) > 0, then 3" < ‘Sel(¢)(Eab)’ < 3"7° where s is the rank of the

(r'+m) x n matriz L(G) and sy is the rank of the (r' +m —1) X n matriz

L3(G), with possible equality on the right.
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5.2. The Isogenous Curve E/,,. Consider a graph G” with vertex set V(G") and
subgraphs G’ and G with vertex sets V(G’) and V(G) respectively, as defined in the
previous section. Once again, we want to construct a characteristic matrix to relate the
graph theory problem to a linear algebra problem.

We will index the rows and columns of the characteristic matrix by primes and we
begin by ordering the primes which will correspond to the columns of the characteristic
matrix. Let p1,...,p, be the distinct primes equivalent to 1 mod 3 which divide 2b'.
Let p,y1,...,p be the second copy of primes equivalent to 1 mod 3 which divide 2b'.
Next, let p;i1,...,p; be all copies of primes not equivalent to 1 mod 3 which divide 2b'.
Finally, we will also need py,1 = v/—3.

Next, we will order the primes which will correspond to the rows of the characteristic
matrix. Let ¢q,...,q, be the distinct primes equivalent to 1 mod 3 which divide 2’
exactly once and divide A’ = 27V + 12a®. Let qu41,...,qn be the distinct primes
equivalent to 1 mod 3 which divide 20’ exactly twice and divide A’. Next, let ¢11,...,q
be the distinct primes equivalent to 1 mod 3 which divide A’, but do not divide 2b'.
Finally, let ¢;41,...,q be the distinct primes equivalent to 2 mod 3, not including 2,
which divide A'.

Now we are ready to define the r x (¢t + 1) matrix, A(G"”). Define the entries of A(G")
by

(

log,(¢(gi,pj)) 1<i<m,1<j<t+1,q#p;

ij = 4 log,((gisp;)) m+1<i<r1<j<lg#p;

\ 0 otherwise
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Let D(G") be the r x (t + 1) diagonal matrix with entries

t+1
Sag  1<i<vi=j
k=0

t+1
dij=9—Yaw v+1<i<m,i=j-
k=0

0 otherwise

\

Let
L/(G//) — A(G//) _ D(GII)

and define L(G") to be the r x n submatrix of L'(G”) with the n 4+ 1 through t + 1

columns removed.
Remark 5. Notice that ker L(G") = {16 . (7,0,...,0)" € ker L’(G”)}.

Let @ = (wy,...,w,)T € F. Recall py,...,p, are the distinct prime equivalent to 1

mod 3 which divide 2. For 1 <i < n, let
S1=Api:w; =1}

Sy = {p; 1 w; =2}
and
Sz ={pi :wi = 0y U{Pns1,- -, Peg1}) -
Define the labeling £ on V(G) by L(p;) = w;. Then we have the following lemma.

Lemma 5.7. The labeling L of V(G) corresponding to W is good if and only if W €
ker L(G").

Proof. Without loss of generality, assume w; = 1 for 1 < ¢ < v. So there is only

one copy of p; which divides 20/. It is enough to show that L'(G")& = 0 with @ =
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(wy,...,wy)" = (@,0,...,0)". Then

t+1 t+1
D@Yd =Y log, ((g.py)) Zlogw (¢ 7)) wi
pj;qi pﬂéql
t+1
= Zlogw (a5 2)) (w; — w;)
pﬁéqz

= > log, (C(qip) + Y 2log, (£(g:.p)))-

wj:2 wj:O

This is equivalent to zero mod 3 if and only if

H €(qi,m) H U(qi,n) H lp,q)? | =1.

peESL pES2 PEV(G")\(51US2)
p=117] p=m1 |26/ /=3

The cases that w; = 2 and w; = 0 are identical.

Similar arguments can be used to verify the remainder of the proof. 0

Corollary 5.8. The number of good labellings of V(G) is 3"~° where s is the rank of

the r x n matriz L(Q).

Therefore, as a result of Lemma 5.7 and Corollary 5.8, we can construct an element

in the modified Selmer group, Selé@ (Bl

Corollary 5.9. ‘Sel(‘zg)(E(’lb,) = 3"7°, where s is the rank of the r x n

< [sell” (&)

matriz L(G) and 8§ = {2, 3}.
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6. CONCLUSION

Let L1(G) and L3, (G') be the matrices defined in Section 5.1.1. Similarly, let Ly(G)
and Ls,(G) be the matrices defined in Section 5.1.2. Finally, let L(G) be the matrix de-
fined in Section 5.2. Then combining Corollaries 5.3, 5.6 and 5.9 we obtain the following

results:

Theorem 6.1. (1) If 31 b and vs(a) = 0, then

r<ni+ng—s—s—1

where sy is the rank of the (r] +my) X ny matriz Li(G), s is the rank of the
r9 X Ny matriz L(G) and r is the rank of Eqy.

(2) If 31b and vs(a) > 0, then
T§R1+R2—1
where
ny+ng—5s2—5s< Ry +Ry<my+nyg—s—35s

and sy is the rank of the (r] +my) X ny matriz Li(G), so is the rank of the
(r] +my — 1) X ng matriz Ls, (G'), s is the rank of the ry X ny matriz L(G) and
r s the rank of Egp.

(3) If 3| b and v3(a) =1, then

r<ni+mng—s—s—1

where s is the rank of the (r} +my) X ny matriz Lo(G), s is the rank of the

r9 X ng matriz L(G) and r is the rank of Eqp.
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(4) If 3| b and vs(a) # 1, then
T S R1 +R2 —1

where

ny+ng—5s2—5s< Ry +Ry<my+nyg—s—s

where sy is the rank of the (r] +my) X ny matriz Ly(G), so is the rank of the
(r] +my — 1) x n matriz Ls,(G), s is the rank of the ro X ny matriz L(G) and r

18 the rank of E.

Remark 6. Once one has computed Selé¢) (E!,) using linear algebra, applying Proposi-

tions 5.7 and 3.8 to the elements of Selgz;) (E!,), one can compute Sel@( L)

REFERENCES

[1] B. J. Birch and H. P. F. Swinnerton-Dyer. Notes on elliptic curves. II. J. Reine Angew. Math.,
218:79-108, 1965.

[2] Henri Cohen and Fabien Pazuki. Elementary 3-descent with a 3-isogeny. Acta Arith., 140(4):369-
404, 20009.

[3] Bryan Faulkner and Kevin James. A graphical approach to computing Selmer groups of congruent
number curves. Ramanugjan J., 14(1):107-129, 2007.

3 — n2z with rank zero. J. Number

[4] Keqin Feng and Maosheng Xiong. On elliptic curves y? = x
Theory, 109(1):1-26, 2004.

[5] D. R. Heath-Brown. The size of Selmer groups for the congruent number problem. Invent. Math.,
111(1):171-195, 1993.

[6] D.R. Heath-Brown. The size of Selmer groups for the congruent number problem. IL. Invent. Math.,
118(2):331-370, 1994. With an appendix by P. Monsky.

[7] Kevin James and Ken Ono. Selmer groups of quadratic twists of elliptic curves. Math. Ann.,

314(1):1-17, 1999.



THREE SELMER GROUPS FOR ELLIPTIC CURVES WITH 3-TORSION 45

[8] Robert C. Rhoades. 2-Selmer groups and the Birch-Swinnerton-Dyer conjecture for the congruent
number curves. J. Number Theory, 129(6):1379-1391, 2009.
[9] Karl Rubin and Alice Silverberg. Ranks of elliptic curves. Bull. Amer. Math. Soc. (N.S.), 39(4):455-
474 (electronic), 2002.
[10] Joseph H. Silverman. The arithmetic of elliptic curves, volume 106 of Graduate Texts in Mathe-
matics. Springer-Verlag, New York, 1986.
[11] Joseph H. Silverman and John Tate. Rational points on elliptic curves. Undergraduate Texts in
Mathematics. Springer-Verlag, New York, 1992.

[12] Gang Yu. Average size of 2-Selmer groups of elliptic curves. II. Acta Arith., 117(1):1-33, 2005.



46 T. FENG, K. JAMES, C. KIM, E. RAMOS, C. TRENTACOSTE, AND H. XUE

(Tony Feng) DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY, ONE OXFORD STREET CAM-
BRIDGE MA 02138

E-mail address: tfeng@college.harvard.edu

(Kevin James) DEPARTMENT OF MATHEMATICAL SCIENCES, CLEMSON UNIVERSITY, Box 340975
CLEMSON, SC 29634-0975
E-mail address: kevja@clemson.edu

URL: www.math.clemson.edu/~kevja

(Carolyn Kim) DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY, ONE OXFORD STREET
CAMBRIDGE MA 02138

E-mail address: carolynkim@college.harvard.edu

(Eric Ramos) DEPARTMENT OF MATHEMATICAL SCIENCES, CARNEGIE MELLON UNIVERSITY, WEAN
HaLL 6113, PITTSBURGH, PA 15213

E-mail address: eramos@cmu.edu

(Catherine Trentacoste) DEPARTMENT OF MATHEMATICAL SCIENCES, CLEMSON UNIVERSITY, BOX
340975 CLEMSON, SC 29634-0975

FE-mail address: trentac@clemson.edu

(Hui Xue) DEPARTMENT OF MATHEMATICAL SCIENCES, CLEMSON UNIVERSITY, Box 340975
CLEMSON, SC 29634-0975

FE-mail address: huixue@clemson.edu



