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Abstract. Let En : y2 = x3 − n2x denote the family of congruent number elliptic curves.
In [1], Feng and Xiong equate the nontriviality of the Selmer groups associated with En to
the presence of certain types of partitions of graphs associated with the prime factorization
of n. In this paper, we extend the ideas of Feng and Xiong in order to compute the Selmer
groups of En.

1. Introduction

Throughout this paper n will represent a positive square free integer greater than one. We
will denote by En : y2 = x3 − n2x, the family of congruent number curves. If n = p1 · · · ps,
then let

M =< −1, 2, p1, . . . , ps >⊆ Q∗/(Q∗)2

We define (see [1], [6, Ch. 10 §4] for more details) Selmer groups Sn and S ′
n by

Sn = {d ∈ M | Cd(Qp) 6= ∅ ∀p|2n, Cd(Q∞) 6= ∅},

S ′
n = {d ∈ M | C ′

d(Qp) 6= ∅ ∀p|2n, C ′
d(Q∞) 6= ∅},

where the equations Cd and C ′
d, in variables (w, t, z) are given by

Cd : dw2 = t4 + (2n/d)2z4, C ′
d : dw2 = t4 − (n/d)2z4.

We should note that (0, 0, 0) is always a solution to Cd(C
′
d). So, when we write Cd(Qp) 6= ∅

(C ′
d(Qp) 6= ∅), we mean there exists nontrivial solutions.
There has been much interest in understanding these groups (see [2, 3, 4, 5] and references

there in). In a recent paper of Feng and Xiong ([1]), graph theory is used to describe condi-
tions such that Sn and S ′

n are trivial, which in turn implies that the rank of En is zero. In
this paper we use graph theoretic concepts similar to those introduced in [1] to compute Sn

and S ′
n.

In order to understand Sn and S ′
n, we must determine for which d ∈ M the equations Cd

and C ′
d have solutions over Qp for all p|2n. For odd primes p, we search for solutions over Fp

and then invoke Hensel’s Lemma to lift solutions in Fp to solutions in Qp. The application
of Hensel’s lemma in the 2-adic case is a bit more difficult. However, in all but one case, it
is sufficient to consider Cd and C ′

d modulo 23 as solutions here will lift to solutions in Q2.
Following Feng and Xiong we make the following definitions.
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Definition 1.1. Let n = p1 · · · pt · q1 · · · ql with pi ≡ 1 (mod 4) and qj ≡ 3 (mod 4) for
0 ≤ i ≤ t and 0 ≤ j ≤ l. Define a graph, G(n), by defining the vetex set to be V (G(n)) =
{p1, . . . , pt, q1, . . . ql} and the edge set as

E(G(n)) = {pipj :

(

pi

pj

)

= −1 for 1 ≤ i ≤ t and 1 ≤ j ≤ t}

∪ {piqj :

(

pi

qj

)

= −1 for 1 ≤ i ≤ t and 1 ≤ j ≤ l}

A partition of a vertex set V is an ordered pair (V1, V2) such that V1 ∩ V2 = ∅ and
V1 ∪ V2 = V . The trivial partitions are (∅, V ) and (V, ∅). We will be interested in the
partitions of V which are even in the following sense.

Definition 1.2. Let G = (V,E) be a directed graph. A partition (V1, V2) of V is even
provided that for any vertex, p ∈ V1 (V2), #{p → V2 (V1)} is even. In this case, we shall
write (V1, V2) `e V .

Notice that the trivial partitions are even. We will also be interested in partitions of V
which are quasi-even in the following sense.

Definition 1.3. A partition (V1, V2) of V is quasi-even provided that for any vertex, p ∈ V1

(V2)

#{p → V2(V1)} ≡







0 (mod 2), if
(

2
p

)

= 1

1 (mod 2), if
(

2
p

)

= −1.

In this case, we shall write (V1, V2) `qe V .

In this paper, we prove that the number of even and quasi-even partitions of G(n) predict
the size of the Selmer group Sn. We also prove that the number of even partitions of similiar
graphs predict the size of the Selmer group, S ′

n. It will be clear from our proofs that the
even and quasi-even partitions of these graphs correspond in a natural way to elements of
Sn and S ′

n.

Theorem 1.1. Let p1, . . . , pt, q1, . . . , ql be the odd prime factors of n, where pi ≡ 1 (mod 4)
for 0 ≤ i ≤ t and qj ≡ 3 (mod 4) for 0 ≤ j ≤ l (t,l not both zero).

(1) If n ≡ ±3 (mod 8) or n ≡ 0 (mod 2), then

|Sn| = #{(V1, V2) `e V (G(n)) | qj 6∈ V1; 0 ≤ j ≤ l}

(2) If n ≡ ±1 (mod 8) and ∃ p|n, p ≡ ±3 (mod 8), then

|Sn| = # {(V1, V2) `e V (G(n)) | qj 6∈ V1; 0 ≤ j ≤ l} +

# {(V1, V2) `qe V (G(n)) | qj 6∈ V1; 0 ≤ j ≤ l}

(3) If pi ≡ 1 (mod 8) for all 0 ≤ i ≤ t and qj ≡ 7 (mod 8) for all 0 ≤ j ≤ l, then

|Sn| = 2 · #{(V1, V2) `e V (G(n)) | qj 6∈ V1; 0 ≤ j ≤ l}

In order to compute S ′
n, we require three additional tools.
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Definition 1.4. Let n = p1 · · · pt · q1 · · · ql ≡ ±3 (mod 8) with pi ≡ 1 (mod 4) and qj ≡ 3
(mod 4) for 0 ≤ i ≤ t and 0 ≤ j ≤ l. Define a graph, g(n), by defining the vetex set to be
V (g(n)) = {p1, . . . pt, q1, . . . ql} and the edge set as

E(g(n)) = {pipj :

(

pi

pj

)

= −1 for 1 ≤ i ≤ t and 0 ≤ j ≤ t}

∪ {
−→
piqj :

(

pi

qj

)

= −1 for 0 ≤ i ≤ t and 0 ≤ j ≤ l}

Definition 1.5. Let n = p1 · · · pt · q1 · · · ql ≡ ±1 (mod 8) with pi ≡ 1 (mod 4) and qj ≡ 3
(mod 4) for 0 ≤ i ≤ t and 0 ≤ j ≤ l. Define a graph, G(−n), by defining the vetex set to be
V (G(−n)) = {−1, p1, . . . pt, q1, . . . ql} and the edge set as

E(G(−n)) = {pipj :

(

pi

pj

)

= −1 for 0 ≤ i ≤ t and 0 ≤ j ≤ t}

∪ {
−→
piqj :

(

pi

qj

)

= −1 for 0 ≤ i ≤ t and 0 ≤ j ≤ l}

∪ {
−→

−1r : r ∈ V (G(−n)) and r ≡ ±3 (mod 8)}

Definition 1.6. Let n = 2 · p1 · · · pt · q1 · · · ql with pi ≡ 1 (mod 4) and qj ≡ 3 (mod 4) for
0 ≤ i ≤ t and 0 ≤ j ≤ l. Define a graph G′(n) in the following way.

V (G′(n)) = {2, p1, . . . pt, q1, . . . ql}

E(G′(n)) = {pipj |

(

pj

pi

)

= −1 0 ≤ i 6= j ≤ t}

∪ {
−→
piqj |

(

pi

qj

)

= −1 0 ≤ i ≤ t, 0 ≤ j ≤ l}

∪ {
−→

pi2 |

(

2

pi

)

= −1 0 ≤ i ≤ t}

Then we have the following theorem.

Theorem 1.2. Let n be a positive square free integer greater than one.

(1) If n ≡ ±3 (mod 8), then

|S ′
n| = 2 · #{(V1, V2) `e g(n)}

(2) If n ≡ ±1 (mod 8), then

|S ′
n| = #{(V1, V2) `e G(−n)}

(3) If n ≡ 0 (mod 2), then

|S ′
n| = 2 · #{(V1, V2) `e G′(n)}

The organization of the rest of this paper is as follows. In section 2, we state several
lemmas which allow us to characterize for which d, Cd and C ′

d have nontrivial solutions in
Qp. In sections 3 and 4, we prove Theorems 1.1 and 1.2. In section 5 we review some
concepts of graph theory related to counting even partitions and give corollaries of the two
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theorems which are more amenable to computation. Finally, in section 6 we give an example
and a remark concerning the generators of these groups.

2. Cd(Qp) and C ′
d(Qp)

In this section we wish to characterize, in terms of n and d, when Cd and C ′
d have solutions

over Qp, for p|2n, and over Q∞. We first recall the following lemmas from [1].

Lemma 2.1. (Feng and Xiong [1, lemma 3.1]) Let p be an odd prime, n an odd positive
integer with odd prime divisors {p1, . . . , ps}, and d ∈ M =< −1, 2, p1, . . . ps >⊆ Q∗/(Q∗)2.

(1) Cd(Q∞) = ∅ ⇐⇒ d < 0

(2) For p|d, Cd(Qp) 6= ∅ ⇐⇒
(

n/d
p

)

= 1 and
(

−1
p

)

= 1.

(3) For p|2n/d, Cd(Qp) 6= ∅ ⇐⇒
(

d
p

)

= 1

(4) d ≡ 1 (mod 4) =⇒ Cd(Q2) 6= ∅
(5) n ≡ ±3 (mod 8) and 2|d =⇒ Cd(Q2) = ∅
(6) n ≡ ±1 (mod 8) and d = 2d′|2n and d′ ≡ 1 (mod 4) =⇒ Cd(Q2) 6= ∅

Lemma 2.2. (Feng and Xiong [1, lemma 3.2]) Let p be an odd prime, n an odd positive
integer with odd prime divisors {p1, . . . ps}, and d ∈ M =< −1, 2, p1, . . . ps >⊆ Q∗/(Q∗)2.

(1) For p|d, C ′
d(Qp) 6= ∅ ⇐⇒

(

−1
p

)

= −1 or
(

n/d
p

)

= 1.

(2) For p|n/d, C ′
d(Qp) 6= ∅ ⇐⇒

(

−1
p

)

= −1 or
(

d
p

)

= 1.

(3) If d ≡ 1 (mod 2), then C ′
d(Q2) 6= ∅ ⇐⇒ d ≡ ±1 (mod 8) or n/d ≡ ±1 (mod 8)

(4) If d ≡ 0 (mod 2) then C ′
d(Q2) = ∅.

We introduce two additional lemmas to handle the cases when n is even.

Lemma 2.3. Let p be an odd prime, n an even positive integer with odd prime divisors
{p1, . . . ps}, and d ∈ M =< −1, 2, p1, . . . ps >⊆ Q∗/(Q∗)2.

(1) Cd(Q∞) = ∅ ⇐⇒ d < 0.
(2) d ≡ 0 (mod 2) =⇒ Cd(Q2) = ∅

(3) For p|d, Cd(Qp) 6= ∅ ⇐⇒
(

n/d
p

)

= 1 and
(

−1
p

)

= 1.

(4) For p|n/d, Cd(Qp) 6= ∅ ⇐⇒
(

d
p

)

= 1.

(5) d ≡ 1 (mod 8) =⇒ Cd(Q2) 6= ∅
(6) d ≡ 5 (mod 8) =⇒ Cd(Q2) = ∅

Proof.
For the proofs of (1) and (2) see [1, lemma 5.1].
(3) (⇐) See [1, lemma 3.1].
(3) (⇒) Suppose (w, t, z) ∈ Cd(Qp). Since p|d we have,

−1 ≡ (2n/d)2 z4t−4 (mod p)
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so that
(

−1
p

)

= 1. Let α ∈ Fp be such that α2 ≡ −1 (mod p).

Then we have

α2 (2n/d)−2 ≡
(

z2/t2
)2

(mod p)

⇒ 1 =

(

±α (2n/d)−1

p

)

=

(

α (2n/d)−1

p

)

since

(

−1

p

)

= 1

Consider two cases. First, suppose p ≡ 1 (mod 8). Then
(

α

p

)

= 1 ⇒

(

2n/d

p

)

= 1 ⇒

(

n/d

p

)

= 1

Second, suppose p ≡ 5 (mod 8). We must have
(

α
p

)

= −1. Therefore, we have

(

2

p

)

= −1,

(

α2−1

p

)

= 1, and

(

α (2n/d)−1

p

)

= 1 which implies

(

n/d

p

)

= 1

(4) (⇒) This is clear.

(4) (⇐) Suppose
(

d
p

)

= 1. Then there exists an α ∈ Fp such that α2 ≡ d (mod p). We have,

dw2 ≡ t4 (mod p) ⇔ α2w2 ≡ t4 (mod p)

⇔ (αw)2 ≡ t4 (mod p)

Hence, (w0, t0, z0) = (α−1, 1, 0) ∈ Cd(Fp). Using Hensel’s lemma we may lift this solution to
a solution in Qp (see the argument for (5) below for example).
(5) For d ≡ 1 (mod 8), let (w0, t0, z0) = (1, 1, 0). This is a solution to Cd (mod 8) and we
may lift this solution using Hensel’s lemma. More explicitly, consider a solution (w0, t0, z0)
to Cd(mod 2k) for k ≥ 3 with w0 odd. This is also a solution to Cd(mod 2k−1). Let

w1 = w0 + 2k−1m

t1 = t0 + 2k−1s

z1 = z0 + 2k−1l

for some integers m, s, and l. Write, t40 +
(

2n
d

)2
z4
0 − dw2

0 = 2kN for some integer N . Substi-
tuting, we have

(t0 + 2k−1s)4 +

(

2n

d

)2

(z0 + 2k−1l)4 − d(w0 + 2k−1m)2 ≡ 0 (mod 2k+1)

⇔ 2kN − 2kdw0m ≡ 0 (mod 2k+1)

⇔ N ≡ w0m (mod 2)

Since w0 is odd, let m ≡ Nw−1
0 (mod 2). Thus, Cd(Q2) 6= ∅.

(6) Suppose (w′, t′, z′) is a solution to Cd over Q2. Then (w′, t′, z′) is a solution to Cd (mod 8).
This gives, d(w′)2 ≡ (t′)4 (mod 8). Therefore, 2|t′ and 4|w′. Thus, (T = t′/2,W = w′/4, z′)
is a solution to

Cd : dw2 = t4 + (m/d)2z4

where m = n/2. Thus, if Cd has solutions in Q2 then so does Cd. We claim that Cd has no
nontrivial solutions. To see this assume that (0, 0, 0) 6= (w0, t0, z0) ∈ Cd(Q2). Note that if
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w0, t0, z0 are all even then 4|w0, so we may divide w0 by 4 and t0, z0 by 2 and obtain a new
solution to Cd. Thus, we may assume that at least one of w0, t0, z0 is odd. However, we note
that all solutions to Cd (mod 8) have w, t, z all even. Thus, there are no solutions to Cd in
Q2. Therefore, there are no solutions to Cd in Q2 when d ≡ 5 (mod 8).

¤

Lemma 2.4. Let p be an odd prime, n an even positive integer with odd prime divisors
{p1, . . . ps}, and d ∈ M =< −1, 2, p1, . . . ps >⊆ Q∗/(Q∗)2.

(1) d ≡ 1 (mod 2) =⇒ C ′
d(Q2) 6= ∅

(2) d ≡ 0 (mod 2) =⇒ C ′
d(Q2) 6= ∅

(3) For p|d, C ′
d(Qp) 6= ∅ ⇐⇒

(

−1
p

)

= −1 or
(

n/d
p

)

= 1

(4) For p|n/d, C ′
d(Qp) 6= ∅ ⇐⇒

(

−1
p

)

= −1 or
(

d
p

)

= 1

Proof.
For the proofs of (1),(3), and (4) see [1, lemma 5.2].
(2) If (n/d)2 ≡ 9 (mod 16), let (w0, t0, z0) = (2, 1, 1). If (n/d)2 ≡ 1 (mod 16), let (w0, t0, z0) =
(4, 1, 1). These are solutions to C ′

d (mod 16) and we may lift these solutions using Hensel’s
lemma. More explicitly, consider a solution (w0, t0, z0) to C ′

d(mod 2k) for k ≥ 4 and with t0
odd. (w0, t0, z0) is also a solution to C ′

d(mod 2k−1). Let

w1 = w0 + 2k−1m

t1 = t0 + 2k−2s

z1 = z0 + 2k−1l

for some integers m, s, and l. Write, t40 −
(

n
d

)2
z4
0 − dw2

0 = 2kN for some integer N . Substi-
tuting, we have

(t0 + 2k−2s)4 +
(n

d

)2

(z0 + 2k−1l)4 − d(w0 + 2k−1m)2 ≡ 0 (mod 2k+1)

⇔ 2kN − 2kt30s ≡ 0 (mod 2k+1)

⇔ N ≡ t30s (mod 2)

Since t0 is odd take s ≡ Nt−3
0 (mod 2). Thus, Cd(Q2) 6= ∅.

¤

3. Proof of Theorem 1.1

We first establish a correspondence between odd positive elements of Sn with even parti-
tions of G(n).

Lemma 3.1. Let n = p1 · · · pt ·q1 · · · ql with pi ≡ 1 (mod 4) and qj ≡ 3 (mod 4) for 0 ≤ i ≤ t
and 0 ≤ j ≤ l (t,l not both zero). For every even partition, (V1, V2) of V (G(n)) such that V1

contains no prime factors which are 3 modulo 4 we have d in Sn, where

d =
∏

p∈V1

p
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Proof. If t = 0, Sn{1}. Suppose (V1, V2) is an arbitrary nontrivial even partition of
V (G(n)) with V1 containing no prime factors which are 3 modulo 4. Let

V1 = {p1, . . . , ps} for some s, 1 ≤ s ≤ t

then

V2 = {ps+1, . . . pt, q1, . . . ql}

Consider d = p1 · · · ps. Notice here that
(

−1
pi

)

= 1, thus one of the conditions of

lemma 2.1 (2) is satisfied. For any 1 ≤ i ≤ s, we have
(

n/d

pi

)

=
∏

r∈V2

(

r

pi

)

= (1)#{r∈V2:pir 6∈E(G(n))} × (−1)#{r∈V2:pir∈E(G(n))}

= 1 since (V1, V2) is even

Therefore, Cd(Qpi
) 6= ∅ for 1 ≤ i ≤ s by lemma 2.1 (2).

Also, for r ∈ V2
(

d

r

)

=
s
∏

i=1

(pi

r

)

= (1)#{p∈V1:pr 6∈E(G(n))} × (−1)#{p∈V1:pr∈E(G(n))}

= 1 since (V1, V2) is even

Therefore, Cd(Qr) 6= ∅ for r ∈ V2 by lemma 2.1 (3). There is a point on Cd over Q2 by
lemma 2.1 (4), since d ≡ 1 (mod 4). Therefore, d ∈ Sn.

¤

Remark 3.1. Suppose n is squarefree, and d|n. If q ≡ 3 (mod 4) and q|d then by lemma
2.1 (2) d 6∈ Sn. That is, a necessary condition for a number to be in Sn is that the number
have no prime factors which are 3 modulo 4.

The next lemma shows that for any odd element, d, of the Selmer group, Sn, there exists
an even partition, (V1, V2) of V (G(n)), with V1 corresponding to d as in lemma 3.1.

Lemma 3.2. Let n be as in lemma 3.1. Suppose d is odd and d ∈ Sn, by the above remark
we may assume d = p1 · · · ps ∈ Sn for some s, 1 ≤ s ≤ t, then, letting V1 = {p1, . . . ps} and
V2 = {ps+1, . . . pt, q1, . . . ql}, (V1, V2) is an even partition of V (G(n)).

Proof. Suppose d = p1 · · · ps is a member of Sn. By definition,

Cd(Qp) 6= ∅ ∀p|2n and Cd(Q∞) 6= ∅

Using lemma 2.1 (1) we have d > 0. From lemma 2.1 (2), for p|d,
(

n/d
p

)

= 1. Therefore, for

1 ≤ i ≤ s

1 =

(

n/d

pi

)

=
∏

r∈V2

(

r

pi

)

= (1)#{r∈V2:pir 6∈E(G(n))} × (−1)#{r∈V2:pir∈E(G(n))}

⇒ #{pi → V2} is even
7



Similarly, Lemma 2.1 (3) gives
(

d
r

)

= 1 for r|2n/d. So that, for 1 ≤ i ≤ s and r ∈ V2,

1 =

(

d

r

)

=
s
∏

i=1

(pi

r

)

⇒ #{r → V1} is even

Thus, (V1, V2) is an even partition of V (G(n)).

¤

Now, we will establish a correspondence between the even positive elements of Sn with
quasi-even partitions of G(n).

Lemma 3.3. Let n = p1 · · · pt · q1 · · · ql ≡ ±1 (mod 8) with pi ≡ 1 (mod 4) and qj ≡ 3
(mod 4) for 0 ≤ i ≤ t and 0 ≤ j ≤ l (t,l not both zero). For every quasi-even partition,
(V1, V2) of V (G(n)) such that V1 contains no prime factors which are 3 modulo 4 we have 2d
in Sn, where

d =
∏

p∈V1

p

Proof. Suppose (V1, V2) is an arbitrary nontrivial quasi-even partition of V (G(n)) with
V1 containing no prime factors which are 3 modulo 4. Let

V1 = {p1, . . . , ps} for some s, 1 ≤ s ≤ t

then

V2 = {ps+1, . . . pt, q1, . . . ql}

Let d = p1p2 · · · ps. Consider 2d. Notice here that
(

−1
pi

)

= 1, thus one of the conditions of

lemma 2.1 (2) is satisfied. Suppose pi ≡ 1 (mod 8). Then
(

n/2d

pi

)

=

(

2

pi

)

∏

r∈V2

(

r

pi

)

= (1) × (1)#{r∈V2:pir 6∈E(G(n))} × (−1)#{r∈V2:pir∈E(G(n))}

= 1 × 1 × 1 since (V1, V2) is quasi-even

Suppose pi ≡ 5 (mod 8). Then
(

n/2d

pi

)

=

(

2

pi

)

∏

r∈V2

(

r

pi

)

= (−1) × (1)#{r∈V2:pir 6∈E(G(n))} × (−1)#{r∈V2:pir∈E(G(n))}

= −1 × 1 ×−1 = 1 since (V1, V2) is quasi-even

Therefore, C2d(Qpi
) 6= ∅ for 1 ≤ i ≤ s by lemma 2.1 (2).

Also, for r ∈ V2. If r ≡ ±1 (mod 8), then
(

2d

r

)

=

(

2

r

) s
∏

i=1

(pi

r

)

= (1) × (1)#{p∈V1:pr 6∈E(G(n))} × (−1)#{p∈V1:pr∈E(G(n))}

= 1 × 1 × 1 = 1 since (V1, V2) is quasi-even
8



If r ≡ ±3 (mod 8), then
(

2d

r

)

=

(

2

r

) s
∏

i=1

(pi

r

)

= (−1) × (1)#{p∈V1:pr 6∈E(G(n))} × (−1)#{p∈V1:pr∈E(G(n))}

= −1 × 1 ×−1 = 1 since (V1, V2) is quasi-even

Therefore, C2d(Qr) 6= ∅ for r ∈ V2 by lemma 2.1 (3). Note also that C2d(Q2) 6= ∅ by
lemma 2.1 (6), since d ≡ 1 (mod 4). Therefore, 2d ∈ Sn.

¤

Lemma 3.4. Let n be as in lemma 3.3. Suppose d is odd and 2d ∈ Sn, by remark 3.1 we
may assume 2d = 2 · p1 · · · ps ∈ Sn for some s, 1 ≤ s ≤ t. Then, letting V1 = {p1, . . . ps} and
V2 = {ps+1, . . . pt, q1 . . . ql}, (V1, V2) is a quasi-even partition of V (G(n)).

Proof. Suppose 2d = 2 · p1 · · · ps is a member of Sn. By definition,

C2d(Qp) 6= ∅ ∀p|2n and C2d(Q∞) 6= ∅

Using lemma 2.1 (1) we have 2d > 0. From lemma 2.1 (2), for p|d,
(

n/2d
p

)

= 1. Therefore,

for 1 ≤ i ≤ s. If pi ≡ 1 (mod 8), then

1 =

(

n/2d

pi

)

=

(

2

pi

)

∏

r∈V2

(

r

pi

)

= (1) × (1)#{r∈V2:pir 6∈E(G(n))} × (−1)#{r∈V2:pir∈E(G(n))}

⇒ #{pi → V2} is even

If pi ≡ 5 (mod 8), then

1 =

(

n/2d

pi

)

=

(

2

pi

)

∏

r∈V2

(

r

pi

)

= (−1) × (1)#{r∈V2:pir 6∈E(G(n))} × (−1)#{r∈V2:pir∈E(G(n))}

⇒ #{pi → V2} is odd

Similarly, Lemma 2.1 (3) gives
(

2d
r

)

= 1 for r|2n/d. So that, for 1 ≤ i ≤ s and r ∈ V2,
If r ≡ ±1 (mod 8), then

1 =

(

2d

r

)

=

(

2

r

) s
∏

i=1

(pi

r

)

⇒ #{r → V1} is even

If r ≡ ±3 (mod 8), then

1 =

(

2d

r

)

=

(

2

r

) s
∏

i=1

(pi

r

)

⇒ #{r → V1} is odd

Thus, (V1, V2) is a quasi-even partition of V (G(n)).

¤
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Thus far it has been shown, if n is an odd, squarefree, positive integer and (V1, V2) is an
even partition of V (G(n)) such that V1 contains no prime factors which are 3 modulo 4,
then d =

∏

p∈V1
p ∈ Sn. Moreover, suppose d is odd and d ∈ Sn, then it has been shown

that d corresponds to such an even partition of V (G(n)). It has also been shown that even
elements of Sn are in one to one correspondence with quasi-even partitions of G(n).

Remark 3.2. By lemma 2.1 (3), Sn contains the element 2 if
(

2
p

)

= 1 for all p|n.

Proof of Theorem 1.1 (1) By remark 3.1, we need only consider partititions (V1, V2) of
V (G(n)) for which V1 contains no primes which are congruent to 3 modulo 4 in order to
determine the elements of Sn. By lemmas 3.1 and 3.2, the odd positive elements of Sn are in
one to one correspondence with the even partitions (V1, V2) of G(n) for which V1 contains no
primes which are congruent to 3 modulo 4. Therefore, the first set appearing in formula one
counts the odd positive elements of Sn. By lemmas 3.3 and 3.4, the even positive elements
of Sn are in one to one correspondence with the quasi-even partitions (V1, V2) of G(n) for
which V1 contains no primes which are congruent to 3 modulo 4. Therefore, the second set
appearing in the formula counts the even positive elements of Sn. By lemma 2.1 (1) Sn

contains no negative elements.

¤

Proof of Theorem 1.1 (2) If n ≡ ±3 (mod 8) or n ≡ 0 (mod 2), then using lemma 2.1
(5) or lemma 2.3 (2), we see Sn contains no even elements. So, preceding as in the proof of
(1) yields the result.

¤

Proof of Theorem 1.1 (3) Suppose n contains no prime factors which are ±3 modulo 8.
By remark 3.2, 2 ∈ Sn. Therefore, 2d ∈ Sn if and only if d ∈ Sn. To see this, note that if
2, 2d ∈ Sn then 2 · 2d ≡ d (mod (Q∗)2) ∈ Sn. By lemma 2.3 (2), Sn contains no negative
elements. Thus, |Sn| is twice the number of odd positive elements which we count as in (1).

¤

4. Proof of Theorem 1.2

For S ′
n we consider three cases: n ≡ ±3 (mod 8), n ≡ ±1 (mod 8), and n even.

Lemma 4.1. Let n = p1 · · · pt · q1 · · · ql ≡ ±3 (mod 8) with pi ≡ 1 (mod 4) and qj ≡ 3
(mod 4) for 0 ≤ i ≤ t and 0 ≤ j ≤ l (t,l not both zero). Suppose that the partition (V1, V2)
of V (g(n)) is even. Then d, n/d ∈ S ′

n where d =
∏

p∈V1
p and n/d =

∏

p∈V2
p.

Proof. Since n ≡ ±3 (mod 8), n has an odd number of prime factors which are ±3
modulo 8. Suppose that (V1, V2) is an even partition of V (g(n)). Then either V1 or V2

contains an even number of primes which are congruent to ±3 modulo 8. Without loss of
generality, we will assume that V1 contains an even number of primes which are congruent
to ±3 modulo 8. Let d =

∏

p∈V1
p. We must show that C ′

d(Qp) 6= ∅ for p|2n.

First, consider the case p = 2. We have, d ≡ ±1 (mod 8) and lemma 2.2 (3) gives that
C ′

d(Q2) 6= ∅. We note that for q|n, q ≡ 3 (mod 4) C ′
d(Qq) 6= ∅, by lemma 2.2 (1) and (2).

10



Second, consider the case p|d. If p ≡ 1 (mod 4) then since #{p → V2} ≡ 0 (mod 2) we have
(

n/d

p

)

=
∏

r∈V2

(

r

p

)

= (1)#{r∈V2:
−→

pr 6∈E(g(n))} × (−1)#{r∈V2:
−→

pr ∈E(g(n))} = 1

For p|n/d. If p ≡ 1 (mod 4) then since #{p → V1} ≡ 0 (mod 2), we have
(

d

p

)

=
∏

r∈V1

(

r

p

)

= (1)#{r∈V2:
−→

pr 6∈E(g(n))} × (−1)#{r∈V2:
−→

pr ∈E(g(n))} = 1

Hence, by lemma 2.2 (1) and (2), d ∈ S ′
n. A similiar argument shows that n/d ∈ S ′

n.

¤

Lemma 4.2. Let n be as in lemma 4.1. Suppose d = p1 · · · ps · q1 · · · qr ∈ S ′
n for 0 ≤ s ≤ t

and 0 ≤ r ≤ l. Let V1 = {p1, . . . , ps, q1, . . . qr} and V2 = {ps+1, . . . pt, qr+1, . . . ql}. Then
(V1, V2) is an even partition of V (g(n)).

Proof. By definition, d ∈ S ′
n if

C ′
d(Qp) 6= ∅ ∀p|2n and C ′

d(Q∞) 6= ∅

Since n ≡ ±3 (mod 8) one of d or n/d ≡ ±1 (mod 8). Without loss of generality, suppose
d ≡ ±1 (mod 8), then by lemma 2.2 (3), C ′

d(Q2) 6= ∅. From lemma 2.2 (1), for p|d, if p ≡ 1

(mod 4) and C ′
d(Qp) 6= ∅, then

(

n/d
p

)

= 1. Thus we have,

1 =

(

n/d

p

)

=
∏

q∈V2

(

q

p

)

p ∈ V1

= (1)#{r∈V2:
−→

pr 6∈E(g(n))} × (−1)#{r∈V2:
−→

pr ∈E(g(n))}

⇒ #{p → V2} is even for p ∈ V1, p ≡ 1 (mod 4)

Also, Lemma 2.2 (2) gives
(

d
p

)

= 1 for p|n/d, if p ≡ 1 (mod 4). Then we have,

1 =

(

d

p

)

= (1)#{r∈V1:
−→

pr 6∈E(g(n))} × (−1)#{r∈V1:
−→

pr ∈E(g(n))}

⇒ #{p → V1} ≡ 0 (mod 2) for p ∈ V2, p ≡ 1 (mod 4)

Since there are no edges beginning at q1, . . . ql, (V1, V2) is an even partition of V (g(n)).

¤

Proof of Theorem 1.2 (1). Let n be as in lemma 4.1. By lemma 4.1 we have for any even
partition of g(n), say (V1, V2),

∏

p∈V1

p ∈ S ′
n and

∏

p∈V2

p ∈ S ′
n

11



So, by lemma 4.2, odd positive d ∈ S ′
n are in one to one correspondence with even partitions

of V (g(n)). By lemma 2.2, there are no even elements in S ′
n. Also, −1 ∈ S ′

n, so that d ∈ S ′
n

if and only if −d ∈ S ′
n. Therefore, |S ′

n| = 2 · #{(V1, V2) `e g(n)}.

¤

Lemma 4.3. Let n = p1 · · · pt · q1 · · · ql ≡ ±1 (mod 8) with pi ≡ 1 (mod 4) and qj ≡ 3
(mod 4) for 0 ≤ i ≤ t and 0 ≤ j ≤ l (t,l not both zero). If (V1, V2) is an even partition of
V (G(−n)) then

∏

p∈V1
p ∈ S ′

n and
∏

p∈V2
p ∈ S ′

n, where p is prime or −1.

Proof. Suppose we have an even partition, (V1, V2), of V (G(−n)). Notice that −1 is
necessarily in one of V1 or V2 so that both V1 and V2 have an even number of primes (counting
-1 as a prime) which are ±3 (mod 8). This gives Q2 solutions on C ′

d by lemma 2.2 (3), if
d =

∏

p∈V1
p or d =

∏

p∈V2
p. We may proceed just as in lemma 4.1 to finish the proof.

¤

Lemma 4.4. Let n be as in lemma 4.3. If d ∈ S ′
n and V1 is the set of prime divisors

of d along with −1, if d < 0, then (V1, V2) is an even partition of V (G(−n)). Where
V2 = V (G(−n)) − V1.

Proof. Suppose d ∈ S ′
n. Let V1 be the set of prime divisors of d along with −1, if

d < 0. Let V2 be the set of prime divisors of n/d along with −1, if d > 0. Since d ∈ S ′
n,

C ′
d(Q2) 6= ∅. Thus, d ≡ ±1 (mod 8) or n/d ≡ ±1 (mod 8), by lemma 2.2. Thus, V1 and V2

contain an even number of primes (counting -1 as a prime) which are ±3 modulo 8, since
n ≡ ±1 (mod 8). Therefore, #{−1 → W} ≡ 0 (mod 2), where W = V1 or V2 is the set not

containing −1. If p ≡ 1 (mod 4) and p|d, then Lemma 2.2 (2) gives
(

n/d
p

)

= 1. Thus,

1 =

(

n/d

p

)

=
∏

r∈V2

(

r

p

)

= (1)#{r∈V2:
−→

pr 6∈E(G(−n))} × (−1)#{r∈V2:
−→

pr ∈E(G(−n))}

⇒ #{p → V2} ≡ 0 (mod 2)

If p ≡ 1 (mod 4) and p|n/d, then Lemma 2.2 (2) gives
(

d
p

)

= 1. Thus,

1 =

(

d

p

)

= (1)#{r∈V1:
−→

pr 6∈E(g(n))} × (−1)#{r∈V1:
−→

pr ∈E(g(n))}

⇒ #{p → V1} ≡ 0 (mod 2) for p ∈ V2, p ≡ 1 (mod 4)

Since there are no edges beginning at q1, . . . ql, (V1, V2) is an even partition of V (G(−n)).

¤

Proof of Theorem 1.2 (2). Even partitions of V (G(−n)) are in one to one correspondence
with the odd elements of S ′

n, by lemma 4.3 and lemma 4.4. By lemma 2.2 (4) there are no
even elements.

¤

Lemma 4.5. Let n = 2 · p1 · · · pt · q1 · · · ql with pi ≡ 1 (mod 4) and qj ≡ 3 (mod 4) for
0 ≤ i ≤ t and 0 ≤ j ≤ l (t,l not both zero). Suppose that the partition (V1, V2) of V (G′(n))
is even. Then d, n/d ∈ S ′

n where d =
∏

p∈V1
p and n/d =

∏

p∈V2
p.

12



Proof. The proof of this result is identical to the proof of lemma 4.1.

¤

Lemma 4.6. Let n be as in lemma 4.5. If d ∈ S ′
n and V1 is the set of prime divisors of

d (along with 2, if d ≡ 0 (mod 2)), then (V1, V2) is an even partition of V (G′(n)). Where
V2 = V (G′(n)) − V1.

Proof. The proof of this result is identical to the proof of lemma 4.2.

¤

Proof of Theorem 1.2 (3). The previous two lemmas give a one to one correspondence
between even partitions of V (G′(n)) and positive elements of S ′

n. Since −1 is necessarily in
S ′

n, we multiply the number of even partitions of V (G′(n)) by 2.

¤

5. Graph Theory and Linear Algebra

Definition 5.1. Let G be a graph, with vertex set

V (G) = {v1, . . . vs}

and edge set, E(G). The adjacency matrix of G is defined by

A(G) = (aij)1≤i,j≤s

where

aij =

{

1 if
−→
vivj∈ E(G) (1 ≤ i 6= j ≤ s)

0 otherwise

Let

di =
s
∑

j=1

aij (out degree of vertex vi (1 ≤ i ≤ s))

Definition 5.2. The Laplace matrix of G is defined by

L(G) = diag(d1, · · · , ds) − A(G)

In [1], Feng and Xiong showed,

Lemma 5.1. (Feng and Xiong [1, lemma 2.2]) The number of even partitions of V (G) is
2s−R, where R = rankF2

NS(L(G)).

Lemma 5.2. Suppose a graph G has vertex set, V (G) = {q1, . . . qs, ps+1, . . . pt}. Futhermore,
suppose that L(G) ∈ Ft×t

2 is given by























q1 q2 ... qs ps+1 ... pt

q1 ∗ ∗ ... ∗ ∗ ... ∗
q2 ∗ ∗ ... ∗ ∗ ... ∗
...

...
... ...

...
... ...

...
qs ∗ ∗ ... ∗ ∗ ... ∗
ps+1 ∗ ∗ ... ∗ ∗ ... ∗
...

...
... ...

...
... ...

...
pt ∗ ∗ ... ∗ ∗ ... ∗






















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and let lk denote the k − th column of L(G), then

#{(V1, V2) `e V (G)|qi 6∈ V1, 0 ≤ i ≤ s} = 2(t−s)−R

where

R = rankF2
[ls+1|ls+2| · · · |lt]

Proof. We wish to count even partitions, (V1, V2), such that qi 6∈ V1 for 0 ≤ i ≤ s.
Define v(V1) = [g1 . . . gs gs+1 . . . gt]

T , by

gk =



















1 if qk ∈ V1 1 ≤ k ≤ s

0 if qk 6∈ V1 1 ≤ k ≤ s

1 if pk ∈ V1 s + 1 ≤ k ≤ t

0 if pk 6∈ V1 s + 1 ≤ k ≤ t

Following Feng and Xiong we see, (V1, V2) `e V (G) if and only if v(V1) ∈ NS(L(G)). Write
L(G) = [L1 L2] where L1 [resp. L2] represents the columns corresponding to qj for 1 ≤ j ≤ s

[resp. pi for s + 1 ≤ i ≤ t]. Let v(V1) =
[

v1(V1)
v2(V1)

]

, where v1(V1) [resp. v2(V1)] corresponds to

qj for 1 ≤ j ≤ s [resp. pi for s + 1 ≤ i ≤ t]. We may then write

L(G)v(V1) = [L1 L2]

[

v1(V1)

v2(V1)

]

=
t
∑

k=1

gk · lk

=
s
∑

k=1

0 · lk +
t
∑

k=s+1

gk · lk = L2v2(V1)

So L(G) · v(V1) = 0 ⇔ v2(V1) ∈ NS(L2).
For similiar reasons, we have

Lemma 5.3. Let {p1 · · · pt · q1 · · · ql} be the odd prime factors of n with pi ≡ 1 (mod 4) and
qj ≡ 3 (mod 4) for 0 ≤ i ≤ t and 0 ≤ j ≤ l. Let rk be the prime dividing n corresponding to
the kth row of L(G(n)). We construct b ∈ Ft+l

2 in the following way.

b(k) =

{

0 if rk ≡ ±1 (mod 8)

1 if rk ≡ ±3 (mod 8)

If L(G(n))x = b is solvable, then x corresponds to a quasi-even partition of V (G(n)) and
solutions to L(G(n))x = b and L(G(n))x = 0 are in one to one correspondence. Hence, if
L(G(n))x = b is solvable, then

#{(V1, V2) `qe V (G(n))|qj 6∈ V1, 0 ≤ j ≤ l} = 2t−R

where

R = rankF2
[l1|l2| · · · |lt]

On the other hand, if L(G(n))x = b is not solvable, then there are no quasi-even partitions
of V (G(n)).

14



With the above lemmas we may now compute the selmer groups, Sn and S ′
n, using linear

algebra. The following corollaries follow from theorems 1.1 and 1.2.

Corollary 5.1. Let n > 1 be squarefree and let L(G(n)), R, and b be as above. Then,

(1) If n ≡ ±3 (mod 8) or n ≡ 0 (mod 2), then

|Sn| = 2t−R

(2) If n ≡ ±1 (mod 8) and ∃ p|n, p ≡ ±3 (mod 8), then

|Sn| =

{

2t−R+1 if L(G(n))x = b is solvable

2t−R otherwise

(3) If pi ≡ 1 (mod 8) for all 0 ≤ i ≤ t and qj ≡ 7 (mod 8) for all 0 ≤ j ≤ l, then

|Sn| = 2t−R

Corollary 5.2. Let n = p1 · · · pt · q1 · · · ql, as before. Then,

(1) If n ≡ ±3 (mod 8), then

|S ′
n| = 2t+l−rankF2

L(g(n))+1

(2) If n ≡ ±1 (mod 8), then

|S ′
n| = 2t+l−rankF2

L(G(−n))

(3) If n ≡ 0 (mod 2), then

|S ′
n| = 2t+l−rankF2

L(G′(n))+1

6. An Example

Let n = 67 · 383 · 239 · 5 · 29 · 109 and notice n ≡ (3)(7)(7)(5)(5)(5) ≡ 7 (mod 8). By lemma
2.1 Sn contains only odd positive elements. Thus, by theorem 1.1 the elements of Sn are in
one to one correspondence with the even partitions, (V1, V2) of G(n) for which V1 contains
no primes which are 3 modulo 4. Such even partitions of G(n) are given below.

G(n)

(∅, {5, 29, 109, 67, 383, 239})
({5, 29, 109}, {67, 383, 239})
({5, 109}, {29, 67, 383, 239})
({29}, {5, 109, 67, 383, 239})

295

67 383

109

239

15



L(G(n)) =















67 383 239 5 29 109

67 0 0 0 1 0 1
383 0 0 0 1 0 1
239 0 0 0 0 0 0
5 1 1 0 0 0 0
29 0 0 0 0 0 0
109 1 1 0 0 0 0















Here dim(NS([ l4 | l5 | l6 ])) = 2, so that

|Sn| = #{(V1, V2) `e V (G(n)) | qi 6∈ V1, 1 ≤ i ≤ s}

= 22

Notice that a basis for NS([ l4 | l5 | l6 ]) is



























1
0
1



,





0
1
0



























Let v1 = [1, 0, 1]t and v2 = [0, 1, 0]t and define

n(vi) =
3
∏

j=1

p
vi[j]
j

where p1 = 5, p2 = 29, and p3 = 109. Then n(v1) = 51×290×1091 and n(v2) = 50×291×1090.
Finally, observe that

Sn =< n(v1), n(v2) > .

Thus, our basis for NS([ l4 | l5 | l6 ]) corresponds in a natural way to generators of Sn.
By lemma 2.2 S ′

n contains only odd elements. Thus, by theorem 1.2 the elements of S ′
n

are in one to one correspondence with the even partitions, (V1, V2) of G(−n). The graph,
G(−n) is given below.

16



G(−n)
3835

67

29

109

239

-1

L(G(−n)) =



















67 383 239 5 29 109 −1

67 0 0 0 0 0 0 0
383 0 0 0 0 0 0 0
239 0 0 0 0 0 0 0
5 1 1 0 0 0 0 0
29 0 0 0 0 0 0 0
109 1 1 0 0 0 0 0
−1 1 0 0 1 1 1 0



















Here dim(NS(L(G(−n)))) = 5, so that

|S ′
n| = #{(V1, V2) `e V (G(−n))}

= 25

Notice that a basis for NS(L(G(−n))) is









































































1
1
0
1
0
0
0



















,



















1
1
0
0
1
0
0



















,



















1
1
0
0
0
1
0



















,



















0
0
0
0
0
0
1



















,



















0
0
1
0
0
0
0








































































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Let

v1 = [1, 1, 0, 1, 0, 0, 0]t

v2 = [1, 1, 0, 0, 1, 0, 0]t

v3 = [1, 1, 0, 0, 0, 1, 0]t

v4 = [0, 0, 0, 0, 0, 0, 1]t

v5 = [0, 0, 1, 0, 0, 0, 0]t.

Define

n(vi) =
7
∏

j=1

p
vi[j]
j

where p1 = 67, p2 = 383, p3 = 239, p4 = 5, p5 = 29, p6 = 109, and p7 = −1. Then

n(v1) = 671 × 3831 × 2390 × 51 × 290 × 1090 ×−10

n(v2) = 671 × 3831 × 2390 × 50 × 291 × 1090 ×−10

n(v3) = 671 × 3831 × 2390 × 50 × 290 × 1091 ×−10

n(v4) = 670 × 3830 × 2390 × 50 × 290 × 1090 ×−11

n(v5) = 670 × 3830 × 2391 × 50 × 290 × 1090 ×−10

Finally, observe that
S ′

n =< n(v1), . . . n(v5) > .

Thus, our basis for NS(L(G(−n)) corresponds in a natural way to generators of S ′
n.
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