On unique realizations of domination chain parameters

Jason Hedetniemi, Kevin James
Department of Mathematical Sciences
Clemson University
Clemson, South Carolina 29634
U.S.A.
jhedetn@clemson.edu, kevja@clemson.edu

Abstract

The domination chain $\operatorname{ir}(G) \leq \gamma(G) \leq i(G) \leq \beta_{0}(G) \leq \Gamma(G) \leq$ $\operatorname{IR}(G)$, which holds for any graph G, is the subject of much research. In this paper, we consider the maximum number of edges in a graph having one of these domination chain parameters equal to 2 through a unique realization. We show that a specialization of the domination chain still holds in this setting.

Keywords: vertex domination, vertex independence, vertex irredundance

2010 Mathematics Subject Classification: 05C69

1 Introduction

Domination is a well-studied field in graph theory. In particular, the domination chain

$$
i r(G) \leq \gamma(G) \leq i(G) \leq \beta_{0}(G) \leq \Gamma(G) \leq I R(G)
$$

which holds for every graph G, has itself been studied in many papers. In our work, we consider a specialization of this chain as it pertains to unique realizations of these parameters.

Unique minimum dominating sets were first discussed in the 1994 paper by Gunther, Hartnell, Markus, and Rall [8] where trees were the primary class of graphs studied. Since then, unique minimum dominating sets have been studied in block graphs [2], cactus graphs [4], and Cartesian products $[9]$ and [10]. In [3] and [7] the problem of determining the maximum number of edges in a graph having a unique γ-set was considered.

Unique realizations of the other domination chain parameters have also been considered. For example, unique $i r$-sets and unique i-sets were considered in [6], unique β_{0}-sets were considered in [11] and [12], while unique β_{0}-sets, Γ-sets, and $I R$-sets were considered in [5].

In our work to follow, we build on the work of [3] and [7] and consider the maximum number of edges in a graph having a unique $i r, i, \beta_{0}, \Gamma$, or $I R$-set of cardinality 2 . In so doing, we show that the domination chain above still holds in this different setting.

2 Definitions

Throughout our work, G denotes a finite, simple, undirected graph, $V(G)$ denotes the vertex set of G, and $E(G)$ denotes the edge set of G. For $v \in V(G)$, the open neighborhood of v, denoted by $N(v)$, is defined by $N(v)=\{u: u v \in E(G)\}$, while the closed neighborhood of v, denoted $N[v]$, is defined by $N[v]=N(v) \cup\{v\}$. In regards to dominating sets discussed below, we say that a vertex dominates all vertices in its closed neighborhood. Additionally, for $S \subseteq V(G)$, the open neighborhood of S, denoted $N(S)$, is defined by $N(S)=\cup_{v \in S} N(v)$, while the closed neighborhood of S, denoted by $N[S]$, is defined by $N[S]=N(S) \cup S$. Given a set $S \subseteq V(G)$ and a vertex $x \in S$, an external private neighbor of x with respect to S is a vertex $v \in V(G)-S$ such that $N[v] \cap S=\{x\}$. x itself is a self-private neighbor with respect to S if $N[x] \cap S=\{x\}$. Finally, $G[S]$ denotes the subgraph of G induced by S.

Let $S \subseteq V(G)$.

- S is irredundant if for all $v \in S, N[v]-N[S-\{v\}] \neq \emptyset$. Equivalently, S is irredundant if for all $v \in S, v$ either has an external private neighbor or is a self-private neighbor.
- S is dominating if $N[S]=V(G)$.
- S is independent if no two vertices in S share an edge.

The minimum cardinality of a maximal (with respect to set inclusion) irredundant set is denoted $\operatorname{ir}(G)$, while the maximum cardinality of an irredundant set is denoted $I R(G)$. We let $\gamma(G)$ denote the minimum cardinality of a dominating set, and $\Gamma(G)$ denote the maximum cardinality of a minimal (with respect to set inclusion) dominating set. Finally, $i(G)$ denotes the minimum cardinality of a maximal (with respect to set inclusion) independent set, while $\beta_{0}(G)$ denotes the maximum cardinality of an independent set. These parameters are related by the following well-known result of Cockayne, Hedetniemi, and Miller.
Theorem. [1] For any graph G,

$$
\operatorname{ir}(G) \leq \gamma(G) \leq i(G) \leq \beta_{0}(G) \leq \Gamma(G) \leq I R(G)
$$

For convenience, a maximal irredundant set of cardinality $\operatorname{ir}(G)$ or $I R(G)$ is called an $i r$-set or $I R$-set respectively. Similarly, a minimal dominating set of cardinality $\gamma(G)$ or $\Gamma(G)$ is referred to as γ-set or Γ-set respectively, while a maximal independent set of cardinality $i(G)$ or $\beta_{0}(G)$ is referred to as i-set or β_{0}-set respectively.

Let \mathcal{P} be one of $i r, \gamma, i, \beta_{0}, \Gamma$, or $I R$. In general, a graph may have many \mathcal{P}-sets. We are interested in graphs having a unique \mathcal{P}-set. We make the following definitions.

Definition 1. Let $m_{\mathcal{P}}^{*}(n, k)$ denote the maximum number of edges in a graph on n vertices having a unique \mathcal{P}-set of cardinality k.

Definition 2. Let $m_{\mathcal{P}}(n, k)$ denote the maximum number of edges in an isolate free graph on n vertices having a unique \mathcal{P}-set of cardinality k.

Observe that $m_{\mathcal{P}}(n, k) \leq m_{\mathcal{P}}^{*}(n, k)$.
With this notation now defined, our main result is as follows.
Theorem 1. For $n \geq 6$

$$
m_{i r}(n, 2)=m_{\gamma}(n, 2) \leq m_{i}(n, 2) \leq m_{\beta_{0}}(n, 2)=m_{\Gamma}(n, 2)=m_{I R}(n, 2)
$$

and

$$
m_{i r}^{*}(n, 2)=m_{\gamma}^{*}(n, 2) \leq m_{i}^{*}(n, 2) \leq m_{\beta_{0}}^{*}(n, 2)=m_{\Gamma}^{*}(n, 2)=m_{I R}^{*}(n, 2)
$$

We prove this theorem by computing, or recalling in the case of $m_{\gamma}(n, 2)$, the exact values for each of the parameters.

In Section 3, we collect the results from [3] and [7] which we need for our discussion of unique irredundant sets in Section 4. In Section 5, we turn our attention to unique minimum independent dominating sets of cardinality two, while in Section 6 we consider unique $\beta_{0^{-}}, \Gamma$-, and $I R$-sets of cardinality k for $k \geq 2$. Finally, in Section 7, we pose several open problems.

3 Unique minimum dominating sets

In this section, we briefly collect the results from [3] and [7] that we will need in our work to come. We first note the following result from [3].

Proposition 1. [3] For $n \geq 3, m_{\gamma}(n, 1)=\binom{n}{2}-\left\lceil\frac{n-1}{2}\right\rceil$.
For comparison purposes in Section 5 to follow, we also note the following result.

Theorem 2. [3] For $k \geq 2, m_{\gamma}(3 k, k)=2 k+2\binom{k}{2}$.
The following result, from [7], will be used in Section 4 below.
Theorem 3. [7] For $n \geq 6, m_{\gamma}(n, 2)=\binom{n-2}{2}$.
By combining Proposition 1 and Theorem 3, we see the following.
Proposition 2. For $n \geq 6, m_{\gamma}^{*}(n, 2)=m_{\gamma}(n-1,1)=\binom{n-1}{2}-\left\lceil\frac{n-2}{2}\right\rceil$.

Proof. Suppose G is a graph on $n \geq 6$ vertices having a unique γ-set of cardinality 2. Note that G has at most one isolated vertex. If G is isolate free, then $|E(G)| \leq\binom{ n-2}{2}$ by Theorem 3. However, if G has one isolate, call it v, and a unique γ-set of cardinality 2 , then $G-v$ necessarily induces an isolate free graph having a unique γ-set of cardinality 1. Hence, if G has an isolate, then $|E(G)| \leq\binom{ n-1}{2}-\left\lceil\frac{n-2}{2}\right\rceil$ by Proposition 1. Since this upper bound is strictly greater than $\binom{n-2}{2}$ and can be achieved, our result follows.

4 Unique minimum maximal irredundant sets

We now turn our attention to the maximum number of edges in a graph G having a unique $i r$-set of cardinality 2 . Note that the only graph on three or fewer vertices having a unique $i r$-set of cardinality 2 is $\overline{K_{2}}$, the graph on two isolated vertices. Thus, we restrict our attention to graphs on at least four vertices. First, suppose that we allow G to have an isolated vertex (if G has two or more isolated vertices, then $\operatorname{ir}(G) \geq 3)$. In this case, G has a component of order $n-1$, call it C, which necessarily satisfies $\operatorname{ir}(C)=1$. Since $\operatorname{ir}(C)=1$ if and only if $\gamma(C)=1$, we see that, in fact, C has a unique γ-set of cardinality 1. Hence, by Proposition 1, C, and thus G, has at most $\binom{n-1}{2}-\left\lceil\frac{n-2}{2}\right\rceil$ edges. This bound is achieved by the graph $K_{1} \cup H$ where H is a graph on $n-1$ vertices having a maximum number of edges subject to the condition that exactly one vertex is of degree $n-2$. Thus, we see that $m_{i r}^{*}(n, 2) \geq\binom{ n-1}{2}-\left\lceil\frac{n-2}{2}\right\rceil$. Thus, by Proposition 2 , if $n \geq 6$, then $m_{i r}^{*}(n, 2) \geq m_{\gamma}^{*}(n, 2)$.

Next, we restrict ourselves to isolate free graphs. It can be readily checked that no isolate free graph on two, three, or four vertices has a unique $i r$-set of cardinality 2 . Among the isolate free graphs on five vertices, twelve satisfy $\operatorname{ir}(G)=2$, and none has a unique $i r$-set. Thus, we restrict ourselves to graphs on $n \geq 6$ vertices.

Suppose G is an isolate free graph on $n \geq 6$ vertices having a unique $i r$-set of cardinality 2 , call it $D . D$ is either a dominating set, or it is not. We first consider the case when D is not a dominating set. Observe that in this case, $\operatorname{ir}(G)<\gamma(G)$, for if $\gamma(G)=2$ also, then D is not a unique $i r$-set in G.

4.1 D is not a dominating set

We begin by considering an example. Let the graph F on $n \geq 7$ vertices be constructed as follows. Let $V(F)=\left\{x, y, x^{\prime}, y^{\prime}, w, z, v, b_{1}, b_{2}, \ldots, b_{n-7}\right\}$.

Let $F\left[\left\{v, b_{1}, b_{2}, \ldots, b_{n-7}\right\}\right]$ be complete. Additionally, let

$$
\begin{aligned}
N(x) & =\left\{y, v, x^{\prime}, b_{1}, b_{2}, \ldots, b_{n-7}\right\} \\
N(y) & =\left\{x, v, y^{\prime}, b_{1}, b_{2}, \ldots, b_{n-7}\right\} \\
N(v) & =\left\{x, y, b_{1}, b_{2}, \ldots, b_{n-7}\right\} \\
N\left(x^{\prime}\right) & =\left\{x, w, y^{\prime}, b_{1}, b_{2}, \ldots, b_{n-7}\right\} \\
N\left(y^{\prime}\right) & =\left\{y, z, x^{\prime}, b_{1}, b_{2}, \ldots, b_{n-7}\right\} \\
N(w) & =\left\{x^{\prime}\right\} \\
N(z) & =\left\{y^{\prime}\right\} .
\end{aligned}
$$

The case of $n=8$ is illustrated below for convenience.

Figure 1: $n=8$ case

We claim that $\{x, y\}$ is the unique $i r$-set of F.
Proof. First, note that $\operatorname{ir}(F) \geq 2$ since $\Delta(F)<n-1$. Consider $\{x, y\}$. This set is irredundant, since x has x^{\prime} as a private neighbor and y has y^{\prime} as a private neighbor. Moreover, this set is maximal irredundant since the inclusion of $w, z, x^{\prime}, y^{\prime}$, or $b_{1}, b_{2}, \ldots, b_{n-7}$ eliminates the private neighbor of x or y while the inclusion of v results in v not having a private neighbor. Thus, $\operatorname{ir}(F)=2$ and $\{x, y\}$ is an $i r$-set.

To see that no other two element subsets of $V(F)$ containing x are maximal irredundant, observe first that $\{x, v\}$ and $\left\{x, b_{i}\right\}$ for $1 \leq i \leq n-7$ are both redundant sets. Additionally, since the sets $\left\{x, x^{\prime}, z\right\},\left\{x, y^{\prime}, w\right\}$, and $\{x, w, z\}$ are irredundant, we see that $\left\{x, x^{\prime}\right\},\left\{x, y^{\prime}\right\},\{x, w\}$ and $\{x, z\}$ are not maximal irredundant.

The interested reader can verify, in a manner similar to the above, that any two element subset of $V(F)$ distinct from $\{x, y\}$ is either redundant, or is contained in a larger irredundant set. We thus have that $\{x, y\}$ is the the unique $i r$-set of F.

Before proceeding, we note that $|E(F)|=\binom{n-2}{2}-2$.
We now prove the following theorem through a sequence of claims.
Theorem 4. Let $n \geq 7$. If G is a graph of order n such that $\delta(G) \geq 1$, $\operatorname{ir}(G)=2, \gamma(G) \geq 3$, and G has a unique ir-set D, then $|E(G)| \leq\binom{ n-2}{2}-2$. Furthermore, this bound is sharp.

Proof. Among all isolate free graphs on n vertices with domination number at least 3 and having a unique $i r$-set of cardinality 2 , suppose that G has the maximum number of edges. Note that since $\gamma(G) \geq 3, \Delta(G) \leq n-3$. Let $D=\{x, y\}$ denote the unique $i r$-set of G. Define the following sets.

- $D_{x}=N(x)-N[y]$
- $D_{y}=N(y)-N[x]$
- $D_{x y}=N(x) \cap N(y)$
- $R=V(G)-(N[x] \cup N[y])$

We note that R is the set of vertices not dominated by x or y. Since D is not a dominating set, we have that $|R|>0$. This implies that $x y \in E(G)$, since if $x y \notin E(G)$, then $\{x, y, w\}$, where $w \in R$, is independent and thus irredundant. The fact that $x y \in E(G)$ further implies that $D_{x} \neq \emptyset$ and that $D_{y} \neq \emptyset$.

We first consider the set R.
Claim 1. $|R| \geq 2$.
Proof of Claim: For the sake of contradiction, suppose $|R|=1$ with $w \in R$. Since D is maximal irredundant, $\{x, y, w\}$ is redundant. Since w is a self-private neighbor with respect to $\{x, y, w\}$, we see that either w dominates D_{x} or w dominates D_{y}. Without loss of generality, assume w dominates D_{x}. In this case, $\{y, w\}$ is a dominating set of G, a contradiction. Hence, $|R| \geq 2$.

Claim 2. Every vertex in R either dominates D_{x} or D_{y}.
Proof of Claim: Suppose $w \in R$ does not dominate D_{x} or D_{y}. Since w is not dominated by D, we see that $\{x, y, w\}$ is irredundant, a contradiction to the maximality of D.
Claim 3. $\gamma(G[R]) \geq 2$.
Proof of Claim: Suppose that $\gamma(G[R])=1$. Let $w \in R$ dominate $G[R]$. By Claim 2, w dominates D_{x} or D_{y}. Without loss of generality, assume w dominates D_{x}. In this case, $\{w, y\}$ is a dominating set of G, a contradiction.

Claim 4. There exists $w \in R$ that dominates D_{x} but not D_{y} and $z \in R$ that dominates D_{y} but not D_{x}.

Proof of Claim: Without loss of generality, suppose every vertex in R dominates D_{x}. Consider $\gamma\left(G\left[D_{x}\right]\right)$. First, assume that $\gamma\left(G\left[D_{x}\right]\right)=1$. In this case, if $x^{\prime} \in D_{x}$ dominates $G\left[D_{x}\right]$, then $\left\{x^{\prime}, y\right\}$ is a dominating set of G, a contradiction. Thus, $\gamma\left(G\left[D_{x}\right]\right) \geq 2$. This, implies that $\left|D_{x}\right|>1$. Let $x^{\prime} \in D_{x}$ and $x^{\prime \prime} \in D_{x}$ be non-adjacent. Consider x^{\prime}. Since we are assuming every vertex in R dominates D_{x}, we see that x^{\prime} dominates R. If x^{\prime} also dominates D_{y}, then $\left\{x, x^{\prime}\right\}$ dominates all of G, a contradiction. Thus, there exists $y^{\prime} \in D_{y}$ such that $x^{\prime} y^{\prime} \notin E(G)$. However, we now see that $\{x, y\}$ is not maximal irredundant, since $\left\{x, x^{\prime}, y\right\}$ is irredundant (x has $x^{\prime \prime}$ as a private neighbor, y has y^{\prime} as a private neighbor, and x^{\prime} has any vertex in R as a private neighbor). Thus, our result follows.

Next, we consider the set $D_{x y}$.
Claim 5. No vertex in $D_{x y}$ dominates R.
Proof of Claim: Suppose $v \in D_{x y}$ dominates R. Recall that $\operatorname{deg}(v) \leq$ $n-3$. Since v is adjacent to x, y, and every vertex in R, this implies that there are at least two vertices in $D_{x} \cup D_{y} \cup D_{x y}$ that are not neighbors of v. Suppose the only vertices not adjacent to v are in D_{x} and $D_{x y}$. This implies that v dominates D_{y} in which case $\{x, v\}$ is a dominating set, a contradiction. By similar reasoning, the vertices not adjacent to v cannot lie in only D_{y} and $D_{x y}$, only D_{x}, only D_{y}, or only $D_{x y}$. Thus, there exists $x^{\prime} \in D_{x}$ and $y^{\prime} \in D_{y}$ for which $x^{\prime} v \notin E(G)$ and $y^{\prime} v \notin E(G)$. This, however, implies that $D=\{x, y\}$ is not maximal irredundant, since $\{x, y, v\}$ is irredundant, a contradiction.

Claim 6. $D_{x y} \neq \emptyset$.
Proof of Claim: Suppose that $D_{x y}=\emptyset$. If $\gamma\left(G\left[D_{x}\right]\right)=\gamma\left(G\left[D_{y}\right]\right)=1$, with $x^{\prime} \in D_{x}$ dominating D_{x} and $y^{\prime} \in D_{y}$ dominating D_{y}, then, by Claim 2, $\left\{x^{\prime}, y^{\prime}\right\}$ is a dominating set of G, a contradiction. Thus, either $\gamma\left(G\left[D_{x}\right]\right) \geq 2$ or $\gamma\left(G\left[D_{y}\right]\right) \geq 2$. Without loss of generality, assume that $\gamma\left(G\left[D_{x}\right]\right) \geq 2$. Let $x^{\prime} \in D_{x}$. If x^{\prime} does not dominate D_{y}, then $\left\{x, y, x^{\prime}\right\}$ is irredundant, a contradiction. Hence, we see that every vertex in D_{x} dominates D_{y}. This implies that every vertex in D_{y} dominates D_{x} as well. Hence, if $x^{\prime} \in D_{x}$ and $y^{\prime} \in D_{y}$, then $\left\{x^{\prime}, y^{\prime}\right\}$ is a dominating set of G, a contradiction.

Corollary 1. If G is an isolate free graph on six vertices and has a unique ir-set of cardinality 2, then $\gamma(G)=2$.

Finally, we consider the sets D_{x} and D_{y}.
Claim 7. If $v \in D_{x}$ or $v \in D_{y}$, then $\operatorname{deg}(v) \leq n-4$.

Proof of Claim: Since $\Delta(G) \leq n-3$, we see that if $x^{\prime} \in D_{x}$, then $\operatorname{deg}\left(x^{\prime}\right) \leq n-3$. For the sake of contradiction, suppose that $\operatorname{deg}\left(x^{\prime}\right)=n-3$ and that x^{\prime} is not adjacent to a and y. (We note that $x^{\prime} \in D_{x}$ implies x^{\prime} is not adjacent to y.)

- If $a \in D_{x y}$ or $a \in D_{y}$, then $\left\{x^{\prime}, y\right\}$ dominates G, a contradiction.
- If $a \in D_{x}$, then $\left\{x^{\prime}, x\right\}$ dominates G, a contradiction.
- If $a \in R$, then since every vertex in R either dominates D_{x} or D_{y}, we see that a dominates D_{y}. This however, implies that $\left\{x^{\prime}, y^{\prime}\right\}$ dominates G for any $y^{\prime} \in D_{y}$.

Hence, we have arrived at a contradiction. Our claim follows.
Claim 8. If $x^{\prime} \in D_{x}$, then x^{\prime} either dominates D_{x} or D_{y}. If $y^{\prime} \in D_{y}$, then y^{\prime} either dominates D_{x} or D_{y}.
Proof of Claim: If $x^{\prime} \in D_{x}$ does not dominate D_{x} and does not dominate D_{y}, then $\left\{x, x^{\prime}, y\right\}$ is irredundant by Claim 4.

Corollary 2. If $\gamma\left(G\left[D_{x}\right]\right)>1$ or $\gamma\left(G\left[D_{y}\right]\right)>1$, then each vertex in D_{x} dominates D_{y} and each vertex in D_{y} dominates D_{x}.

Proof. Suppose $\gamma\left(G\left[D_{x}\right]\right)>1$. This implies that no vertex in D_{x} dominates D_{x}. Hence, by Claim 8, each vertex in D_{x} dominates D_{y}. This also implies that each vertex in D_{y} dominates D_{x}. The case of $\gamma\left(G\left[D_{y}\right]\right)>1$ follows similarly.

Claim 9. No vertex in D_{x} or D_{y} dominates $D_{x y}$.
Proof of Claim: Suppose $x^{\prime} \in D_{x}$ dominates $D_{x y}$. x^{\prime} itself either dominates D_{x} or D_{y} by Claim 8. We consider each case.

First suppose x^{\prime} dominates D_{x}. If there exists $y^{\prime} \in D_{y}$ that dominates D_{y}, then $\left\{x^{\prime}, y^{\prime}\right\}$ is a dominating set of G, a contradiction. Thus, no vertex in D_{y} dominates D_{y}. Hence, every vertex in D_{y} dominates D_{x}. This, however, implies that every vertex in D_{x} also dominates D_{y}. Hence, $\left\{x^{\prime}, y^{\prime}\right\}$ is a dominating set of G for any $y^{\prime} \in D_{y}$, a contradiction.

Suppose now that x^{\prime} dominates D_{y} but not D_{x}. If there exists $y^{\prime} \in$ D_{y} such that y^{\prime} dominates D_{x} then $\left\{x^{\prime}, y^{\prime}\right\}$ is a dominating set of G, a contradiction. Thus, no vertex in D_{y} dominates D_{x}, in which case every vertex in D_{y} dominates D_{y}. Let $x^{\prime \prime}$ be a vertex in D_{x} not dominated by x^{\prime}. If $x^{\prime \prime}$ does not dominate D_{y}, then $\left\{x, x^{\prime \prime}, y\right\}$ is irredundant, a contradiction. Thus, $x^{\prime \prime}$ dominates D_{y}. Since this is true for every vertex in D_{x} not dominated by x^{\prime}, we see that each vertex in D_{y} dominates the vertices in D_{x} not dominated by x^{\prime}. This implies that $\left\{x^{\prime}, y^{\prime}\right\}$ is a dominating set of G for any $y^{\prime} \in D_{y}$.

Claim 10. No vertex in D_{x} dominates R. No vertex in D_{y} dominates R.
Proof of Claim: Suppose $x^{\prime} \in D_{x}$ dominates R. If x^{\prime} dominates D_{x}, then $\left\{x^{\prime}, y\right\}$ dominates G, a contradiction. Thus, x^{\prime} dominates D_{y}. This, however, implies that $\left\{x, x^{\prime}\right\}$ dominates G, again a contradiction. Hence, no vertex in D_{x} dominates R. By the same logic, no vertex in D_{y} dominates R.
Claim 11. For each pair of vertices $\left\{x^{\prime}, y^{\prime}\right\}$ such that $x^{\prime} \in D_{x}$ and $y^{\prime} \in D_{y}$, there exists a vertex $v \in D_{x y}$ not adjacent to either x^{\prime} or y^{\prime}.
Proof of Claim: Suppose $x^{\prime} \in D_{x}, y^{\prime} \in D_{y}$, and that $D_{x y} \subseteq\left(N\left[x^{\prime}\right] \cup\right.$ $\left.N\left[y^{\prime}\right]\right)$. We consider several cases.

- If x^{\prime} dominates D_{x} and y^{\prime} dominates D_{y}, then $\left\{x^{\prime}, y^{\prime}\right\}$ dominates G, a contradiction.
- If x^{\prime} dominates D_{y} and y^{\prime} dominates D_{x}, then $\left\{x^{\prime}, y^{\prime}\right\}$ dominates G, a contradiction.
- Suppose both x^{\prime} and y^{\prime} dominate D_{y} but not D_{x}. In this case, consider $x^{\prime \prime} \in D_{x}-N\left[x^{\prime}\right]$. If $x^{\prime \prime}$ does not dominate D_{y}, then $\left\{x, x^{\prime \prime}, y\right\}$ is irredundant, a contradiction. Thus, we see that each vertex in $D_{x}-N\left[x^{\prime}\right]$ dominates D_{y}, in which case every vertex in D_{y} dominates $D_{x}-N\left[x^{\prime}\right]$. Thus, once again we see that $\left\{x^{\prime}, y^{\prime}\right\}$ dominates all of G, a contradiction.
- If both x^{\prime} and y^{\prime} dominate D_{x} but not D_{y}, then $\left\{x^{\prime}, y^{\prime}\right\}$ will dominate all of G, in a manner similar to the case above.

Our result follows.
Considering the results above, we see that G has one of the four graphs below as an induced subgraph.

Figure 2: Induced Subgraphs

We now show that if $|R| \geq 3,\left|D_{x}\right| \geq 2$, or if $\left|D_{y}\right| \geq 2$, then $|E(G)| \leq$ $|E(F)|=\binom{n-2}{2}-2$, where F is the graph considered at the beginning of this section. We prove this by constructing a graph G^{\prime} from G satisfying $|E(G)| \leq\left|E\left(G^{\prime}\right)\right|$ and $G^{\prime} \subseteq F$.

Suppose that at least one of the following is true concerning G.

- $|R| \geq 3$
- $\left|D_{x}\right| \geq 2$
- $\left|D_{y}\right| \geq 2$

Find, and label, vertices w and z in R such that w dominates D_{x} but not D_{y} and such that z dominates D_{y} but not D_{x}. Next, find, and label, vertex x^{\prime} in D_{x} that is not dominated by z and vertex y^{\prime} in D_{y} that is not dominated by w. Finally, for the pair $\left\{x^{\prime}, y^{\prime}\right\}$, find, and label, the vertex v in $D_{x y}$ that is not dominated by x^{\prime} or y^{\prime}. Observe that v is not adjacent to w or z (if v is adjacent to either w or z, then $\{x, y, v\}$ is irredundant). Define the following sets.

- $D_{x}^{*}=D_{x}-\left\{x^{\prime}\right\}$
- $D_{y}^{*}=D_{y}-\left\{y^{\prime}\right\}$
- $R^{*}=R-\{w, z\}$
- $D_{x y}^{*}=D_{x y}-\{v\}$

Note that if there are no edges between $\{w, z\}$ and $D_{x}^{*}, D_{y}^{*}, D_{x y}^{*}$, and R^{*}, then G is isomorphic to a subgraph of F above. Bearing this in mind, consider the following procedure.

Let G^{\prime} be a distinct copy of G. We alter G^{\prime} after considering G.

1. If $w z \notin E(G)$, continue to Step 2 below. If $w z \in E(G)$, then there exists $r \in R^{*}$ for which $w r \notin E(G)$ by Claim 3. In G and G^{\prime}, delete the edge $w z$ and add the edge $w r$.
2. Consider D_{x}^{*} in G. If $\left|D_{x}^{*}\right|=0$, continue to Step 3 below. Otherwise, for each $s \in D_{x}^{*}$ proceed as follows. Note that s is adjacent to w, but it is not adjacent to y (by definition of D_{x}) and it is not adjacent to at least one vertex in R (by Claim 10), call it r_{s}. Delete the edge $s w$ and add the edge $s y$ in G^{\prime}. Additionally, if s is adjacent to z, delete the edge $s z$ and add the edge $s r_{s}$ in G^{\prime}. Note that after the completion of Step 2, $|E(G)|=\left|E\left(G^{\prime}\right)\right|$ and $N_{G^{\prime}}(\{w, z\}) \cap D_{x}^{*}=\emptyset$.
3. Consider D_{y}^{*} in G. If $\left|D_{y}^{*}\right|=0$, continue to Step 4 below. Otherwise, for each $t \in D_{y}^{*}$, proceed as follows. Note that t is adjacent to z, but is not adjacent to x (by definition of D_{y}) and it is not adjacent to at least one vertex in R (by Claim 10), call it r_{t}. In G^{\prime}, delete the edge $t z$ and add the edge $t x$. Additionally, if t is adjacent to w, in G^{\prime} delete the edge $t w$ and add the edge $t r_{t}$. Note that after the completion of Step 3, $|E(G)|=\left|E\left(G^{\prime}\right)\right|$ and $N_{G^{\prime}}(\{w, z\}) \cap D_{y}^{*}=\emptyset$.
4. Consider R^{*} in G. If $\left|R^{*}\right|=0$, continue to Step 5 below. Otherwise, for each $u \in R^{*}$, proceed as follows. Note that u is not adjacent to x, y, or v, or else $\{x, y, v\}$ is irredundant. Add the edges $u v, u x$, and $u y$ in G^{\prime}. If u is adjacent to w in G, delete the edge $u w$ from G^{\prime}. If u is adjacent to z in G, delete the edge $u z$ from G^{\prime}. Note that after the completion of Step $4,|E(G)| \leq\left|E\left(G^{\prime}\right)\right|$ and $N_{G^{\prime}}(\{w, z\}) \cap R^{*}=\emptyset$.
5. Finally, consider $D_{x y}^{*}$ in G. If $\left|D_{x y}^{*}\right|=0$, then we're done. Otherwise, partition $D_{x y}^{*}$ as follows.

- Let $S_{1 A}$ denote the set of vertices p in $D_{x y}^{*}$ which dominate all but one vertex in R, and which do not dominate $D_{x} \cup D_{y} \cup\{v\}$.
- Let $S_{1 B}$ denote the set of vertices p in $D_{x y}^{*}$ which dominate all but one vertex in R, and which dominate $D_{x} \cup D_{y} \cup\{v\}$.
- Let S_{2} denote the set of vertices p in $D_{x y}^{*}$ which do not dominate two or more vertices in R.

For each $p \in S_{1 A}$, proceed as follows. Let o_{p} denote the vertex in $D_{x} \cup D_{y} \cup\{v\}$ that p is not adjacent to, and let r_{p} denote the vertex in R that p is not adjacent to. In G^{\prime}, delete the edges $p w$ and $p z$ (if they exist), add the edge $p o_{p}$, and add the edge $p r_{p}$ if and only if r_{p} is distinct from w and z.

For each $p \in S_{1 B}$, proceed as follows. Let r_{p} denote the vertex in R that p is not adjacent to. First, observe that there is at least one vertex in $D_{x y}-N[p]$ since $\operatorname{deg}(p) \leq n-3$. Next, note that $\left(D_{x y}-N[p]\right) \cap\left(S_{1 A} \cup S_{2}\right) \neq \emptyset$, since otherwise $\left\{p, x^{\prime}\right\}$ or $\left\{p, y^{\prime}\right\}$ dominates G (depending upon whether r_{p} dominates D_{x} or D_{y}). Thus, let $o_{p} \in\left(D_{x y}-N[p]\right) \cap\left(S_{1 A} \cup S_{2}\right)$. In G^{\prime}, delete the edges $p w$ and $p z$ (if they exist), add the edge $p o_{p}$, and add the edge $p r_{p}$ if and only if r_{p} is distinct from w and z.

For each $p \in S_{2}$, let r_{1} and r_{2} denote the vertices in R that p is not adjacent to. In G^{\prime}, delete the edges $p w$ and $p z$ (if they exist), and add the edges $p r_{1}$ and $p r_{2}$ if and only if r_{1} and r_{2} are distinct from
w and z respectively.

Note that after the completion of Step $5,|E(G)|=\left|E\left(G^{\prime}\right)\right|$ and that $N_{G^{\prime}}(\{w, z\}) \cap D_{x y}^{*}=\emptyset$.

Upon completion of Step 5, we see that the graph G^{\prime} is isomorphic to a subgraph of the graph F constructed at the beginning of this section, and that $|E(G)| \leq\left|E\left(G^{\prime}\right)\right|$. Hence, we have proven that if $|R|>2,\left|D_{x}\right|>1$, or $\left|D_{y}\right|>1$, then $|E(G)| \leq\binom{ n-2}{2}-2$.

Suppose now that G satisfies $|R|=2,\left|D_{x}\right|=1,\left|D_{y}\right|=1$ and $\left|D_{x y}\right|=$ $n-6$. Find, and label, the vertices $w, z, x^{\prime}, y^{\prime}$ and v as before. Note that x^{\prime} is not adjacent to z and that y^{\prime} is not adjacent to w by Claim 10. By Claim 3, w is not adjacent to z. Additionally, v is not adjacent to either w or z, since otherwise $\{x, y, v\}$ is irredundant. If no vertex in $D_{x y}$ shares an edge with w or z, then G is a subgraph of F, in which case $|E(G)| \leq\binom{ n-2}{2}-2$. Thus, suppose there exists a vertex, call it p, in $D_{x y}$ which is adjacent to a vertex in R. Note that $|N(p) \cap R| \leq 1$ by Claim 5 . Create a copy G^{\prime} of G, and proceed as follows.

1. For each vertex $p \in D_{x y}$, if p is adjacent to a vertex in R but is not adjacent to one of x^{\prime}, y^{\prime}, or v, delete the edge from p to R in G^{\prime} and add the edge $p x^{\prime}, p y^{\prime}$, or $p v$ as appropriate.
2. If there are still vertices in $D_{x y}$ that share an edge with a vertex in R, proceed as follows. Suppose that $p \in D_{x y}$ is adjacent to a vertex in R, say z without loss of generality. Consider then x^{\prime}. Note that x^{\prime} does not dominate $V(G)-N[p]$ since otherwise $\left\{x^{\prime}, p\right\}$ dominates G. Hence, there exists a vertex which neither x^{\prime} nor p is adjacent to, call it c (note that $c \neq z$). In G^{\prime}, exchange the $p z$ edge for the $p c$ edge. Since $x^{\prime} c \notin E(G), c$ does not share an edge with a vertex in R.

Since the total number of edges is preserved in Step 1, and since the only edges added in Step 2 are from a vertex sharing an edge with a vertex in R to a vertex not sharing an edge with a vertex in R, we see that $|E(G)|=$ $\left|E\left(G^{\prime}\right)\right|$. Since G^{\prime} is a subgraph of F, we see that $|E(G)| \leq\binom{ n-2}{2}-2$. We have thus proven our result.

4.2 D is a dominating set

Suppose now that G is an isolate free graph on n-vertices ($n \geq 6$) having a unique $i r$-set of cardinality 2 , call it D, which is a dominating set. Since D is a dominating set, this implies that D is a γ-set, since if $\gamma(G)=1$, then $\operatorname{ir}(G)=1$ as well, a contradiction. Moreover, D is a unique γ-set in G, since
if G has a γ-set distinct from D, call it D^{\prime}, then D^{\prime} is maximal irredundant, contradicting the uniqueness of D. Hence, by Theorem $3,|E(G)| \leq\binom{ n-2}{2}$. To see that this bound can be achieved, consider the following two constructions.

First, the following graph on six vertices, together with Corollary 1, shows that $m_{i r}(6,2)=\binom{6-2}{2}=6$.

Figure 3: $n=6$ case

For the $n \geq 7$ case, consider the following. Let

$$
V(H)=\left\{x_{1}, x_{2}, \ldots, x_{n-5}, y_{1}, y_{2}, s, l, p\right\}
$$

Let $H\left[\left\{x_{1}, x_{2}, \ldots, x_{n-5}\right\}\right]$ be complete. Additionally, let

$$
\begin{aligned}
N\left(y_{1}\right) & =\left\{x_{1}, x_{2}, \ldots, x_{n-5}, s\right\} \\
N\left(y_{2}\right) & =\left\{x_{1}, x_{2}, \ldots, x_{n-5}, s, p\right\} \\
N(s) & =\left\{y_{1}, y_{2}\right\} \\
N(l) & =\left\{x_{1}\right\} \\
N(p) & =\left\{x_{2}, x_{3}, \ldots, x_{n-5}, y_{2}\right\} .
\end{aligned}
$$

The case of $n=7$ is illustrated in the figure below.

Figure 4: $n=7$ case

Similarly to the graph F considered in the previous section, the reader can verify that H has a unique $i r$-set of cardinality 2 given by $\left\{x_{1}, y_{2}\right\}$. Since $|E(H)|=\binom{n-2}{2}$, we have the following result.

Theorem 5. For $n \geq 6, m_{\text {ir }}(n, 2)=\binom{n-2}{2}$.
Additionally, by considering our work at the beginning of this section, we have the following.
Theorem 6. For $n \geq 4, m_{i r}^{*}(n, 2)=\binom{n-1}{2}-\left\lceil\frac{n-2}{2}\right\rceil$.
Before concluding this section, we note that not every graph G having a unique γ-set of cardinality 2 has a unique $i r$-set of cardinality 2 , even when $\operatorname{ir}(G)=\gamma(G)=2$. For example, the graph P_{6} has a unique γ-set of cardinality 2 , but does not have a unique $i r$-set. Moreover, the set of isolate free graphs on n vertices having a unique $i r$-set of cardinality 2 and a maximum number of edges is a proper subset of the set of all isolate free graphs on n vertices having a unique γ-set of cardinality 2 and a maximum number of edges. For example, the graph in Figure 5 below has a unique γ-set of cardinality 2 (and a maximum number of edges), but does not have a unique $i r$-set, even though $\operatorname{ir}(G)=2$.

Figure 5: $\gamma(G)=\operatorname{ir}(G)=2$, unique γ-set, not a unique $i r$-set

5 Unique minimum independent dominating sets

In this section, we consider the maximum number of edges in a graph on n vertices having a unique i-set of cardinality 2 . First, we note that no graph on one or three vertices has a unique i-set of cardinality 2 . The only graph on two vertices having a unique i-set of cardinality two is the completely disconnected graph $\overline{K_{2}}$. Additionally, the only graph on four vertices which has a unique i-set of cardinality two is $P_{3} \cup K_{1}$. Putting these trivial cases aside, we now restrict ourselves to graphs on at least five vertices. Let G be a graph on $n \geq 5$ vertices having a unique minimum independent dominating set of cardinality 2 and having a maximum number of edges. Let D denote the unique i-set of G, and for notational purposes, let $D=\{x, y\}$. Additionally, let $R=V(G)-D$. Define the following sets.

Figure 6: $m_{i}(8,2)=21$

- $D_{x}=N(x)-N(y)$
- $D_{y}=N(y)-N(x)$
- $D_{x y}=N(x) \cap N(y)$.

Consider a vertex $v \in R$. What is the maximum degree of v ? We see that if $\operatorname{deg}(v)=n-1$, then $\{v\}$ itself is an independent dominating set of cardinality one, a contradiction. If $\operatorname{deg}(v)=n-2$, with v not adjacent to u, then $\{u, v\}$ is an independent dominating set of cardinality two distinct from D, a contradiction. Thus, $\operatorname{deg}(v) \leq n-3$. Additionally, note that if $\operatorname{deg}(v)=n-3$, then the two vertices not adjacent to v are not adjacent.

Using the familiar result that $|E(G)|=\frac{1}{2} \sum_{v \in V(G)} \operatorname{deg}(v)$, we see that

$$
\begin{aligned}
|E(G)| & \leq \frac{1}{2}\left(\left|D_{x}\right|+2\left|D_{x y}\right|+\left|D_{y}\right|+(n-3)(n-2)\right) \\
& \leq \frac{1}{2}(2(n-2)+(n-3)(n-2)) \\
& =\frac{1}{2}((n-2)(n-1)) \\
& =\binom{n-1}{2}
\end{aligned}
$$

When $n=3 k+2, k \geq 1$, this upper bound on $|E(G)|$ can be achieved if $R=D_{x y}$ and $G[R]$ is a complete graph minus the edges of k disjoint triangles (see Figure 6). Thus, we see that $m_{i}(3 k+2,2)=m_{i}^{*}(3 k+2,2)=$ $\binom{3 k+1}{2}$.

Suppose now that $n=3 k$ or $n=3 k+1$, for $k \geq 2$. Note that the upper bound on $|E(G)|$ found above is achievable if and only if $R=D_{x y}$ and if
each vertex $v \in R$ satisfies $\operatorname{deg}(v)=n-3$. Thus, suppose that $R=D_{x y}$ and that each vertex in R has degree $n-3$. If $v \in R$ is not adjacent to vertices v_{1} and v_{2}, by our observations above, $v_{1} v_{2} \notin E(G)$. Since we are assuming $R=D_{x y}$, we see that $v_{1} \in D_{x y}$ and $v_{2} \in D_{x y}$. Hence, $\operatorname{deg}\left(v_{1}\right)=n-3$ and $\operatorname{deg}\left(v_{2}\right)=n-3$. Moreover, the two vertices not adjacent to v_{1} are v and v_{2}, while the two vertices not adjacent to v_{2} are v and v_{1}. Thus, each of v, v_{1} and v_{2} dominates $R-\left\{v, v_{1}, v_{2}\right\}$. Since the above logic can be applied to each vertex in R, R can be partitioned into sets of cardinality 3 such that each set S induces an independent set in G that dominates $R-S$. This, however, is clearly a contradiction since $|R| \not \equiv 0(\bmod 3)$. Thus, if $n=3 k$ or $n=3 k+1$, we have $|E(G)| \leq\binom{ n-1}{2}-1$. This upper bound can be achieved in each case as follows.

If $n=3 k$, we let $R=D_{x y}$. Initially, we let $G[R]$ be complete. After removing the edges of $k-1$ disjoint triangles from R, find the one remaining vertex in R of degree $n-1$ and make it not adjacent to any two other vertices in R. An example construction is illustrated in Figure 7.

If $n=3 k+1$, we once again let $R=D_{x y}$ and once again initially set $G[R]$ to be complete. In this case, after removing the edges of $k-1$ disjoint triangles from R, we find the remaining two vertices in R of degree $n-1$, call them v_{1} and v_{2}. We remove the edge $v_{1} v_{2}$ from G, and then pick an arbitrary vertex $v \in R,\left(v \neq v_{1}\right.$ and $\left.v \neq v_{2}\right)$ and remove the edges $v v_{1}$ and $v v_{2}$. An example construction is illustrated in Figure 7.

Figure 7: $m_{i}(6,2)=9$ and $m_{i}(7,2)=14$

Thus, we summarize our results as follows.
Theorem 7. For $n=2, n=4$, or $n \geq 5$,

$$
m_{i}^{*}(n, 2)= \begin{cases}\binom{n-1}{2} & \text { if } n \equiv 2(\bmod 3) \\ \binom{n-1}{2}-1 & \text { otherwise }\end{cases}
$$

By observing that the graphs constructed in the $n \geq 5$ case are all isolate free, we also have the following.

Corollary 3. For $n \geq 5$,

$$
m_{i}(n, 2)= \begin{cases}\binom{n-1}{2} & \text { if } n \equiv 2(\bmod 3) \\ \binom{n-1}{2}-1 & \text { otherwise }\end{cases}
$$

6 Unique maximum independent, maximum minimal dominating, and maximum irredundant sets

In this section, we consider unique β_{0}-sets, Γ-sets, and $I R$-sets of cardinalities at least 2 . We begin with unique β_{0}-sets.

Theorem 8. Let $k \geq 2$. For $n \geq k, m_{\beta_{0}}(n, k)=m_{\beta_{0}}^{*}(n, k)=\binom{n}{2}-\binom{k}{2}$.
Proof. Let $k \geq 2$, and let G be a graph on $n \geq k$ vertices having a unique β_{0}-set of cardinality k. First, observe that since G contains k mutually non-adjacent vertices, $|E(G)| \leq\binom{ n}{2}-\binom{k}{2}$. Since the graph $K_{n}-E\left(K_{k}\right)$ has a unique β_{0}-set of cardinality k and has $\binom{n}{2}-\binom{k}{2}$ edges, our result follows.

As it turns out, unique Γ-sets and unique $I R$-sets of cardinality k can be handled similarly.

Theorem 9. Let $k \geq 2$. For $n \geq k$,

$$
m_{\Gamma}(n, k)=m_{\Gamma}^{*}(n, k)=m_{I R}(n, k)=m_{I R}^{*}(n, k)=\binom{n}{2}-\binom{k}{2}
$$

Proof. Let $k \geq 2$, and let G be a graph on $n \geq k$ vertices having a unique Γ-set or a unique $I R$-set of cardinality k, call it D. In either case, we have that D is maximal irredundant.

Partition D into two subsets S_{1} and S_{2} such that every vertex in S_{1} has an external private neighbor, while every vertex in S_{2} does not have an external private neighbor. If $S_{1}=\emptyset$, then D is an independent set in which case $|E(G)| \leq\binom{ n}{2}-\binom{k}{2}$ as illustrated in the proof of Theorem 8 .

Thus, suppose that $S_{1} \neq \emptyset$. Note that for each vertex v in S_{1}, there is a vertex $u_{v} \in V(G)-D$ satisfying $N\left[u_{v}\right] \cap D=\{v\}$. We construct a graph G^{\prime} from G as follows. For each $v \in S_{1}$, let the vertices in $N(v) \cap D$ be $w_{1}, w_{2}, \ldots, w_{r}$. Note that $w_{1}, w_{2}, \ldots, w_{r} \in S_{1}$, since if $w_{j} \in S_{2}$, then w_{j} does not have a private neighbor by definition of S_{2}. Delete the edge $v w_{i}$ and add the edges $w_{i} u_{v}$ and $v u_{w_{i}}$ for each $1 \leq i \leq r$. If $N(v) \cap D=\emptyset$, no edges need to be deleted or added when considering v. Once this has been completed, we see that D forms an independent set in G^{\prime}. Since $\left|E\left(G^{\prime}\right)\right| \geq|E(G)|$, we see that $|E(G)| \leq\binom{ n}{2}-\binom{k}{2}$.

The graph $K_{n}-E\left(K_{k}\right)$ satisfies $\Gamma\left(K_{n}-E\left(K_{k}\right)\right)=I R\left(K_{n}-E\left(K_{k}\right)\right)=k$ and has a unique Γ-set and a unique $I R$-set. Thus, our result follows.

7 Concluding Remarks and Open Problems

By combining Proposition 2 and Theorems 3, 5, 6, 7, 8, and 9, we have our main result.

Theorem. For $n \geq 6$

$$
m_{i r}(n, 2)=m_{\gamma}(n, 2) \leq m_{i}(n, 2) \leq m_{\beta_{0}}(n, 2)=m_{\Gamma}(n, 2)=m_{I R}(n, 2)
$$

and

$$
m_{i r}^{*}(n, 2)=m_{\gamma}^{*}(n, 2) \leq m_{i}^{*}(n, 2) \leq m_{\beta_{0}}^{*}(n, 2)=m_{\Gamma}^{*}(n, 2)=m_{I R}^{*}(n, 2)
$$

Before concluding our work, we pose the following open problems.

- What are the values for $m_{i r}(n, k)$ and $m_{i r}^{*}(n, k)$ for $k \geq 3$?
- What are the values for $m_{i}(n, k)$ and $m_{i}^{*}(n, k)$ for $k \geq 3$?
- For $k \geq 3$ and n sufficiently large, do the following inequalities hold?

$$
m_{i r}(n, k) \leq m_{\gamma}(n, k) \leq m_{i}(n, k) \leq m_{\beta_{0}}(n, k)=m_{\Gamma}(n, k)=m_{I R}(n, k)
$$

and

$$
m_{i r}^{*}(n, k) \leq m_{\gamma}^{*}(n, k) \leq m_{i}^{*}(n, k) \leq m_{\beta_{0}}^{*}(n, k)=m_{\Gamma}^{*}(n, k)=m_{I R}^{*}(n, k)
$$

8 Acknowledgements

The authors would like to thank the anonymous referee for their helpful comments. They would also like to thank Dr. Doug Rall of Furman University for his help in researching this topic.

References

[1] E. Cockayne, S. Hedetniemi, and D. Miller, Properties of hereditary hypergraphs and middle graphs, Canad. Math. Bull. 21(4) (1978) 461468.
[2] M. Fischermann, Block graphs with unique minimum dominating sets, Discrete Math. 240(1-3) (2001) 247-251.
[3] M. Fischermann, D. Rautenbach and L. Volkmann, Maximum graphs with a unique minimum dominating set, Discrete Math. 260(1-3) (2003) 197-203.
[4] M. Fischermann and L. Volkmann, Cactus graphs with unique minimum dominating sets, Util. Math. 63 (2003) 229-238.
[5] M. Fischermann and L. Volkmann, Unique independence, upper domination and upper irredundance in graphs, J. Combin. Math. Combin. Comput. 47 (2003) 237-249.
[6] M. Fischermann, L. Volkmann and I. Zverovich, Unique irredundance, domination, and independent domination in graphs, Discrete Math. 305(1-3) (2005) 190-200.
[7] M. Fraboni and N. Shank, Maximum graphs with unique minimum dominating set of size two, Australas. J. Combin. 46 (2010) 91-99.
[8] G. Gunther, B. Hartnell, L. Markus and D. Rall, Graphs with unique minimum dominating sets, in: Proc. 25th S.E. Int. Conf. Combin., Graph Theory, and Computing, Congr. Numer. 101 (1994) 55-63.
[9] J. Hedetniemi, On unique minimum dominating sets in some Cartesian product graphs, Discuss. Math. Graph Theory to appear.
[10] J. Hedetniemi, On unique minimum dominating sets in some repeated Cartesian products, Australas. J. Combin. 62(1) (2015) 91-99.
[11] G. Hopkins and W. Staton, Graphs with unique maximum independent sets, Discrete Math. 57 (1985) 245-251.
[12] J. Topp, Graphs with unique minimum edge dominating sets and graphs with unique maximum independent sets of vertices, Discrete Math. 121(1-3) (1993) 199-210.

