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Abstract. We consider a natural model of random binary vectors
with heavier heads than tails. In this model we determine a good
upper bound for how many vectors we need to take to find a linearly
dependent set of vectors.

Let F
k
2 be the binary vector space of dimension k (we will regard the

vectors as row vectors). We define the following probability space. Generate
a vector v as follows: each coordinate of v is chosen independently, and

Pr(v[j] = 1) =
1
pj

where pj is the jth prime.
Now choose vectors v1, v2, . . . , vl independently from this distribution:

the question we focus on is how big l should be so that with high prob-
ability the set v1, v2, . . . , vl is linearly dependent. This question arose in
explorations of best stopping times for Pomerance’s Quadratic Sieve [2]
factorization algorithm. Although this turned out to be an inappropriate
model for the sieve, the result we prove here seems of independent interest.

Our result is the following.

Theorem 1. Let δ > 1/e be fixed. Let l = kδ. Then with high probability
the set of vectors is linearly dependent.

Proof: The simplest way to show that a set of vectors is linearly dependent
is to show that there are more vectors than the dimension of the space
in which the vectors live. We extend this trivial observation as follows:
construct a l×k array A having rows v1, v2, . . . , vl: then if A has more rows
that it has non-zero columns then v1, v2, . . . , vl are linearly dependent.

Let the random variable Xj be 1 if the jth column of A is nonzero and
0 otherwise. Then X =

∑
j Xj is the number of non zero columns. So if

l > X then the rows of A are linearly dependent.
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The probability that the jth column of A is zero (that is, all its entries
are zeros) is (

1− 1
pj

)l

' exp
(−l

pj

)
.

Hence the expected number of non-zero columns of A is

E(X) =
k∑

j=1

(
1−

(
1− 1

pj

)l
)
'

k∑
j=1

(
1− exp

(
− l

pj

))
.

We analyze this sum by splitting it into three regions:

I: 1 ≤ j ≤ l/ log(l)2

II: l/ log(l)2 < j < l
III: l ≤ j ≤ k.

We will show that regions I and II contribute a negligible amount to the
sum, and estimate the contribution of region III using Mertens’ theorem.

First, observe that region I has length o(l): since the summands are
certainly at most 1, and we wish to compare the sum to l, the contribution
from region I will is negligible.

Next we consider region II. In this region, we approximate the sum by
an integral: since j is large, we have pj ∼ j log j, and so

l∑
j= l

(log l)2

(
1− exp

(
− l

pj

))
'

∫ l

l
(log l)2

(
1− exp

(
− l

x log x

))
dx.

Furthermore, in this region, log x is essentially constant, with log x ' log l =
δ log k: hence the contribution of region II is about∫ l

l
(log l)2

(
1− exp

(
− l

x log l

))
dx.

Substituting u = l
x log l , this becomes

l

log l

∫ log l

1
log l

1− e−u

u2
du =

l

log l

∫ 1

1
log l

1− e−u

u2
du +

l

log l

∫ log l

1

1− e−u

u2
du

≤ l

log l

∫ 1

1
log l

1
u

du +
l

log l

∫ log l

1

1
u2

du,

since 1 − e−u < u on (0, 1). Hence the total contribution of region II is
about

l log log l

log l
= o(l).
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Finally, we consider region III. Here, l/pj = o(1), so

1− exp
(
− l

pj

)
=

l

pj
+ O

(
l2

p2
j

)
.

Now, by Mertens’ theorem [1, Theorem 427],∑
p<x

1
p

= log log x + C + O

(
1

log x

)
.

Hence
k∑

j=l

l

pj
= l(log log pk − log log pl) + O

(
l

log l

)

Since l = kδ,

log log pk − log log pl ' log log k − log log l = − log δ.

The error term coming from ∑ l2

p2
j

is easily seen to contribute O(l/(log l)2), and so if δ > 1/e, region III
contributes less than l, and if δ < 1/e then region III contributes more
than l.

Hence we have shown that since δ > 1/e, E(X) < l, that is the expected
number of non-zero columns is less than the number of rows. Computing
the variance V (X), it is easy to see that V (X) ≤ E(X). Hence a simple
application of Tchebyschev’s inequality shows that with high probability
X − E(X) is o(l). Thus with high probability, the number of non-zero
columns is less than the number of rows, and hence the rows of the array
A are linearly dependent.
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