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Abstract. Let K be a number field and r an integer. Given an elliptic curve E, defined over
K, we consider the problem of counting the number of degree two prime ideals of K with trace
of Frobenius equal to r. Under certain restrictions on K, we show that “on average” the number
of such prime ideals with norm less than or equal to x satisfies an asymptotic identity that is in
accordance with standard heuristics. This work is related to the classical Lang-Trotter conjecture
and extends the work of several authors.

1. Introduction.

Let E be an elliptic curve defined over a number field K. For a prime ideal P of the ring of
integers OK where E has good reduction, we let aP(E) denote the trace of the Frobenius morphism
at P. It follows that the number of points on the reduction of E modulo P satisfies the identity

#EP(OK/P) = NP + 1− aP(E),

where NP := #(OK/P) denotes the norm of P. It is a classical result of Hasse that

|aP(E)| ≤ 2
√

NP.

See [18, p. 131] for example.
It is well-known that if p is the unique rational prime lying below P (i.e., pZ = Z ∩ P), then

OK/P is isomorphic to the finite field Fpf for some positive integer f . We refer to this integer f as
the (absolute) degree of P and write deg P = f . Given a fixed elliptic curve E and fixed integers
r and f , the classical heuristics of Lang and Trotter [14] may be generalized to consider the prime
counting function

πr,fE (x) := # {NP ≤ x : aP(E) = r and deg P = f} .

Conjecture 1 (Lang-Trotter for number fields). Let E be a fixed elliptic curve defined over K, and
let r be a fixed integer. In the case that E has complex multiplication, also assume that r 6= 0. Let
f be a positive integer. There exists a constant CE,r,f such that

πr,fE (x) ∼ CE,r,f


√
x

log x if f = 1,
log log x if f = 2,
1 if f ≥ 3

(1)

as x→∞.

Remark 2. It is possible that the constant CE,r,f may be zero. In this event, we interpret the
conjecture to mean that there are only finitely many such primes. In the case that f ≥ 3, we always
interpret the conjecture to mean that there are only finitely many such primes.

Given a family C of elliptic curves defined over K, by the average Lang-Trotter problem for C ,
we mean the problem of computing an asymptotic formula for

1
#C

∑
E∈C

πr,fE (x).
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We refer to this expression as the average order of πr,fE (x) over C . In order to provide support for
Conjecture 1, several authors have proven results about the average order of πr,fE (x) over various
families of elliptic curves. See [9, 5, 6, 11, 2, 1, 4, 12]. In each case, the results have been found
to be in accordance with Conjecture 1. Unfortunately, at present, it is necessary to take C to be a
family of curves that must “grow” at some specified rate with respect to the variable x. The authors
of the works [9, 1, 12] put a great deal of effort into keeping the average as “short” as possible. This
seems like a difficult task for the cases of the average Lang-Trotter problem that we will consider
here.

In [4], it was shown how to solve the average Lang-Trotter problem when K/Q is an Abelian
extension and C is essentially the family of elliptic curves defined by (7) below. It turns out that
their methods were actually sufficient to handle some non-Abelian Galois extensions as well in the
case when f = 2. In [12], the results of [4] were extended to the setting of any Galois extension
K/Q except in the case that f = 2. In this paper, we consider the case when f = 2 and K/Q is an
arbitrary Galois extension. We show how the problem of computing an asymptotic formula for

1
#C

∑
E∈C

πr,2E (x)

may be reduced to a certain average error problem for the Chebotarëv Density Theorem that may
be viewed as a variation on a classical problem solved by Barban, Davenport, and Halberstam. We
then show how to solve this problem in certain cases. Unfortunately, the techniques we present
here do not solve the problem for an arbitrary Galois extension, but we do significantly extend the
results of [4].
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3. An average error problem for the Chebotarëv Density Theorem.

For the remainder of the article it will be assumed that K/Q is a finite degree Galois extension
with group G. Our technique for computing an asymptotic formula for the average order of πr,2E (x)
involves estimating sums of the form

θ(x;C, q, a) :=
∑
p≤x“

K/Q
p

”
⊆C

p≡a (mod q)

log p,

where the sum is over the primes p which do not ramify in K,
(
K/Q
p

)
denotes the Frobenius class

of p in G, and C is a union of conjugacy classes of G consisting entirely of elements of order two.
Since the last two conditions on p under the sum may be in conflict for certain choices of q and a,
we will need to take some care when attempting to estimate such sums via the Chebotarëv Density
Theorem.

For each positive integer q, we fix a primitive q-th root of unity and denote it by ζq. It is
well-known that there is an isomorphism

(Z/qZ)× Gal(Q(ζq)/Q)//∼ (2)

given by a 7→ σq,a where σq,a denotes the unique automorphism in Gal(Q(ζq)/Q) such that σq,a(ζq) =
ζaq . By definition of the Frobenius automorphism, it turns out that if p is a rational prime, then
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(
Q(ζq)/Q

p

)
= σq,a if and only if p ≡ a (mod q). See [20, pp. 11-14] for example. More generally,

for any number field the extension K(ζq)/K is Galois, and under restriction of automorphisms of
K(ζq) down to Q(ζq) we have mappings

Gal(K(ζq)/K) Gal(Q(ζq)/K ∩Q(ζq)) Gal(Q(ζq)/Q).//∼ � � //

Therefore, via (2), we obtain a natural injection

Gal(K(ζq)/K) (Z/qZ)×.� � // (3)

We let GK,q denote the image of the map (3) in (Z/qZ)× and ϕK(q) := #GK,q. Note that ϕQ is the
usual Euler ϕ-function. For a ∈ GK,q and a prime ideal p of K, it follows that

(
K(ζq)/K

p

)
= σq,a if

and only if Np ≡ a (mod q).
Now let G′ denote the commutator subgroup of G, and let K ′ denote the fixed field of G′. We will

use the notation throughout the article. It follows thatK ′ is the maximal Abelian subextension ofK.
By the Kronecker-Weber Theorem [13, p. 210], there is a smallest integer mK so that K ′ ⊆ Q(ζmK ).
For every q ≥ 1, it follows that K∩Q(ζqmK ) = K ′. Furthermore, the extension K(ζqmK )/Q is Galois
with group isomorphic to the fibered product

{(σ1, σ2) ∈ Gal(Q(ζqmK )/Q)×G : σ1|K′ = σ2|K′}.

See [8, pp. 592-593] for example. It follows that

[K(ζqmK ) : Q] =
ϕ(qmK)nK

nK′
= ϕK(qmK)nK , (4)

where here and throughout we use the notation nF := [F : Q] to denote the degree of a number
field F .

For each τ ∈ Gal(K ′/Q), it follows from the above facts that there is a finite list Sτ of congruence
conditions modulo mK (really a coset of GK,mK in (Z/mKZ)×) such that for any rational prime not
ramifying in K ′,

(
K′/Q
p

)
= τ if and only if p ≡ a (mod mK) for some a ∈ Sτ . Now, suppose that τ

has order one or two in Gal(K ′/Q), and let Cτ be the subset of order two elements of G that restrict
to τ on K ′, i.e.,

Cτ := {σ ∈ G : σ|K′ = τ and |σ| = 2}.

Since K ′/Q is Abelian, it follows that Cτ is a union of conjugacy classes in G. Then for each
a ∈ (Z/qmKZ)×, the Chebotarëv Density Theorem gives the asymptotic formula

θ(x; Cτ , qmK , a) ∼
#Cτ

ϕK(qmK)nK
x, (5)

provided that a ≡ b (mod mK) for some b ∈ Sτ . Otherwise, the sum on the left is empty. For
Q ≥ 1, we define the Barban-Davenport-Halberstam average square error for this problem by

EK(x;Q, Cτ ) :=
∑
q≤Q

qmK∑
a=1

′
(
θ(x;C, qmK , a)−

#Cτ
ϕK(qmK)nK

x

)2

, (6)

where the prime on the sum over a means that the sum is to be restricted to those a such that a ≡ b
(mod mK) for some b ∈ Sτ .
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4. Notation and statement of results.

We are now ready to state our main results on the average Lang-Trotter problem. Recall that
the ring of integers OK is a free Z-module of rank nK , and let B = {γj}nK

j=1 be a fixed integral basis
for OK . We denote the coordinate map for the basis B by

[·]B : OK
∼−→

nK⊕
j=1

Z = ZnK .

If A,B ∈ ZnK , then we write A ≤ B if each entry of A is less than or equal to the corresponding
entry of B. For two algebraic integers α, β ∈ OK , we write Eα,β for the elliptic curve given by the
model

Eα,β : Y 2 = X3 + αX + β.

We take as our family of elliptic curves the set

C := C (A;B) = {Eα,β : −A ≤ [α]B ≤ A,−B ≤ [β]B ≤ B,−16(4α3 + 27β2) 6= 0}. (7)

To be more precise, this box should be thought of as a box of equations or models since the same
elliptic curve may appear multiple times in C . For 1 ≤ i ≤ nK , we let ai denote the i-th entry of A
and bi denote the i-th entry of B. Associated to box C , we define the quantities

V1(C ) := 2nK
nK∏
i=1

ai, V2(C ) := 2nK
nK∏
i=1

bi,

min1(C ) := min
1≤i≤nK

{ai}, min2(C ) := min
1≤i≤nK

{bi},

V(C ) := V1(C )V2(C ), min(C ) := min{min1(C ),min2(C )},
which give a description of the size of the box C . In particular,

#C = V(C ) +O

(
V(C )

min(C )

)
.

Our first main result is that the average order problem for πr,2E (x) may be reduced to the Barban-
Davenport-Halberstam type average error problem described in the previous section.

Theorem 3. Let r be a fixed odd integer, and recall the definition of EK(x;Q, Cτ ) as given by (6).
If

EK(x;x/(log x)12, Cτ )�
x2

(log x)11

for every τ of order dividing two in Gal(K ′/Q), then provided that min(C ) ≥
√
x,

1
#C

∑
E∈C

πr,2E (x) = CK,r,2 log log x+O(1),

where CK,r,2 is the constant given by

CK,r,2 =
nK′

3πϕ(mK)

∏
`|r

(
`

`−
(−1
`

)) ∏
`-2rmK

(
`(`− 1−

(−1
`

)
)

(`− 1)(`−
(−1
`

)
)

) ∑
τ∈Gal(K′/Q)
|τ |=1,2

#Cτ
∑
g∈Sτ

∏
`|mK
`-2r

K(τ,g)
r , (8)

and K
(τ,g)
r is defined by (29) on page 15.

Remark 4. We have chosen to restrict ourselves to the case when r is odd since it simplifies some
of the technical difficulties involved in computing the constant CK,r,2. A result of the same nature
should hold for even r as well.
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Remark 5. In all of our computations, the number field K and the integer r are assumed to be fixed.
We have not kept track of the way in which our implied constants depend on these two parameters.
Thus, all implied constants in this article may depend on K and r even though we do not make this
explicit.

The proof of Theorem 3 proceeds by a series of reductions. We make no restriction on the number
field K except that it be a finite degree Galois extension of Q. In Section 6, we reduce the proof
of Theorem 3 to the computation of a certain average of class numbers. In Section 7, we reduce
that computation to a certain average of special values of Dirichlet L-functions. In Section 8, the
problem is reduced to the problem of bounding EK(x;Q, Cτ ). Finally, in Section 9, we compute the
constant CK,r,2.

Under certain conditions on the Galois group G = Gal(K/Q), we are able to completely solve our
problem by bounding EK(x;Q, Cτ ). One easy case is when the Galois group G is equal to its own
commutator subgroup, i.e., when G is a perfect group. In this case, we say that the number field K
is totally non-Abelian. The authors of [4] were able to prove a version of Theorem 3 whenever G is
Abelian. That is, when the commutator subgroup is trivial, or equivalently, when K = K ′. It turns
out that their methods are actually sufficient to handle some non-Abelian number fields as well. In
particular, their technique is sufficient whenever there is a finite list of congruence conditions that
determine exactly which rational primes decompose as a product of degree two primes in K. Such
a number field need not be Abelian over Q. For example, the splitting field of the polynomial x3−2
possesses this property. If K is a finite degree Galois extension of Q possessing this property, we
say that K is 2-pretentious. The name is meant to call to mind the notion that such number fields
“pretend" to be Abelian over Q, at least as far as their degree two primes are concerned.1

In Section 10, we give more precise descriptions of 2-pretentious and totally non-Abelian number
fields and prove some basic facts which serve to characterize such fields. Then, in Section 11, we
show how to give a complete solution to the average order problem for πr,2E (x) whenever K may
be decomposed K = K1K2, where K1 is a 2-pretentious Galois extension of Q, K2 is totally non-
Abelian, and K1 ∩K2 = Q.

Theorem 6. Let r be a fixed odd integer, and assume that K may be decomposed as above. Then
provided that min(C ) ≥

√
x,

1
#C

∑
E∈C

πr,2E (x) = CK,r,2 log log x+O(1),

where CK,r,2 is the constant given by (8).

By a slight alteration in the method we employ to prove Theorem 3, we can also provide a
complete solution to our problem for another class of number fields.

Theorem 7. Let r be a fixed odd integer, and suppose that K ′ is ramified only at primes which
divide 2r. Then there exists a constant CK,r,2 such that

1
#C

∑
E∈C

πr,2E (x) = CK,r,2 log log x+O(1),

provided that min(C ) ≥
√
x. Furthermore, the constant CK,r,2 may be explicitly written as

CK,r,2 =
#C
3π

∏
`>2

`(`− 1−
(
−r2
`

)
)

(`− 1)(`−
(−1
`

)
)
,

1We borrow the term pretentious from Granville and Soundararajan who use the term to describe the way in
which one multiplicative function “pretends" to be another in a certain technical sense. We borrow the term as an
homage.
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where the product is taken over the rational primes ` > 2 and C = {σ ∈ Gal(K/Q) : |σ| = 2}.

Remark 8. We note that the required growth rate min(C ) ≥
√
x for Theorems 3, 6, 7 can be relaxed

to min(C ) ≥
√
x/ log x. The key piece of information necessary for making the improvement is to

observe that (13) (see page 8) can be improved to H(T ) � T 2

log T , where H(T ) is the sum defined
by (11). Indeed, the techniques used to prove Propositions 14 and 15 below can be used to show
that H(T ) is asymptotic to some constant multiple of T 2

log T .

Following [6], we also obtain an easy result concerning the average supersingular distribution of
degree two primes. To this end, we define the prime counting function

πss,2
E (x) := #{NP ≤ x : E is supersingular at P, deg P = 2}.

Recall that if P is a degree two prime of K lying above the rational prime p, then E is supersingular
at P if and only if aP(E) = 0,±p,±2p. By a straightforward adaption of [6, pp. 199-200], we obtain
the following.

Theorem 9. Let K be any Galois number field. Then
1

#C

∑
E∈C

π0,2
E (x)� 1

provided that min(C ) ≥ log log x, and
1

#C

∑
E∈C

πss,2
E (x) ∼ #C

12nK
log log x

provided that min(C ) ≥
√
x/ log x. Here, C = {σ ∈ Gal(K/Q) : |σ| = 2}.

Since the proof of this result merely requires a straightforward adaptation of [6, pp. 199-200], we
choose to omit it.

5. Counting isomorphic reductions.

In this section, we count the number of models E ∈ C that reduce modulo P to a given isomor-
phism class.

Lemma 10. Let P be a prime ideal of K and let E′ be an elliptic curve defined over OK/P. Suppose
that deg P = 2 and P - 6. Then

#{E ∈ C : EP
∼= E′} =

V(C )
NP#Aut(E′)

+O

(
V(C )
NP2

+
V(C )

min(C )
√

NP
+

V(C )
min1(C ) min2(C )

)
.

Proof. Since deg p = 2, the residue ring OK/P is isomorphic to the finite field Fp2 , where p is the
unique rational prime lying below P. Since P - 6, the characteristic p is greater than 3. Hence, E′
may be modeled by an equation of the form

Ea,b : Y 2 = X3 + aX + b

for some a, b ∈ OK/P. The number of equations of this form that are isomorphic to E′ is exactly

p2 − 1
#Aut(E′)

=
NP− 1

#Aut(E′)
.

Therefore,

#{E ∈ C : EP
∼= E′} =

NP− 1
#Aut(E′)

#{E ∈ C : EP = Ea,b}.

Suppose that E ∈ C such that EP = Ea,b, say E : Y 2 = X2 + αX + β. Then either α ≡ a
(mod P) and β ≡ b (mod P) or Eα,β is not minimal at P. If E is not minimal at P, then P4 | α
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and P6 | β. For a, b ∈ OK/P, we adapt the argument of [6, p. 192] in the obvious manner to obtain
the estimates

#{α ∈ OK : −A ≤ [α]B ≤ A, α ≡ a (mod P)} =
V1(C )
NP

+O

(
V1(C )

min1(C )
√

NP

)
,

#{β ∈ OK : −B ≤ [β]B ≤ B, α ≡ b (mod P)} =
V2(C )
NP

+O

(
V2(C )

min2(C )
√

NP

)
.

It follows that

#{E ∈ C : EP = Ea,b} =
V(C )
NP2

+O

(
V(C )

min(C )NP3/2
+

V(C )
min1(C ) min2(C )NP

+
V(C )
NP10

)
,

where the last term in the error accounts for the curves which are not minimal at P. �

6. Reduction of the average order to an average of class numbers.

In this section, we reduce our average order computation to the computation of an average of
class numbers. Given a (not necessarily fundamental) discriminant D < 0, if D ≡ 0, 1 (mod 4), we
define the Hurwitz-Kronecker class number of discriminant D by

H(D) :=
∑
k2|D

D
k2
≡0,1 (mod 4)

h(D/k2)
w(D/k2)

, (9)

where h(d) denotes the class number of the unique imaginary quadratic order of discriminant d and
w(d) denotes the order of its unit group.

A simple adaption of the proof of Theorem 4.6 in [17] to count isomorphism classes with weights
(as in [15, p. 654]) yields the following result, which is attributed to Deuring [7].

Theorem 11 (Deuring). Let p be a prime greater than 3, and let r be an integer such that p - r
and r2 − 4p2 < 0. Then ∑

Ẽ/Fp2
#Ẽ(Fp2 )=p2+1−r

1
#Aut(Ẽ)

= H(r2 − 4p2),

where the sum on the left is over the Fp2-isomorphism classes of elliptic curves possessing exactly
p2 + 1− r points and #Aut(Ẽ) denotes the size of the automorphism group of any representative of
Ẽ.

Proposition 12. Let r be any integer. If min(C ) ≥
√
x, then

1
#C

∑
E∈C

πr,2E (x) =
nK
2

∑
3|r|<p≤

√
x

fK(p)=2

H(r2 − 4p2)
p2

+O (1) ,

where the sum on the right is over the rational primes p which do not ramify and split into degree
two primes in K.

Remark 13. We do not place any restriction on r in the above, nor do we place any restriction on
K except that the extension K/Q be Galois.
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Proof. For each E ∈ C , we write πr,2E (x) as a sum over the degree two primes of K and switch the
order of summation, which yields

1
#C

∑
E∈C

πr,2E (x) =
1

#C

∑
NP≤x

deg P=2

∑
E∈C

aP(E)=r

1 =
∑

NP≤x
deg P=2

 1
#C

∑
Ẽ/(OK/P)

aP(Ẽ)=r

#
{
E ∈ C : EP

∼= Ẽ
} ,

where the sum in brackets is over the isomorphism classes Ẽ of elliptic curves defined over OK/P
having exactly NP + 1− r points.

Removing the primes with NP ≤ (3r)2 introduces at most a bounded error depending on r. For
the primes with NP > (3r)2, we apply Theorem 11 and Lemma 10 to estimate the expression in
brackets above. The result is equal to

H(r2 − 4NP)
NP

+O

(
H(r2 − 4NP)

[
1

NP2
+

1
min(C )

√
NP

+
1

min1(C ) min2(C )

])
. (10)

Summing the main term of (10) over the appropriate P gives∑
(3r)2<NP≤x

deg P=2

H(r2 − 4NP)
NP

=
nK
2

∑
3|r|<p≤

√
x

fK(p)=2

H(r2 − 4p2)
p2

,

where the sum on the right is over the rational primes p which split into degree two primes in K.
To estimate the error terms, we proceed as follows. For T > 0, let

H(T ) :=
∑

3|r|<p≤T

H(r2 − 4p2). (11)

Given a discriminant d < 0, we let χd denote the Kronecker symbol
(
d
·
)
. The class number formula

states that
h(d)
w(d)

=
|d|1/2

2π
L(1, χd), (12)

where L(1, χd) =
∑∞

n=1
χd(n)
n . Thus, the class number formula together with the definition of the

Hurwitz-Kronecker class number implies that

H(T )�
∑
k≤2T

1
k

∑
3|r|<p≤T
k2|r2−4p2

p log p ≤ T log T
∑
k≤2T

1
k

∑
3|r|<p≤4T
k|r2−4p2

1

� T log T
∑
k≤2T

1
k

∑
a∈(Z/kZ)×

4a2≡r2 (mod k)

∑
p≤4T

p≡a (mod k)

1.

We apply the Brun-Titchmarsh inequality [10, p. 167] to bound the sum over p and the Chinese
Remainder Theorem to deduce that

#{a ∈ (Z/kZ)× : 4a2 ≡ r2 (mod k)} ≤ 2ω(k),

where ω(k) denotes the number of distinct prime factors of k. The result is that

H(T )� T 2 log T
∑
k≤2T

2ω(k)

kϕ(k) log(4T/k)
� T 2 log T

∑
k≤2T

2ω(k) log k
kϕ(k) log(4T )

� T 2. (13)
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From this, we deduce the bounds∑
(3r)2<NP≤x

deg P=2

H(r2 − 4NP)�
∑

3|r|<p≤
√
x

H(r2 − 4p2) = H(
√
x)� x,

∑
(3r)2<NP≤x

deg P=2

H(r2 − 4NP)√
NP

�
∑

3|r|<p≤
√
x

H(r2 − 4p2)
p

=
∫ √x

3|r|

dH(T )
T

�
√
x,

and ∑
(3r)2<NP≤x

deg P=2

H(r2 − 4NP)
NP2

�
∑

3|r|<p≤
√
x

H(r2 − 4p2)
p4

=
∫ √x

3|r|

dH(T )
T 4

� 1.

Using these estimates, it is easy to see that summing the error terms of (10) over P yields a bounded
error whenever min(C ) ≥

√
x. �

7. Reduction to an average of special values of Dirichlet L-functions.

In the previous section, we reduced the problem of computing the average order of πr,2E (x) to that
of computing a certain average of Hurwitz-Kronecker class numbers. In this section, we reduce the
computation of that average of Hurwitz-Kronecker class numbers to the computation of a certain
average of special values of Dirichlet L-functions. Recall that if χ is a Dirichlet character, then the
Dirichlet L-function attached to χ is given by

L(s, χ) :=
∞∑
n=1

χ(n)
ns

for s > 1. If χ is not trivial, then the above definition is valid at s = 1 as well. As in the previous
section, given an integer d, we write χd for the Kronecker symbol

(
d
·
)
. We now define

AK,2(T ; r) :=
∑
k≤2T

(k,2r)=1

1
k

∑
3|r|<p≤T
fK(p)=2
k2|r2−4p2

L
(
1, χdk(p2)

)
log p, (14)

where the condition fK(p) = 2 means that p factors in K as a product of degree two prime ideals
of OK , and we put dk(p2) := (r2 − 4p2)/k2 whenever k2 | r2 − 4p2.

Proposition 14. Let r be any odd integer. If there exists a constant C′K,r,2 such that

AK,2(T ; r) = C′K,r,2T +O

(
T

log T

)
,

then
nK
2

∑
3|r|<p≤

√
x

fK(p)=2

H(r2 − 4p2)
p2

= CK,r,2 log log x+O(1),

where CK,r,2 = nK
2π C′K,r,2.

Proof. Combining the class number formula (12) with the definition of the Hurwitz-Kronecker class
number, we obtain the identity

nK
2

∑
3|r|<p≤

√
x

fK(p)=2

H(r2 − 4p2)
p2

=
nK
4π

∑
3|r|<p≤

√
x

fK(p)=2

∑
k2|r2−4p2

dk(p
2)≡0,1 (mod 4)

√
4p2 − r2
kp2

L
(
1, χdk(p2)

)
. (15)

9



By assumption r is odd, and hence r2 − 4p2 ≡ 1 (mod 4). Thus, if k2 | r2 − 4p2, it follows
that k must be odd and k2 ≡ 1 (mod 4). Whence, the sum over k above may be restricted to odd
integers dividing r2−4p2 and the congruence conditions on dk(p2) = (r2−4p2)/k2 may be omitted.
Furthermore, if ` is prime dividing (k, r) and k2 | r2 − 4p2, then

0 ≡ r2 − 4p2 ≡ −(2p)2 (mod `2),

and it follows that ` = p. This is not possible for p > 3|r| since the fact that ` divides r implies
that ` ≤ r. Hence, the sum on k above may be further restricted to integers which are coprime to r.
Therefore, switching the order of summation in (15) and employing the approximation

√
4p2 − r2 =

2p+O (1/p) gives

nK
2

∑
3|r|<p≤

√
x

fK(p)=2

H(r2 − 4p2)
p2

=
nK
2π

∑
k≤2
√
x

(k,2r)=1

1
k

∑
3|r|<p≤

√
x

fK(p)=2
k2|r2−4p2

L
(
1, χdk(p2)

)
p

+O (1) .

With AK,2(T ; r) as defined by (14), the right hand side is equal to

nK
2π

∑
k≤2
√
x

(k,2r)=1

1
k

∑
3|r|<p≤

√
x

fK(p)=2
k2|r2−4p2

L
(
1, χdk(p2)

)
p

=
nK
2π

∫ √x
3|r|

dAK,2(T ; r)
T log T

.

By assumption, AK,2(T ; r) = C′K,r,2T +O(T/ log T ). Hence, integrating by parts gives

nK
2π

∫ √x
3|r|

dAK,2(T ; r)
T log T

=
nK
2π

C′K,r,2 log log x+O(1).

�

8. Reduction to a problem of Barban-Davenport-Halberstam Type.

Propositions 12 and 14 reduce the problem of computing an asymptotic formula for

1
#C

∑
E∈C

πr,2E (x)

to the problem of showing that there exists a constant C′K,r,2 such that

AK,2(T ; r) =
∑
k≤2T

(k,2r)=1

1
k

∑
3|r|<p≤T
fK(p)=2
k2|r2−4p2

L
(
1, χdk(p2)

)
log p = C′K,r,2T +O(T/ log T ). (16)

In this section, we reduce this to a problem of “Barban-Davenport-Halberstam type."
Since every rational prime p that does not ramify and splits into degree two primes in K must

either split completely in K ′ or split into degree two primes in K ′, we may write

AK,2(T ; r) =
∑

τ∈Gal(K′/Q)
|τ |=1,2

AK,τ (T ; r),

10



where the sum runs over the elements τ ∈ Gal(K ′/Q) of order dividing two, AK,τ (T ; r) is defined
by

AK,τ (T ; r) :=
∑
k≤2T

(k,2r)=1

1
k

∑
3|r|<p≤T“
K/Q
p

”
⊆Cτ

k2|r2−4p2

L
(
1, χdk(p2)

)
log p, (17)

and Cτ is the subset of all order two elements of Gal(K/Q) whose restriction to K ′ is equal to τ .
Thus, it follows that (16) holds if there exists a constant C

(τ)
r such that

AK,τ (T, r) = C(τ)
r T +O(T/ log T )

for every element τ ∈ Gal(K ′/Q) of order dividing two.

Proposition 15. Let r be a fixed odd integer, let τ be an element of Gal(K ′/Q) of order dividing
two, and recall the definition of EK(x;Q, Cτ ) as given by (6). If

EK(T ;T/(log T )12, Cτ )�
T 2

(log T )11
, (18)

then

AK,τ (T ; r) = C(τ)
r T +O

(
T

log T

)
, (19)

where

C(τ)
r =

2#Cτ
3nK

∏
`|r

(
`

`−
(−1
`

)) ∑
g∈Sτ

∞∑
k=1

(k,2r)=1

1
k

∞∑
n=1

(n,2r)=1

1
nϕK(mKnk2)

∑
a∈(Z/nZ)×

(a
n

)
#Cg(r, a, n, k)

(20)
and

Cg(r, a, n, k) :=
{
z ∈ (Z/mKnk2Z)× : 4z2 ≡ r2 − ak2 (mod nk2), z ≡ b (mod mK)

}
.

Proof. Suppose that d is a discriminant, and let

Sd(y) :=
∑
n≤y

(n,2r)=1

χd(n).

Burgess’ bound for character sums [3, Theorem 2] implies that∑
n≤y

χd(n)� y1/2|d|7/32.

Since r is a fixed integer, we have that

|Sd(y)| =

∣∣∣∣∣∣∣∣
∑
m|2r

µ(m)
∑
n≤y
m|n

χd(n)

∣∣∣∣∣∣∣∣� y1/2|d|7/32,

where the implied constant depends on r alone. Therefore, for any U > 0, we have that∑
n>U

(n,2r)=1

χd(n)
n

=
∫ ∞
U

dSd(y)
y

� |d|
7/32

√
U

. (21)

11



Now, we consider the case when d = dk(p2) = (r2 − 4p2)/k2 with (k, 2r) = 1 and p > 3|r|. Since
r is odd, it is easily checked that χdk(p2)(2) =

(
5
2

)
= −1, and χdk(p2)(`) =

(−1
`

)
for any prime `

dividing r. Therefore, we may write

L(1, χdk(p2)) =
2
3

∏
`|r

(
1−

(−1
`

)
`

)−1 ∞∑
n=1

(n,2r)=1

(
dk(p2)
n

)
1
n
.

Since we also have the bound |dk(p2)| ≤ (2p/k)2, (21) implies that

AK,τ (T ; r) =
2
3

∏
`|r

(
1−

(−1
`

)
`

)−1 ∑
k≤2T

(k,2r)=1

1
k

∑
n≤U

(n,2r)=1

1
n

∑
3|r|<p≤T“
K/Q
p

”
⊆Cτ

k2|r2−4p2

(
dk(p2)
n

)
log p+O

(
T 23/16

√
U

)
.

For any V > 0, we also have that

∑
V <k≤2T
(k,2r)=1

1
k

∑
n≤U

(n,2r)=1

1
n

∑
3|r|<p≤T“
K/Q
p

”
⊆Cτ

k2|r2−4p2

(
dk(p2)
n

)
log p� log T logU

∑
V <k≤2T
(k,2r)=1

1
k

∑
m≤T

k2|r2−4m2

1,

where the last sum on the right runs over all integers m ≤ T such that k2 | r2− 4m2. To bound the
double sum on the right, we employ the Chinese Remainder Theorem to see that

∑
V <k≤2T
(k,2r)=1

1
k

∑
m≤T

k2|r2−4m2

1 <
∑

V <k≤2T
(k,2r)=1

1
k

∑
m≤2T

k|r2−4m2

1�
∑

V <k≤2T
(k,2r)=1

#{z ∈ Z/kZ : 4z2 ≡ r2 (mod k)}
k

T

k

� T
∑

V <k≤2T

2ω(k)

k2
< T

∫ ∞
V

dN(y)
y2

� T log V
V

,

where ω(k) is the number of distinct prime divisors of k and N(y) =
∑

k≤y 2ω(k) � y log y. See [16,
p. 68] for example. Therefore, since including the primes p ≤ 3|r| introduces an error that is
O(logU log V ), we have

AK,τ (T ; r) =
2
3

∏
`|r

(
`

`−
(−1
`

)) ∑
k≤V

(k,2r)=1

1
k

∑
n≤U

(n,2r)=1

1
n

∑
p≤T“

K/Q
p

”
⊆Cτ

k2|r2−4p2

(
dk(p2)
n

)
log p

+O

(
T 23/16

√
U

+
T log T logU log V

V
+ logU log V

)
.
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If n is odd, the value of
(
dk(p

2)
n

)
depends only on the residue of dk(p2) modulo n. Thus, we may

regroup the terms of the innermost sum on p to obtain

AK,τ (T ; r) =
2
3

∏
`|r

(
`

`−
(−1
`

)) ∑
k≤V

(k,2r)=1

1
k

∑
n≤U

(n,2r)=1

1
n

∑
a∈(Z/nZ)×

(a
n

) ∑
p≤T“

K/Q
p

”
⊆Cτ

4p2≡r2−ak2 (mod nk2)

log p

+O

(
T 23/16

√
U

+
T log T logU log V

V
+ logU log V

)
.

Suppose that there is a prime p | nk2 and satisfying the congruence 4p2 ≡ r2 − ak2 (mod nk2).
Since (k, r) = 1, it follows that p must divide n. Therefore, there can be at most O(log n) such
primes for any given values of a, k and n. Thus,

AK,τ (T ; r) =
2
3

∏
`|r

(
`

`−
(−1
`

))

×
∑
k≤V

(k,2r)=1

1
k

∑
n≤U

(n,2r)=1

1
n

∑
a∈(Z/nZ)×

(a
n

) ∑
b∈(Z/nk2Z)×

4b2≡r2−ak2 (mod nk2)

∑
p≤T“

K/Q
p

”
⊆Cτ

p≡b (mod nk2)

log p

+O

(
T 23/16

√
U

+
T log T logU log V

V
+ U logU log V

)
.

(22)

We now make the choice

U :=
T

(log T )20
, (23)

V := (log T )4. (24)

Note that with this choice the error above is easily O(T/ log T ).
Recall the definitions of Cτ and Sτ from Section 3. Then every prime p counted by the innermost

sum of (22) satisfies the condition that
(
K′/Q
p

)
= τ , and hence it follows that p ≡ g (mod mK) for

some g ∈ Sτ . Therefore, we may rewrite the main term of (22) as

2
3

∏
`|r

(
`

`−
(−1
`

)) ∑
g∈Sτ

∑
k≤V

(k,2r)=1

1
k

∑
n≤U

(n,2r)=1

1
n

∑
a∈(Z/nZ)×

(a
n

) ∑
b∈(Z/mKnk2Z)×

4b2≡r2−ak2 (mod nk2)
b≡g (mod mK)

θ(T ; Cτ ,mKnk2, b).

(25)
In accordance with our observation in Section 3, the condition that b ≡ g (mod mK) ensures that
the two Chebotarëv conditions

(
K/Q
p

)
⊆ Cτ and p ≡ b (mod mKnk2) are compatible. Therefore,

we choose to approximate (25) by

T
2#Cτ
3nK

∏
`|r

(
`

`−
(−1
`

)) ∑
g∈Sτ

∑
k≤V

(k,2r)=1

1
k

∑
n≤U

(n,2r)=1

1
nϕK(mKnk2)

∑
a∈(Z/nZ)×

(a
n

)
#Cg(r, a, n, k), (26)

where Cg(r, a, n, k) is as defined in the statement of the proposition.
13



For the moment, we ignore the error in this approximation and concentrate on the supposed
main term. The following lemma whose proof we delay until Section 12 implies that the expression
in (26) is equal to C

(τ)
r T +O(T/ log T ) for U and V satisfying (23) and (24).

Lemma 16. With C
(τ)
r as defined in (20), we have

C(τ)
r =

2#Cτ
3nK

∏
`|r

(
`

`−
(−1
`

)) ∑
g∈Sτ

∑
k≤V

(k,2r)=1

1
k

∑
n≤U

(n,2r)=1

1
nϕK(mKnk2)

∑
a∈(Z/nZ)×

(a
n

)
#Cg(r, a, n, k)

+O

(
1√
U

+
log V
V 2

)
.

We now consider the error in approximating (25) by (26). The error in the approximation is
equal to a constant (depending only on K and r) times∑

g∈Sτ

∑
k≤V

(k,2r)=1,
n≤U

(n,2r)=1

1
kn

∑
a∈(Z/nZ)×

(a
n

) ∑
b∈Cg(r,a,n,k)

(
θ(T ; Cτ ,mKnk2, b)− #Cτ

nKϕK(mKnk2)
T

)
.

We note that for each b ∈ (Z/mKnk2Z)×, there is at most one a ∈ (Z/nZ)× such that ak2 ≡ 4b2−r2
(mod nk2). Therefore, interchanging the sum on a with the sum on b and applying the Cauchy-
Schwarz inequality, the above error is bounded by

∑
k≤V

1
k

∑
n≤U

ϕ(mKnk2)
n2

1/2


∑
n≤U

∑
g∈Sτ ,

b∈(Z/mKnk2Z)×

b≡g (mod mK)

(
θ(T ; Cτ ,mKnk2, b)− #Cτ

nKϕK(mKnk2)
T

)2


1/2

.

We bound this last expression by a constant times

V
√

logU
√
EK(T ;UV 2, Cτ ),

where EK(T ;UV 2, Cτ ) is defined by (6). Given our assumption (18) and our choices (23) and (24)
for U and V , the proposition now follows. �

9. Computing the average order constant for a general Galois extension.

In this section, we finish the proof of Theorem 3 by computing the product formula (8) for the
constant CK,r,2. It follows from Propositions 12, 14, and 15 that

CK,r,2 =
nK
2π

C′K,r,2,

where
C′K,r,2 =

∑
τ∈Gal(K′/Q)
|τ |=1,2

C(τ)
r

and C
(τ)
r is defined by

C(τ)
r =

2#Cτ
3nK

∏
`|r

(
`

`−
(−1
`

)) ∑
g∈Sτ

∞∑
k=1

(k,2r)=1

1
k

∞∑
n=1

(n,2r)=1

1
nϕK(mKnk2)

∑
a∈(Z/nZ)×

(a
n

)
#Cg(r, a, n, k).

14



For each g ∈ Sτ , we define

C(τ,g)
r :=

∞∑
k=1

(k,2r)=1

1
k

∞∑
n=1

(n,2r)=1

1
nϕK(mKnk2)

∑
a∈(Z/nZ)×

(a
n

)
#Cg(r, a, n, k) (27)

so that

C(τ)
r =

2#Cτ
3nK

∏
`|r

(
`

`−
(−1
`

)) ∑
g∈Sτ

C(τ,g)
r .

It remains then to show that

C(τ,g)
r =

nK′
ϕ(mK)

∏
`-2rmK

(
`(`− 1−

(−1
`

)
)

(`− 1)(`−
(−1
`

)
)

) ∏
`|mK
`-2r

K(τ,g)
r , (28)

where

K(τ,g)
r :=



`
ν`(4g

2−r2)+1

2 − 1

`
ν`(4g

2−r2)−1

2 (`− 1)
if ν`(4g2 − r2) < ν`(mK), 2 - ν`(4g2 − r2);

`
ν`(4g

2−r2)

2
+1 − 1

`
ν`(4g

2−r2)

2 (`− 1)
+

(
(r2−4g2)`

`

)
`
ν`(4g

2−r2)

2

(
`−

(
(r2−4g2)`

`

)) if ν`(4g2 − r2) < ν`(mK), 2 | ν`(4g2 − r2);

`
2
l
ν`(mK )

2

m
+1(`+ 1)

(
`

l
ν`(mK )

2

m
− 1
)

+ `ν`(mK)+2

`
3
l
ν`(mK )

2

m
(`2 − 1)

if ν`(4g2 − r2) ≥ ν`(mK).

(29)

Remark 17. The notation ν`(4g2−r2) is a bit strange as g is defined to be an element of (Z/mKZ)×.
This can be remedied by choosing any integer representative of g, and noting that any choice with
ν`(4g2 − r2) ≥ ν`(mK) corresponds to the case that 4g2 ≡ r2 (mod `ν`(mK)).

By the Chinese Remainder Theorem and equation (4),

C(τ,g)
r =

∞∑
k=1

(k,2r)=1

1
k

∞∑
n=1

(n,2r)=1

1
nϕK(mKnk2)

∑
a∈(Z/nZ)×

(a
n

)
#Cg(r, a, n, k)

= nK′
∞∑
k=1

(k,2r)=1

1
k

∞∑
n=1

(n,2r)=1

1
nϕ(mKnk2)

∑
a∈(Z/nZ)×

(a
n

) ∏
`|mKnk2

#C(`)
g (r, a, n, k),

where the product is taken over the distinct primes ` dividing mKnk2,

C(`)
g (r, a, n, k) :=

{
b ∈ (Z/`ν`(mKnk2)Z)× : 4b2 ≡ r2 − ak2 (mod `ν`(nk

2)), b ≡ g (mod `ν`(mK))
}
,

and ν` is the usual `-adic valuation. With somewhat different notation, the following evaluation of
#C(`)

g (r, a, n, k) can be found in [4].

Lemma 18. Let k,m, and n be positive integers satisfying the condition (nk, 2r) = 1. Suppose that
` is any prime dividing mKnk2. If ` - mK , then

#C(`)
g (r, a, n, k) =

{
1 +

(
r2−ak2

`

)
if ` - r2 − ak2,

0 otherwise;
15



if ` | mK , then

#C(`)
g (r, a, n, k) =

{
`min{ν`(nk2),ν`(mK)} if 4g2 ≡ r2 − ak2 (mod `min{ν`(nk2),ν`(mK)}),
0 otherwise.

In particular,

#C(`)
g (r, 1, 1, k) =


2 if ` | k and ` - mK ,
`min{2ν`(k),ν`(mK)} if ` | mK and 4g2 ≡ r2 (mod `min{2ν`(k),ν`(mK)}),
0 otherwise.

By Lemma 18 we note that if ` is a prime dividing mK and ` does not divide nk, then #C(`)
g (r, a, n, k) =

1. We also see that #C(`)
g (r, a, n, k) = 0 if (r2 − ak2, n) > 1. Finally, if ` | k and ` - n, then

#C(`)
g (r, a, n, k) = #C(`)

g (r, 1, 1, k)

as ν`(nk2) = 2ν`(k) in this case. Therefore, using the formula ϕ(mn) = ϕ(m)ϕ(n)(m,n)/ϕ((m,n)),
we have

C(τ,g)
r = nK′

∞∑
k=1

(k,2r)=1

1
k2ϕ(mKk)

∞∑
n=1

(n,2r)=1

ϕ ((n,mKk))
nϕ(n)(n,mKk)

∑
a∈(Z/nZ)×

(r2−ak2,n)=1

(a
n

)∏
`|nk

#C(`)
g (r, a, n, k)

= nK′
∞∑
k=1

(k,2r)=1

1
k2ϕ(mKk)

∞∑
n=1

(n,2r)=1

ϕ ((n,mKk))
∏
`|k
`-n

#C(`)
g (r, 1, 1, k)

nϕ(n)(n,mKk)
ck(n)

=
nK′

ϕ(mK)

∞∑
k=1

(k,2r)=1

ϕ((mK , k))
(mK , k)k2ϕ(k)

∞∑
n=1

(n,2r)=1

ϕ ((n,mKk))
∏
`|k
`-n

#C(`)
g (r, 1, 1, k)

nϕ(n)(n,mKk)
ck(n)

=
nK′

ϕ(mK)

∞∑
k=1

′ϕ((mK , k))
∏
`|k #C(`)

g (r, 1, 1, k)

(mK , k)k2ϕ(k)

∞∑
n=1

(n,2r)=1

ϕ ((n,mKk)) ck(n)

nϕ(n)(n,mKk)
∏
`|(k,n) #C(`)

g (r, 1, 1, k)
.

(30)

Here ck(n) is defined by

ck(n) :=
∑

a∈(Z/nZ)×

(r2−ak2,n)=1

(a
n

)∏
`|n

#C(`)
g (r, a, n, k), (31)

for (n, 2r) = 1, and the prime on the sum over k is meant to indicate that the sum is to be restricted
to those k which are coprime to 2r and not divisible by any prime ` for which #C(`)

g (r, 1, 1, k) = 0.

Lemma 19. Assume that k is an integer coprime to 2r. The function ck(n) defined by equation (31)
is multiplicative in n. Suppose that ` is a prime not dividing 2r. If ` - kmK , then

ck(`e)
`e−1

=

{
`− 3 if 2 | e,
−
(
1 +

(−1
`

))
if 2 - e.
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If ` | kmK , then

ck(`e)
`e−1

= #C(`)
g (r, 1, 1, k)

{
`− 1 if 2 | e,
0 if 2 - e

in the case that ν`(mK) ≤ 2ν`(k); and

ck(`e)
`e−1

= #C(`)
g (r, 1, 1, k)

(
(r2 − 4g2)/`2ν`(k)

`

)e
`

in the case that 2ν`(k) < ν`(mK). Furthermore, for (n, 2r) = 1, we have

ck(n)�
n
∏
`|(n,k) #C(g)

g (r, 1, 1, k)

κmK (n)
,

where for any integer N , κN (n) is the multiplicative function defined on prime powers by

κN (`e) :=

{
` if ` - N and 2 - e,
1 otherwise.

(32)

Remark 20. Lemma 19 is essentially proved in [4], but we give the proof in Section 12 for complete-
ness.

Using the lemma and recalling the restrictions on k, we factor the sum over n in (30) as

∞∑
n=1

(n,2r)=1

ϕ ((n,mKk)) ck(n)

nϕ(n)(n,mKk)
∏
`|(k,n) #C(`)

g (r, 1, 1, k)

=
∏

`-2rmKk

∑
e≥0

ck(`e)
`eϕ(`e)

 ∏
`|mKk
(`-2r)

1 +
∑
e≥1

(
1− 1

`

)
ck(`e)

`eϕ(`e)#C(`)
g (r, 1, 1, k)


=

∏
`-2rmKk

F0(`)
∏
`|mKk
(`-2r)

F
(g)
1 (`, k)

=
∏

`-2rmK

F0(`)
∏
`|mK
`-2r

F
(g)
1 (`, 1)

∏
`|k
`-mK
(`-2r)

F
(g)
1 (`, k)
F0(`)

∏
`|(mK ,k)
(`-2r)

F
(g)
1 (`, k)

F
(g)
1 (`, 1)

where for any odd prime `, we make the definitions

F0(`) := 1−
(−1
`

)
`+ 3

(`− 1)2(`+ 1)
,

F
(g)
1 (`, k) :=


1 +

„
(r2−4g2)/`2ν`(k)

`

«
`−
„

(r2−4g2)/`2ν`(k)

`

« if 2ν`(k) < ν`(mK) and 4g2 ≡ r2 (mod `2ν`(k)),

1 + 1
`(`+1) if 2ν`(k) ≥ ν`(mK) and 4g2 ≡ r2 (mod `ν`(mK)).
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Substituting this back into (30) and factoring the sum over k, we have

C(τ,g)
r =

nK′
ϕ(mK)

∏
`-2rmK

F0(`)
∏
`|mK
`-2r

F
(g)
1 (`, 1)

×
∏

`-2rmK

1 +
∑
e≥1

F1(`, `e)2ω(`e)

F0(`)`2eϕ(`e)

 ∏
`-2r
`|mK

1 +
∑
e≥1

(
1− 1

`

)
#C(`)

g (r, 1, 1, `e)F (g)
1 (`, `e)

`2eϕ(`e)F (g)
1 (`, 1)

 .

Using Lemma 18 and the definitions of F0(`) and F (g)
1 (`, k) to simplify, we have proved (28).

10. Pretentious and totally non-Abelian number fields.

In this section, we give the definitions and basic properties of pretentious and totally non-Abelian
number fields.

Definition 21. We say that a number field F is totally non-Abelian if F/Q is Galois and Gal(F/Q)
is a perfect group, i.e., Gal(F/Q) is equal to its own commutator subgroup.

Recall that a group is Abelian if and only if its commutator subgroup is trivial. Thus, in this
sense, perfect groups are as far away from being Abelian as possible. However, we adopt the
convention that the trivial group is perfect, and so the trivial extension (F = Q) is both Abelian
and totally non-Abelian. The following proposition follows easily from basic group theory and the
Kronecker-Weber Theorem [13, p. 210].

Proposition 22. Let F be a number field. Then F is totally non-Abelian if and only if F is linearly
disjoint from every cyclotomic field, i.e., F ∩Q(ζq) = Q for every q ≥ 1.

Definition 23. Let f be a positive integer. We say that a number field F is f -pretentious if
there exists a finite list of congruence conditions L such that, apart from a density zero subset
of exceptions, every rational prime p splits into degree f primes in F if and only if p satisfies a
congruence on the list L .

If F is a Galois extension and f - nF , then no rational prime may split into degree f primes in F .
In this case, we say that F is “vacuously” f -pretentious. In this sense, we say the trivial extension
(F = Q) is f -pretentious for every f ≥ 1. The term pretentious is meant to call to mind the notion
that such number fields “pretend" to be Abelian over Q, at least in so far as their degree f primes
are concerned. Indeed, one can prove that the 1-pretentious number fields are precisely the Abelian
extensions of Q, and every Abelian extension is f -pretentious for every f ≥ 1 (being vacuously
f -pretentious for every f not dividing the degree of the extension).

Proposition 24. Suppose that F is a 2-pretentious Galois extension of Q, and let F ′ denote the
fixed field of the commutator subgroup of Gal(F/Q). Let τ be an order two element of Gal(F ′/Q),
and let Cτ be the subset of order two elements of G = Gal(F/Q) whose restriction to F ′ is equal to
τ . Then for any rational prime p that does not ramify in F , we have that

(
F ′/Q
p

)
= τ if and only

if p ≡ g (mod mF ) for some g ∈ Sτ if and only if
(
F/Q
p

)
⊆ Cτ .

Proof. In Section 3, we saw that the first equivalence holds. Indeed, this is the definition of Sτ .
Furthermore, if

(
F/Q
p

)
⊆ Cτ , then

(
F ′/Q
p

)
=
(
F/Q
p

)∣∣∣
F ′

= τ , and so p ≡ g (mod mF ) for some

g ∈ Sτ . Thus, it remains to show that if p ≡ g (mod mF ) for some g ∈ Sτ , then
(
F/Q
p

)
⊆ Cτ .

Since F is 2-pretentious, there exists a a finite list of congruences L that determine, apart from
a density zero subset of exceptions, which rational primes split into degree two primes in F . Lifting
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congruences, if necessary, we may assume that all of the congruences on the list L have the same
modulus, say m. Lifting congruences again, if necessary, we may assume that mF | m. Since mF | m,
it follows that Q(ζm) ∩ F = F ′ by definition of F ′. As noted in Section 3, the extension F (ζm)/Q
is Galois with group

Gal (F (ζm)/Q) ∼= {(σ1, σ2) ∈ Gal(Q(ζm)/Q)×G : σ1|F ′ = σ2|F ′} . (33)

Let $ : Gal(F/Q) → Gal(F ′/Q) be the natural projection given by restriction of automorphisms.
We first show that [F : F ′] = # ker$ is odd, which allows us to deduce that Cτ is not empty.
For each σ ∈ G = Gal(F/Q), we let Cσ denote the conjugacy class of σ in G. We note that (33)
and the Chebotarëv Density Theorem together imply that for each σ ∈ ker$ the density of primes
p such that p ≡ 1 (mod m) and

(
F/Q
p

)
= Cσ is equal to #Cσ

ϕF (m)nF
= nF ′#Cσ

ϕ(m)nF
> 0. In particular,

the trivial automorphism 1F ∈ ker$, and so it follows by definition of 2-pretentious that at most
a density zero subset of the p ≡ 1 (mod m) may split into degree two primes in F . However, if
[F : F ′] = # ker$ is even, then ker$ would contain an element of order 2 and the same argument
with σ replacing 1F would imply that there is a positive density of p ≡ 1 (mod m) that split into
degree two primes in F . Therefore, we conclude that [F : F ′] is odd. Now letting σ be any element
of G such that $(σ) = σ|F ′ = τ , we find that σ[F :F ′] ∈ Cτ , and so Cτ is not empty.

Finally, let g ∈ Sτ be arbitrarily chosen, and let a by any integer such that a ≡ g (mod mF ).
Again using (33) and the Chebotarëv Density Theorem, we see that the density of rational primes
p satisfying the two conditions p ≡ a (mod m) and

(
F/Q
p

)
⊆ Cτ is equal to #Cτ/ϕF (m)nF > 0.

Since every such prime must split into degree two primes in F and since a was an arbitrary integer
satisfying the condition a ≡ g (mod mF ), it follows from the definition of 2-pretentious that, apart
from a density zero subset of exceptions, every rational prime p ≡ g (mod mF ) must split into
degree two primes in F . Therefore, if p is any rational prime not ramifying in F and satisfying the
congruence condition p ≡ g (mod mF ), then

(
F ′/Q
p

)
= τ and

(
F/Q
p

)
= C ′ for some conjugacy class

C ′ of order two elements in F . Hence, it follows that
(
F/Q
p

)
= C ′ ⊆ Cτ . �

11. Proofs of Theorems 6 and 7.

In this section, we give the proof of Theorem 6 and sketch the alteration in strategy that gives
the proof of Theorem 7. The main tool in this section is a certain variant of the classical Barban-
Davenport-Halberstam Theorem. The setup is as follows. Let F/F0 be a Galois extension of number
fields, let C be any subset of Gal(F/F0) that is closed under conjugation, and for any pair of integers
q and a, define

θF/F0
(x;C, q, a) :=

∑
Np≤x

deg p=1“
F/F0

p

”
⊆C

Np≡a (mod q)

log Np,

where the sum is taken over the degree one prime ideals p of F0. If F0(ζq)∩F = F0, it follows from
the ideas discussed in Section 3 that

θF/F0
(x;C, q, a) ∼ nF0#C

nFϕF0(q)
x

whenever a ∈ GF0,q. The following is a restatement of the main result of [19].
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Theorem 25. Let M > 0. If x(log x)−M ≤ Q ≤ x, then∑
q≤Q

′ ∑
a∈Gk,q

(
θF/F0

(x;C, q, a)− nF0#C
nFϕF0(q)

x

)2

� xQ log x, (34)

where the prime on the outer summation indicates that the sum is to be restricted to those q ≤ Q
satisfying F ∩ F0(ζq) = F0. The constant implied by the symbol � depends on F and M .

Proof of Theorem 6. In light of Theorem 3, it suffices to show that

EK(x;x/(log x)12, Cτ )�
x2

(log x)11

for every element τ of order dividing two in Gal(K ′/Q).
By assumption, we may decompose the field K as a disjoint compositum, writing K = K1K2,

where K1 ∩K2 = Q, K1 is a 2-pretentious Galois extension of Q, and K2 is totally non-Abelian.
Let G1, G2 denote the Galois groups of K1/Q and K2/Q, respectively. We identify the Galois group
G = Gal(K/Q) with G1 ×G2. Since K2 is totally non-Abelian, it follows that G′ = G′1 ×G2, and
hence K ′ = K ′1 and mK = mK1 . Let C2,2 denote the subset of all order two elements in G2 and let
C1,τ denote the subset of elements in G1 whose restriction to K ′ is equal to τ . Recalling that every
element of Cτ must have order two in G, we find that under the identification G = G1×G2, we have

Cτ = {1} × C2,2

if |τ | = 1 and
Cτ = C1,τ × (C2,2 ∪ {1})

if |τ | = 2. Here we have used Proposition 24 with F = K1 and the fact that K ′ = K ′1. We now
break into cases depending on whether τ ∈ Gal(K ′/Q) is trivial or not. First, suppose that τ is
trivial. Then for each a ∈ (Z/qmKZ)× such that a ≡ b (mod mK) for some b ∈ Sτ , we have

θ(x; Cτ , qmK , a)−
#Cτ

nKϕK(qmK)
x =

∑
p≤x

p≡a (mod qmK)“
K/Q
p

”
⊆Cτ

log p− #Cτ
nKϕK(qmK)

x

=
1

nK1

∑
Np≤x

deg p=1
Np≡a (mod qmK)“

K/K1
p

”
⊆C2,2

log Np− #C2,2

nKϕK1(qmK1)
x

=
1

nK1

(
θK/K1

(x;C2,2, qmK1 , a)−
nK1#C2,2

nKϕK1(qmK1)
x

)
.

Thus, we have that

EK(x;x/(log x)12, Cτ ) =
1

n2
K1

∑
q≤ x

(log x)12

∑
a∈GK1,qmK

(
θK/K1

(x;C2,2, qmK1 , a)−
nK1#C2,2

nKϕK1(qmK1)
x

)2

.

We note that K1(ζqmK ) ∩K = K1 for all q ≥ 1 since K2 is totally non-Abelian. Hence, the result
follows for this case by applying Theorem 25 with F0 = K1 and F = K.

Now, suppose that |τ | = 2. Then the condition
(
K/Q
p

)
⊆ Cτ is equivalent to the two conditions(

K1/Q
p

)
⊆ C1,τ and

(
K2/Q
p

)
⊆ C2,2 ∪ {1}. Using Proposition 24 and the fact that K ′1 = K ′, this is
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equivalent to the two conditions p ≡ b (mod mK) for some b ∈ Sτ and
(
K2/Q
p

)
⊆ C2,2∪{1}. Hence,

for each a ∈ (Z/qmKZ)× such that a ≡ b (mod mK) for some b ∈ Sτ , we have

θ(x; Cτ , qmK , a)−
#Cτ

nKϕK(qmK)
x = θK2/Q(x;C2,2 ∪ {1}, qmK , a)−

1 + #C2,2

nK2ϕ(qmK)
x

as
#C1,τ

nK1ϕK1(qmK)
=

nK1/nK′1
nK1ϕK1(qmK)

=
1

ϕ(qmK)
.

Thus, we have that

EK(x;x/(log x)12, Cτ ) =
∑

q≤ x
(log x)12

∑
a∈(Z/qmKZ)×

(
θK2/Q(x;C2,2 ∪ {1}, qmK , a)−

1 + #C2,2

nK2ϕ(qmK)
x

)2

.

Here, as well, we have that Q(ζqmK ) ∩ K2 = Q for all q ≥ 1 because K2 is totally non-Abelian.
Hence, the result follows for this case by applying Theorem 25 with F0 = Q and F = K2. �

Proof Sketch of Theorem 7. In order to obtain this result, we change our strategy from the proof
of Theorem 3 slightly. In particular, if K ′ is ramified only at primes which divide 2r, then it
follows that Q(ζq) ∩ K = Q whenever (q, 2r) = 1. Therefore, we go back to equation (22) in the
proof of Proposition 15 and apply the Chebotarëv Density Theorem immediately. Then we use
Cauchy-Schwarz Theorem 25 to bound the error in this approximation. �

12. Proofs of Lemmas.

Proof of Lemma 16. It suffices to show that

C(τ,g)
r =

∑
k≤V

(k,2r)=1

1
k

∑
n≤U

(n,2r)=1

1
nϕK(mKnk2)

∑
a∈(Z/nZ)×

(a
n

)
#Cg(r, a, n, k) +O

(
1√
U

+
log V
V 2

)

for each g ∈ Sτ , where C
(τ,g)
r is defined by (27). We note that since K is a fixed number field, it

follows that mK is fixed. Thus, using Lemma 18, Lemma 19, and equation (4), we have that

C(τ,g)
r −

∑
k≤V

(k,2r)=1

1
k

∑
n≤U

(n,2r)=1

1
nϕK(mKnk2)

∑
a∈(Z/nZ)×

(a
n

)
#Cg(r, a, n, k)

�
∑
k≤V

(k,2r)=1

∏
`|k #C(`)

g (r, 1, 1, k)

k2ϕ(k)

∑
n>U

(n,2r)=1

ck(n)

nϕ(n)
∏
`|(n,k) #C(`)

g (r, 1, 1, k)

+
∑
k>V

(k,2r)=1

∏
`|k #C(`)

g (r, 1, 1, k)

k2ϕ(k)

∞∑
n=1

(n,2r)=1

ck(n)

nϕ(n)
∏
`|(n,k) #C(`)

g (r, 1, 1, k)

�
∑
k≤V

(k,2r)=1

∏
`|k #C(`)

g (r, 1, 1, k)

k2ϕ(k)

∑
n>U

(n,2r)=1

1
κmK (n)ϕ(n)

+
∑
k>V

(k,2r)=1

∏
`|k #C(`)

g (r, 1, 1, k)

k2ϕ(k)

∞∑
n=1

(n,2r)=1

1
κmK (n)ϕ(n)

.

(35)
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where for any integer N , κN (n) is the multiplicative function defined by (32). In [5, p. 175], we find
the bound ∑

n>U

1
κ1(n)ϕ(n)

� 1√
U
.

Therefore,∑
n>U

1
κmK (n)ϕ(n)

=
∑
mn>U

(n,mK)=1
`|m⇒`|mK

1
κ1(n)ϕ(n)ϕ(m)

≤
∑
m≥1

`|m⇒`|mK

1
ϕ(m)

∑
n>U/m

1
κ1(n)ϕ(n)

� 1√
U

∑
m≥1

`|m⇒`|mK

√
m

ϕ(m)
=

1√
U

∏
`|mK

(
1 +

`

(`− 1)(
√
`− 1)

)

� 1√
U
.

Similarly, using Lemma 18, we have that

∑
k>V

(k,2r)=1

∏
`|k #C(`)

g (r, 1, 1, k)

k2ϕ(k)
≤

∑
m≥1

`|m⇒`|mK

mK
m2ϕ(m)

∑
k>V/m

(k,2rmK)=1

2ω(k)

k2ϕ(k)

�
∑
m≥1

`|m⇒`|mK

log(V/m)
m2ϕ(m)(V/m)2

≤ log V
V 2

∑
m≥1

`|m⇒`|mK

1
ϕ(m)

=
log V
V 2

∏
`|mK

(
1 +

`

(`− 1)2

)

� log V
V 2

as ∑
k>V

2ω(k)

k2ϕ(k)
=
∫ ∞
V

dN0(t)
t3

� log V
V 2

,

where

N0(t) :=
∑
k≤t

k32ω(k)

k2ϕ(k)
� t

log t

∑
k≤t

k32ω(k)/k2ϕ(k)
k

� t

log t
exp

∑
`≤t

2
`− 1

� t log t.

Substituting these bounds into (35) finishes the proof of the lemma. �

Proof of Lemma 19. The multiplicativity of ck(n) follows easily by the Chinese Remainder Theorem.
We now compute ck(n) when n = `e is a prime power and ` - 2r.
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If ` - mK , then by Lemma 18,

ck(`e) =
∑

a∈(Z/`eZ)×

(r2−ak2,`e)=1

(a
`

)e
#C(`)

g (r, a, `e, k)

= `e−1
∑

a∈(Z/`Z)×

(a
`

)e(r2 − ak2

`

)2 [
1 +

(
r2 − ak2

`

)]

= `e−1
∑

a∈Z/`Z

(a
`

)e [(r2 − ak2

`

)2

+
(
r2 − ak2

`

)]
.

(36)

If ` | k, then this last expression gives

ck(`e)
`e−1

= 2
∑

a∈Z/`Z

(a
`

)e
= #C(`)

g (r, 1, 1, k)

{
`− 1 if 2 | e,
0 if 2 - e

as (k, r) = 1. If ` - k, then (36) gives

ck(`e)
`e−1

=
∑

a∈Z/`Z

(a
`

)e [(r2 − a
`

)2

+
(
r2 − a
`

)]

=
∑

b∈Z/`Z

(
r2 − b
`

)e [(
b

`

)2

+
(
b

`

)]

=

{
`− 3 if 2 | e,
−
(
1 +

(−1
`

))
if 2 - e.

Now, we consider the cases when ` | mK . First, suppose that 1 ≤ ν`(mK) ≤ 2ν`(k). Then as
ν`(mK) ≤ 2ν`(k) < e+ 2ν`(k) = ν`(nk2), we have that 4g2 ≡ r2 − ak2 (mod `ν`(mK)) if and only if
4g2 ≡ r2 (mod `ν`(mK)). Therefore,

#C(`)
g (r, a, `e, k) =

{
`ν`(mK) if 4g2 ≡ r2 (mod `ν`(mK)),
0 otherwise,

= #C(`)
g (r, 1, 1, k)

for all a ∈ (Z/`eZ)×. Since ` | k and (k, r) = 1, it follows that ` - r2 − ak2 for all a ∈ Z/`eZ.
Whence, in this case,

ck(`e)
`e−1

=
1

`e−1

∑
a∈Z/`eZ

(r2−ak2,`)=1

(a
`

)e
#C(`)

g (r, a, `e, k)

= #C(`)
g (r, 1, 1, k)

∑
a∈Z/`Z

(a
`

)e
= #C(`)

g (r, 1, 1, k)

{
`− 1 if 2 | e,
0 if 2 - e.

Now, suppose that 2ν`(k) < ν`(mK). We write k = `ν`(k)k` with (`, k`) = 1, and let t =
min{ν`(mK), e+ 2ν`(k)}. Then t > 2ν`(k) and 4g2 ≡ r2 − ak2 (mod `t) if and only if ak2

` ≡
r2−4g2

`2ν`(k)

23



(mod `t−2ν`(k)). Combining this information with Lemma 18, we have that

#C(`)
g (r, a, `e, k) =

{
`t if `2ν`(k) | r2 − 4g2 and ak2

` ≡
r2−4g2

`2ν`(k)
(mod `t−ν`(k)),

0 otherwise.

In particular, we see that ck(`e) = 0 if r2 6≡ 4g2 (mod `2ν`(k)). Suppose that r2 ≡ 4g2 (mod `2ν`(k)).
Since (g,mK) = 1 and ` | mK , we have that

ck(`e) =
∑

a∈Z/`eZ
(r2−ak2,`)=1

(a
`

)e
#C(`)

g (r, a, `e, k)

=
∑

a∈Z/`eZ
ak2 6≡r2 (mod `)

ak2≡r2−4g2 (mod `t)

(a
`

)e
`t

=
∑

a∈Z/`eZ
ak2≡r2−4g2 (mod `t)

(a
`

)e
`t

=
∑

a∈Z/`eZ
ak2
`≡

r2−4g2

`2ν`(k)
(mod `t−2ν`(k))

(
ak2

`

`

)e
`t

= `t
∑

a∈Z/`eZ
a≡ r

2−4g2

`2ν`(k)
(mod `t−2ν`(k))

(a
`

)e

= `t`e−t+2ν`(k)

(
(r2 − 4g2)/`2ν`(k)

`

)e
.

Therefore, in the case that ` | mK and 2ν`(k) < ν`(mK), we have

ck(`e)
`e−1

= #C(`)
g (r, 1, 1, k)

(
(r2 − 4g2)/`2ν`(k)

`

)e
`

since

#C(`)
g (r, 1, 1, k) =

{
`2ν`(k) if r2 ≡ 4g2 (mod `2ν`(k)),
0 otherwise.

�
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