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Abstract

The domination chain ir(G) ≤ γ(G) ≤ i(G) ≤ β0(G) ≤ Γ(G) ≤
IR(G), which holds for any graph G, is the subject of much research.
In this paper, we consider the maximum number of edges in a graph
having one of these domination chain parameters equal to 2 through
a unique realization. We show that a specialization of the domination
chain still holds in this setting.
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1 Introduction

Domination is a well-studied field in graph theory. In particular, the dom-
ination chain

ir(G) ≤ γ(G) ≤ i(G) ≤ β0(G) ≤ Γ(G) ≤ IR(G)

which holds for every graph G, has itself been studied in many papers. In
our work, we consider a specialization of this chain as it pertains to unique
realizations of these parameters.

Unique minimum dominating sets were first discussed in the 1994 paper
by Gunther, Hartnell, Markus, and Rall [8] where trees were the primary
class of graphs studied. Since then, unique minimum dominating sets have
been studied in block graphs [2], cactus graphs [4], and Cartesian products
[9] and [10]. In [3] and [7] the problem of determining the maximum number
of edges in a graph having a unique γ-set was considered.

Unique realizations of the other domination chain parameters have also
been considered. For example, unique ir-sets and unique i-sets were con-
sidered in [6], unique β0-sets were considered in [11] and [12], while unique
β0-sets, Γ-sets, and IR-sets were considered in [5].

In our work to follow, we build on the work of [3] and [7] and consider
the maximum number of edges in a graph having a unique ir, i, β0, Γ, or
IR-set of cardinality 2. In so doing, we show that the domination chain
above still holds in this different setting.
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2 Definitions

Throughout our work, G denotes a finite, simple, undirected graph, V (G)
denotes the vertex set of G, and E(G) denotes the edge set of G. For
v ∈ V (G), the open neighborhood of v, denoted by N(v), is defined by
N(v) = {u : uv ∈ E(G)}, while the closed neighborhood of v, denoted
N [v], is defined by N [v] = N(v) ∪ {v}. In regards to dominating sets
discussed below, we say that a vertex dominates all vertices in its closed
neighborhood. Additionally, for S ⊆ V (G), the open neighborhood of S,
denoted N(S), is defined by N(S) = ∪v∈SN(v), while the closed neigh-
borhood of S, denoted by N [S], is defined by N [S] = N(S) ∪ S. Given a
set S ⊆ V (G) and a vertex x ∈ S, an external private neighbor of x with
respect to S is a vertex v ∈ V (G) − S such that N [v] ∩ S = {x}. x itself
is a self-private neighbor with respect to S if N [x] ∩ S = {x}. Finally, G[S]
denotes the subgraph of G induced by S.

Let S ⊆ V (G).

• S is irredundant if for all v ∈ S, N [v]−N [S−{v}] 6= ∅. Equivalently,
S is irredundant if for all v ∈ S, v either has an external private
neighbor or is a self-private neighbor.

• S is dominating if N [S] = V (G).

• S is independent if no two vertices in S share an edge.

The minimum cardinality of a maximal (with respect to set inclusion) irre-
dundant set is denoted ir(G), while the maximum cardinality of an irredun-
dant set is denoted IR(G). We let γ(G) denote the minimum cardinality of
a dominating set, and Γ(G) denote the maximum cardinality of a minimal
(with respect to set inclusion) dominating set. Finally, i(G) denotes the
minimum cardinality of a maximal (with respect to set inclusion) indepen-
dent set, while β0(G) denotes the maximum cardinality of an independent
set. These parameters are related by the following well-known result of
Cockayne, Hedetniemi, and Miller.

Theorem. [1] For any graph G,

ir(G) ≤ γ(G) ≤ i(G) ≤ β0(G) ≤ Γ(G) ≤ IR(G).

For convenience, a maximal irredundant set of cardinality ir(G) or IR(G)
is called an ir-set or IR-set respectively. Similarly, a minimal dominating
set of cardinality γ(G) or Γ(G) is referred to as γ-set or Γ-set respectively,
while a maximal independent set of cardinality i(G) or β0(G) is referred to
as i-set or β0-set respectively.

Let P be one of ir, γ, i, β0, Γ, or IR. In general, a graph may have
many P-sets. We are interested in graphs having a unique P-set. We make
the following definitions.
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Definition 1. Let m∗P(n, k) denote the maximum number of edges in a
graph on n vertices having a unique P-set of cardinality k.

Definition 2. Let mP(n, k) denote the maximum number of edges in an
isolate free graph on n vertices having a unique P-set of cardinality k.

Observe that mP(n, k) ≤ m∗P(n, k).
With this notation now defined, our main result is as follows.

Theorem 1. For n ≥ 6

mir(n, 2) = mγ(n, 2) ≤ mi(n, 2) ≤ mβ0
(n, 2) = mΓ(n, 2) = mIR(n, 2)

and

m∗ir(n, 2) = m∗γ(n, 2) ≤ m∗i (n, 2) ≤ m∗β0
(n, 2) = m∗Γ(n, 2) = m∗IR(n, 2).

We prove this theorem by computing, or recalling in the case of mγ(n, 2),
the exact values for each of the parameters.

In Section 3, we collect the results from [3] and [7] which we need for our
discussion of unique irredundant sets in Section 4. In Section 5, we turn our
attention to unique minimum independent dominating sets of cardinality
two, while in Section 6 we consider unique β0-, Γ-, and IR-sets of cardinality
k for k ≥ 2. Finally, in Section 7, we pose several open problems.

3 Unique minimum dominating sets

In this section, we briefly collect the results from [3] and [7] that we will
need in our work to come. We first note the following result from [3].

Proposition 1. [3] For n ≥ 3, mγ(n, 1) =
(
n
2

)
− dn−1

2 e.

For comparison purposes in Section 5 to follow, we also note the following
result.

Theorem 2. [3] For k ≥ 2, mγ(3k, k) = 2k + 2
(
k
2

)
.

The following result, from [7], will be used in Section 4 below.

Theorem 3. [7] For n ≥ 6, mγ(n, 2) =
(
n−2

2

)
.

By combining Proposition 1 and Theorem 3, we see the following.

Proposition 2. For n ≥ 6, m∗γ(n, 2) = mγ(n− 1, 1) =
(
n−1

2

)
− dn−2

2 e.
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Proof. Suppose G is a graph on n ≥ 6 vertices having a unique γ-set of
cardinality 2. Note that G has at most one isolated vertex. If G is isolate
free, then |E(G)| ≤

(
n−2

2

)
by Theorem 3. However, if G has one isolate,

call it v, and a unique γ-set of cardinality 2, then G− v necessarily induces
an isolate free graph having a unique γ-set of cardinality 1. Hence, if G
has an isolate, then |E(G)| ≤

(
n−1

2

)
− dn−2

2 e by Proposition 1. Since this

upper bound is strictly greater than
(
n−2

2

)
and can be achieved, our result

follows.

4 Unique minimum maximal irredundant sets

We now turn our attention to the maximum number of edges in a graph G
having a unique ir-set of cardinality 2. Note that the only graph on three
or fewer vertices having a unique ir-set of cardinality 2 is K2, the graph on
two isolated vertices. Thus, we restrict our attention to graphs on at least
four vertices. First, suppose that we allow G to have an isolated vertex (if
G has two or more isolated vertices, then ir(G) ≥ 3). In this case, G has a
component of order n − 1, call it C, which necessarily satisfies ir(C) = 1.
Since ir(C) = 1 if and only if γ(C) = 1, we see that, in fact, C has a unique
γ-set of cardinality 1. Hence, by Proposition 1, C, and thus G, has at most(
n−1

2

)
− dn−2

2 e edges. This bound is achieved by the graph K1 ∪H where
H is a graph on n− 1 vertices having a maximum number of edges subject
to the condition that exactly one vertex is of degree n − 2. Thus, we see
that m∗ir(n, 2) ≥

(
n−1

2

)
− dn−2

2 e. Thus, by Proposition 2, if n ≥ 6, then
m∗ir(n, 2) ≥ m∗γ(n, 2).

Next, we restrict ourselves to isolate free graphs. It can be readily
checked that no isolate free graph on two, three, or four vertices has a
unique ir-set of cardinality 2. Among the isolate free graphs on five vertices,
twelve satisfy ir(G) = 2, and none has a unique ir-set. Thus, we restrict
ourselves to graphs on n ≥ 6 vertices.

Suppose G is an isolate free graph on n ≥ 6 vertices having a unique
ir-set of cardinality 2, call it D. D is either a dominating set, or it is not.
We first consider the case when D is not a dominating set. Observe that in
this case, ir(G) < γ(G), for if γ(G) = 2 also, then D is not a unique ir-set
in G.

4.1 D is not a dominating set

We begin by considering an example. Let the graph F on n ≥ 7 vertices
be constructed as follows. Let V (F ) = {x, y, x′, y′, w, z, v, b1, b2, . . . , bn−7}.
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Let F [{v, b1, b2, . . . , bn−7}] be complete. Additionally, let

N(x) = {y, v, x′, b1, b2, . . . , bn−7}
N(y) = {x, v, y′, b1, b2, . . . , bn−7}
N(v) = {x, y, b1, b2, . . . , bn−7}
N(x′) = {x,w, y′, b1, b2, . . . , bn−7}
N(y′) = {y, z, x′, b1, b2, . . . , bn−7}
N(w) = {x′}
N(z) = {y′}.

The case of n = 8 is illustrated below for convenience.

x

x′

v

b1

y

y′

w z

Figure 1: n = 8 case

We claim that {x, y} is the unique ir-set of F .

Proof. First, note that ir(F ) ≥ 2 since ∆(F ) < n − 1. Consider {x, y}.
This set is irredundant, since x has x′ as a private neighbor and y has y′

as a private neighbor. Moreover, this set is maximal irredundant since the
inclusion of w, z, x′, y′, or b1, b2, . . . , bn−7 eliminates the private neighbor of
x or y while the inclusion of v results in v not having a private neighbor.
Thus, ir(F ) = 2 and {x, y} is an ir-set.

To see that no other two element subsets of V (F ) containing x are
maximal irredundant, observe first that {x, v} and {x, bi} for 1 ≤ i ≤ n− 7
are both redundant sets. Additionally, since the sets {x, x′, z}, {x, y′, w},
and {x,w, z} are irredundant, we see that {x, x′}, {x, y′}, {x,w} and {x, z}
are not maximal irredundant.

The interested reader can verify, in a manner similar to the above, that
any two element subset of V (F ) distinct from {x, y} is either redundant,
or is contained in a larger irredundant set. We thus have that {x, y} is the
the unique ir-set of F .
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Before proceeding, we note that |E(F )| =
(
n−2

2

)
− 2.

We now prove the following theorem through a sequence of claims.

Theorem 4. Let n ≥ 7. If G is a graph of order n such that δ(G) ≥ 1,
ir(G) = 2, γ(G) ≥ 3, and G has a unique ir-set D, then |E(G)| ≤

(
n−2

2

)
−2.

Furthermore, this bound is sharp.

Proof. Among all isolate free graphs on n vertices with domination number
at least 3 and having a unique ir-set of cardinality 2, suppose that G has
the maximum number of edges. Note that since γ(G) ≥ 3, ∆(G) ≤ n − 3.
Let D = {x, y} denote the unique ir-set of G. Define the following sets.

• Dx = N(x)−N [y]

• Dy = N(y)−N [x]

• Dxy = N(x) ∩N(y)

• R = V (G)− (N [x] ∪N [y])

We note that R is the set of vertices not dominated by x or y. Since D is
not a dominating set, we have that |R| > 0. This implies that xy ∈ E(G),
since if xy 6∈ E(G), then {x, y, w}, where w ∈ R, is independent and thus
irredundant. The fact that xy ∈ E(G) further implies that Dx 6= ∅ and
that Dy 6= ∅.

We first consider the set R.

Claim 1. |R| ≥ 2.

Proof of Claim: For the sake of contradiction, suppose |R| = 1 with
w ∈ R. Since D is maximal irredundant, {x, y, w} is redundant. Since w
is a self-private neighbor with respect to {x, y, w}, we see that either w
dominates Dx or w dominates Dy. Without loss of generality, assume w
dominates Dx. In this case, {y, w} is a dominating set of G, a contradiction.
Hence, |R| ≥ 2.

Claim 2. Every vertex in R either dominates Dx or Dy.

Proof of Claim: Suppose w ∈ R does not dominate Dx or Dy. Since w is
not dominated by D, we see that {x, y, w} is irredundant, a contradiction
to the maximality of D.

Claim 3. γ(G[R]) ≥ 2.

Proof of Claim: Suppose that γ(G[R]) = 1. Let w ∈ R dominate G[R].
By Claim 2, w dominates Dx or Dy. Without loss of generality, assume w
dominates Dx. In this case, {w, y} is a dominating set of G, a contradiction.
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Claim 4. There exists w ∈ R that dominates Dx but not Dy and z ∈ R
that dominates Dy but not Dx.

Proof of Claim: Without loss of generality, suppose every vertex in R
dominates Dx. Consider γ(G[Dx]). First, assume that γ(G[Dx]) = 1. In
this case, if x′ ∈ Dx dominates G[Dx], then {x′, y} is a dominating set of
G, a contradiction. Thus, γ(G[Dx]) ≥ 2. This, implies that |Dx| > 1. Let
x′ ∈ Dx and x′′ ∈ Dx be non-adjacent. Consider x′. Since we are assuming
every vertex in R dominates Dx, we see that x′ dominates R. If x′ also
dominates Dy, then {x, x′} dominates all of G, a contradiction. Thus, there
exists y′ ∈ Dy such that x′y′ 6∈ E(G). However, we now see that {x, y}
is not maximal irredundant, since {x, x′, y} is irredundant (x has x′′ as a
private neighbor, y has y′ as a private neighbor, and x′ has any vertex in
R as a private neighbor). Thus, our result follows.

Next, we consider the set Dxy.

Claim 5. No vertex in Dxy dominates R.

Proof of Claim: Suppose v ∈ Dxy dominates R. Recall that deg(v) ≤
n− 3. Since v is adjacent to x, y, and every vertex in R, this implies that
there are at least two vertices in Dx ∪ Dy ∪ Dxy that are not neighbors
of v. Suppose the only vertices not adjacent to v are in Dx and Dxy.
This implies that v dominates Dy in which case {x, v} is a dominating
set, a contradiction. By similar reasoning, the vertices not adjacent to v
cannot lie in only Dy and Dxy, only Dx, only Dy, or only Dxy. Thus,
there exists x′ ∈ Dx and y′ ∈ Dy for which x′v 6∈ E(G) and y′v 6∈ E(G).
This, however, implies that D = {x, y} is not maximal irredundant, since
{x, y, v} is irredundant, a contradiction.

Claim 6. Dxy 6= ∅.

Proof of Claim: Suppose that Dxy = ∅. If γ(G[Dx]) = γ(G[Dy]) = 1,
with x′ ∈ Dx dominating Dx and y′ ∈ Dy dominating Dy, then, by Claim 2,
{x′, y′} is a dominating set of G, a contradiction. Thus, either γ(G[Dx]) ≥ 2
or γ(G[Dy]) ≥ 2. Without loss of generality, assume that γ(G[Dx]) ≥ 2.
Let x′ ∈ Dx. If x′ does not dominate Dy, then {x, y, x′} is irredundant, a
contradiction. Hence, we see that every vertex in Dx dominates Dy. This
implies that every vertex in Dy dominates Dx as well. Hence, if x′ ∈ Dx

and y′ ∈ Dy, then {x′, y′} is a dominating set of G, a contradiction.

Corollary 1. If G is an isolate free graph on six vertices and has a unique
ir-set of cardinality 2, then γ(G) = 2.

Finally, we consider the sets Dx and Dy.

Claim 7. If v ∈ Dx or v ∈ Dy, then deg(v) ≤ n− 4.
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Proof of Claim: Since ∆(G) ≤ n − 3, we see that if x′ ∈ Dx, then
deg(x′) ≤ n−3. For the sake of contradiction, suppose that deg(x′) = n−3
and that x′ is not adjacent to a and y. (We note that x′ ∈ Dx implies x′ is
not adjacent to y.)

• If a ∈ Dxy or a ∈ Dy, then {x′, y} dominates G, a contradiction.

• If a ∈ Dx, then {x′, x} dominates G, a contradiction.

• If a ∈ R, then since every vertex in R either dominates Dx or Dy,
we see that a dominates Dy. This however, implies that {x′, y′}
dominates G for any y′ ∈ Dy.

Hence, we have arrived at a contradiction. Our claim follows.

Claim 8. If x′ ∈ Dx, then x′ either dominates Dx or Dy. If y′ ∈ Dy,
then y′ either dominates Dx or Dy.

Proof of Claim: If x′ ∈ Dx does not dominate Dx and does not dominate
Dy, then {x, x′, y} is irredundant by Claim 4.

Corollary 2. If γ(G[Dx]) > 1 or γ(G[Dy]) > 1, then each vertex in Dx

dominates Dy and each vertex in Dy dominates Dx.

Proof. Suppose γ(G[Dx]) > 1. This implies that no vertex in Dx dominates
Dx. Hence, by Claim 8, each vertex in Dx dominates Dy. This also implies
that each vertex in Dy dominates Dx. The case of γ(G[Dy]) > 1 follows
similarly.

Claim 9. No vertex in Dx or Dy dominates Dxy.

Proof of Claim: Suppose x′ ∈ Dx dominates Dxy. x′ itself either domi-
nates Dx or Dy by Claim 8. We consider each case.

First suppose x′ dominates Dx. If there exists y′ ∈ Dy that dominates
Dy, then {x′, y′} is a dominating set of G, a contradiction. Thus, no vertex
in Dy dominates Dy. Hence, every vertex in Dy dominates Dx. This,
however, implies that every vertex in Dx also dominates Dy. Hence, {x′, y′}
is a dominating set of G for any y′ ∈ Dy, a contradiction.

Suppose now that x′ dominates Dy but not Dx. If there exists y′ ∈
Dy such that y′ dominates Dx then {x′, y′} is a dominating set of G, a
contradiction. Thus, no vertex in Dy dominates Dx, in which case every
vertex in Dy dominates Dy. Let x′′ be a vertex in Dx not dominated by x′.
If x′′ does not dominate Dy, then {x, x′′, y} is irredundant, a contradiction.
Thus, x′′ dominates Dy. Since this is true for every vertex in Dx not
dominated by x′, we see that each vertex in Dy dominates the vertices in
Dx not dominated by x′. This implies that {x′, y′} is a dominating set of
G for any y′ ∈ Dy.
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Claim 10. No vertex in Dx dominates R. No vertex in Dy dominates R.

Proof of Claim: Suppose x′ ∈ Dx dominates R. If x′ dominates Dx,
then {x′, y} dominates G, a contradiction. Thus, x′ dominates Dy. This,
however, implies that {x, x′} dominates G, again a contradiction. Hence,
no vertex in Dx dominates R. By the same logic, no vertex in Dy dominates
R.

Claim 11. For each pair of vertices {x′, y′} such that x′ ∈ Dx and y′ ∈ Dy,
there exists a vertex v ∈ Dxy not adjacent to either x′ or y′.

Proof of Claim: Suppose x′ ∈ Dx, y′ ∈ Dy, and that Dxy ⊆ (N [x′] ∪
N [y′]). We consider several cases.

• If x′ dominates Dx and y′ dominates Dy, then {x′, y′} dominates G,
a contradiction.

• If x′ dominates Dy and y′ dominates Dx, then {x′, y′} dominates G,
a contradiction.

• Suppose both x′ and y′ dominate Dy but not Dx. In this case, con-
sider x′′ ∈ Dx − N [x′]. If x′′ does not dominate Dy, then {x, x′′, y}
is irredundant, a contradiction. Thus, we see that each vertex in
Dx − N [x′] dominates Dy, in which case every vertex in Dy domi-
nates Dx−N [x′]. Thus, once again we see that {x′, y′} dominates all
of G, a contradiction.

• If both x′ and y′ dominate Dx but not Dy, then {x′, y′} will dominate
all of G, in a manner similar to the case above.

Our result follows.

Considering the results above, we see that G has one of the four graphs
below as an induced subgraph.

x

x′

v

y

y′

w z

x

x′

v

y

y′

w z

x

x′

v

y

y′

w z

x

x′

v

y

y′

w z

Figure 2: Induced Subgraphs
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We now show that if |R| ≥ 3, |Dx| ≥ 2, or if |Dy| ≥ 2, then |E(G)| ≤
|E(F )| =

(
n−2

2

)
− 2, where F is the graph considered at the beginning of

this section. We prove this by constructing a graph G′ from G satisfying
|E(G)| ≤ |E(G′)| and G′ ⊆ F .

Suppose that at least one of the following is true concerning G.

• |R| ≥ 3

• |Dx| ≥ 2

• |Dy| ≥ 2

Find, and label, vertices w and z in R such that w dominates Dx but
not Dy and such that z dominates Dy but not Dx. Next, find, and label,
vertex x′ in Dx that is not dominated by z and vertex y′ in Dy that is not
dominated by w. Finally, for the pair {x′, y′}, find, and label, the vertex v
in Dxy that is not dominated by x′ or y′. Observe that v is not adjacent
to w or z (if v is adjacent to either w or z, then {x, y, v} is irredundant).
Define the following sets.

• D∗x = Dx − {x′}

• D∗y = Dy − {y′}

• R∗ = R− {w, z}

• D∗xy = Dxy − {v}

Note that if there are no edges between {w, z} and D∗x, D∗y, D∗xy, and R∗,
then G is isomorphic to a subgraph of F above. Bearing this in mind,
consider the following procedure.

Let G′ be a distinct copy of G. We alter G′ after considering G.

1. If wz 6∈ E(G), continue to Step 2 below. If wz ∈ E(G), then there
exists r ∈ R∗ for which wr 6∈ E(G) by Claim 3. In G and G′, delete
the edge wz and add the edge wr.

2. Consider D∗x in G. If |D∗x| = 0, continue to Step 3 below. Otherwise,
for each s ∈ D∗x proceed as follows. Note that s is adjacent to w, but
it is not adjacent to y (by definition of Dx) and it is not adjacent to
at least one vertex in R (by Claim 10), call it rs. Delete the edge
sw and add the edge sy in G′. Additionally, if s is adjacent to z,
delete the edge sz and add the edge srs in G′. Note that after the
completion of Step 2, |E(G)| = |E(G′)| and NG′({w, z}) ∩D∗x = ∅.
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3. Consider D∗y in G. If |D∗y| = 0, continue to Step 4 below. Otherwise,
for each t ∈ D∗y, proceed as follows. Note that t is adjacent to z, but
is not adjacent to x (by definition of Dy) and it is not adjacent to at
least one vertex in R (by Claim 10), call it rt. In G′, delete the edge
tz and add the edge tx. Additionally, if t is adjacent to w, in G′ delete
the edge tw and add the edge trt. Note that after the completion of
Step 3, |E(G)| = |E(G′)| and NG′({w, z}) ∩D∗y = ∅.

4. Consider R∗ in G. If |R∗| = 0, continue to Step 5 below. Otherwise,
for each u ∈ R∗, proceed as follows. Note that u is not adjacent to x,
y, or v, or else {x, y, v} is irredundant. Add the edges uv, ux, and uy
in G′. If u is adjacent to w in G, delete the edge uw from G′. If u is
adjacent to z in G, delete the edge uz from G′. Note that after the
completion of Step 4, |E(G)| ≤ |E(G′)| and NG′({w, z}) ∩R∗ = ∅.

5. Finally, consider D∗xy in G. If |D∗xy| = 0, then we’re done. Otherwise,
partition D∗xy as follows.

• Let S1A denote the set of vertices p in D∗xy which dominate all
but one vertex in R, and which do not dominate Dx ∪Dy ∪{v}.

• Let S1B denote the set of vertices p in D∗xy which dominate all
but one vertex in R, and which dominate Dx ∪Dy ∪ {v}.

• Let S2 denote the set of vertices p in D∗xy which do not dominate
two or more vertices in R.

For each p ∈ S1A, proceed as follows. Let op denote the vertex in
Dx ∪Dy ∪ {v} that p is not adjacent to, and let rp denote the vertex
in R that p is not adjacent to. In G′, delete the edges pw and pz (if
they exist), add the edge pop, and add the edge prp if and only if rp
is distinct from w and z.

For each p ∈ S1B , proceed as follows. Let rp denote the vertex in
R that p is not adjacent to. First, observe that there is at least
one vertex in Dxy − N [p] since deg(p) ≤ n − 3. Next, note that
(Dxy −N [p])∩ (S1A ∪S2) 6= ∅, since otherwise {p, x′} or {p, y′} dom-
inates G (depending upon whether rp dominates Dx or Dy). Thus,
let op ∈ (Dxy −N [p])∩ (S1A ∪S2). In G′, delete the edges pw and pz
(if they exist), add the edge pop, and add the edge prp if and only if
rp is distinct from w and z.

For each p ∈ S2, let r1 and r2 denote the vertices in R that p is not
adjacent to. In G′, delete the edges pw and pz (if they exist), and
add the edges pr1 and pr2 if and only if r1 and r2 are distinct from
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w and z respectively.

Note that after the completion of Step 5, |E(G)| = |E(G′)| and that
NG′({w, z}) ∩D∗xy = ∅.

Upon completion of Step 5, we see that the graph G′ is isomorphic to a
subgraph of the graph F constructed at the beginning of this section, and
that |E(G)| ≤ |E(G′)|. Hence, we have proven that if |R| > 2, |Dx| > 1, or
|Dy| > 1, then |E(G)| ≤

(
n−2

2

)
− 2.

Suppose now that G satisfies |R| = 2, |Dx| = 1, |Dy| = 1 and |Dxy| =
n−6. Find, and label, the vertices w, z, x′, y′ and v as before. Note that x′ is
not adjacent to z and that y′ is not adjacent to w by Claim 10. By Claim 3,
w is not adjacent to z. Additionally, v is not adjacent to either w or z, since
otherwise {x, y, v} is irredundant. If no vertex in Dxy shares an edge with
w or z, then G is a subgraph of F , in which case |E(G)| ≤

(
n−2

2

)
−2. Thus,

suppose there exists a vertex, call it p, in Dxy which is adjacent to a vertex
in R. Note that |N(p) ∩ R| ≤ 1 by Claim 5. Create a copy G′ of G, and
proceed as follows.

1. For each vertex p ∈ Dxy, if p is adjacent to a vertex in R but is not
adjacent to one of x′, y′, or v, delete the edge from p to R in G′ and
add the edge px′, py′, or pv as appropriate.

2. If there are still vertices in Dxy that share an edge with a vertex in
R, proceed as follows. Suppose that p ∈ Dxy is adjacent to a vertex
in R, say z without loss of generality. Consider then x′. Note that x′

does not dominate V (G)−N [p] since otherwise {x′, p} dominates G.
Hence, there exists a vertex which neither x′ nor p is adjacent to, call
it c (note that c 6= z). In G′, exchange the pz edge for the pc edge.
Since x′c 6∈ E(G), c does not share an edge with a vertex in R.

Since the total number of edges is preserved in Step 1, and since the only
edges added in Step 2 are from a vertex sharing an edge with a vertex in R
to a vertex not sharing an edge with a vertex in R, we see that |E(G)| =
|E(G′)|. Since G′ is a subgraph of F , we see that |E(G)| ≤

(
n−2

2

)
− 2. We

have thus proven our result.

4.2 D is a dominating set

Suppose now that G is an isolate free graph on n-vertices (n ≥ 6) having a
unique ir-set of cardinality 2, call it D, which is a dominating set. Since D
is a dominating set, this implies that D is a γ-set, since if γ(G) = 1, then
ir(G) = 1 as well, a contradiction. Moreover, D is a unique γ-set in G, since

12



if G has a γ-set distinct from D, call it D′, then D′ is maximal irredundant,
contradicting the uniqueness of D. Hence, by Theorem 3, |E(G)| ≤

(
n−2

2

)
.

To see that this bound can be achieved, consider the following two con-
structions.

First, the following graph on six vertices, together with Corollary 1,
shows that mir(6, 2) =

(
6−2

2

)
= 6.

Figure 3: n = 6 case

For the n ≥ 7 case, consider the following. Let

V (H) = {x1, x2, . . . , xn−5, y1, y2, s, l, p}.

Let H[{x1, x2, . . . , xn−5}] be complete. Additionally, let

N(y1) = {x1, x2, . . . , xn−5, s}
N(y2) = {x1, x2, . . . , xn−5, s, p}
N(s) = {y1, y2}
N(l) = {x1}
N(p) = {x2, x3, . . . , xn−5, y2}.

The case of n = 7 is illustrated in the figure below.

x1

x2

l

y1

y2

s

p

Figure 4: n = 7 case

Similarly to the graph F considered in the previous section, the reader
can verify that H has a unique ir-set of cardinality 2 given by {x1, y2}.
Since |E(H)| =

(
n−2

2

)
, we have the following result.
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Theorem 5. For n ≥ 6, mir(n, 2) =
(
n−2

2

)
.

Additionally, by considering our work at the beginning of this section,
we have the following.

Theorem 6. For n ≥ 4, m∗ir(n, 2) =
(
n−1

2

)
− dn−2

2 e.
Before concluding this section, we note that not every graph G having

a unique γ-set of cardinality 2 has a unique ir-set of cardinality 2, even
when ir(G) = γ(G) = 2. For example, the graph P6 has a unique γ-set
of cardinality 2, but does not have a unique ir-set. Moreover, the set of
isolate free graphs on n vertices having a unique ir-set of cardinality 2 and
a maximum number of edges is a proper subset of the set of all isolate free
graphs on n vertices having a unique γ-set of cardinality 2 and a maximum
number of edges. For example, the graph in Figure 5 below has a unique
γ-set of cardinality 2 (and a maximum number of edges), but does not have
a unique ir-set, even though ir(G) = 2.

Figure 5: γ(G) = ir(G) = 2, unique γ-set, not a unique ir-set

5 Unique minimum independent dominating
sets

In this section, we consider the maximum number of edges in a graph on
n vertices having a unique i-set of cardinality 2. First, we note that no
graph on one or three vertices has a unique i-set of cardinality 2. The
only graph on two vertices having a unique i-set of cardinality two is the
completely disconnected graph K2. Additionally, the only graph on four
vertices which has a unique i-set of cardinality two is P3 ∪ K1. Putting
these trivial cases aside, we now restrict ourselves to graphs on at least five
vertices. Let G be a graph on n ≥ 5 vertices having a unique minimum
independent dominating set of cardinality 2 and having a maximum number
of edges. Let D denote the unique i-set of G, and for notational purposes,
let D = {x, y}. Additionally, let R = V (G)−D. Define the following sets.
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Figure 6: mi(8, 2) = 21

• Dx = N(x)−N(y)

• Dy = N(y)−N(x)

• Dxy = N(x) ∩N(y).

Consider a vertex v ∈ R. What is the maximum degree of v? We see
that if deg(v) = n− 1, then {v} itself is an independent dominating set of
cardinality one, a contradiction. If deg(v) = n− 2, with v not adjacent to
u, then {u, v} is an independent dominating set of cardinality two distinct
from D, a contradiction. Thus, deg(v) ≤ n − 3. Additionally, note that if
deg(v) = n− 3, then the two vertices not adjacent to v are not adjacent.

Using the familiar result that |E(G)| = 1
2

∑
v∈V (G) deg(v), we see that

|E(G)| ≤ 1

2
(|Dx|+ 2|Dxy|+ |Dy|+ (n− 3)(n− 2))

≤ 1

2
(2(n− 2) + (n− 3)(n− 2))

=
1

2
((n− 2)(n− 1))

=

(
n− 1

2

)
.

When n = 3k + 2, k ≥ 1, this upper bound on |E(G)| can be achieved
if R = Dxy and G[R] is a complete graph minus the edges of k disjoint
triangles (see Figure 6). Thus, we see that mi(3k+ 2, 2) = m∗i (3k+ 2, 2) =(

3k+1
2

)
.

Suppose now that n = 3k or n = 3k+ 1, for k ≥ 2. Note that the upper
bound on |E(G)| found above is achievable if and only if R = Dxy and if
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each vertex v ∈ R satisfies deg(v) = n−3. Thus, suppose that R = Dxy and
that each vertex in R has degree n− 3. If v ∈ R is not adjacent to vertices
v1 and v2, by our observations above, v1v2 6∈ E(G). Since we are assuming
R = Dxy, we see that v1 ∈ Dxy and v2 ∈ Dxy. Hence, deg(v1) = n− 3 and
deg(v2) = n − 3. Moreover, the two vertices not adjacent to v1 are v and
v2, while the two vertices not adjacent to v2 are v and v1. Thus, each of v,
v1 and v2 dominates R−{v, v1, v2}. Since the above logic can be applied to
each vertex in R, R can be partitioned into sets of cardinality 3 such that
each set S induces an independent set in G that dominates R − S. This,
however, is clearly a contradiction since |R| 6≡ 0 (mod 3). Thus, if n = 3k or
n = 3k+1, we have |E(G)| ≤

(
n−1

2

)
−1. This upper bound can be achieved

in each case as follows.
If n = 3k, we let R = Dxy. Initially, we let G[R] be complete. After

removing the edges of k−1 disjoint triangles from R, find the one remaining
vertex in R of degree n−1 and make it not adjacent to any two other vertices
in R. An example construction is illustrated in Figure 7.

If n = 3k + 1, we once again let R = Dxy and once again initially set
G[R] to be complete. In this case, after removing the edges of k−1 disjoint
triangles from R, we find the remaining two vertices in R of degree n− 1,
call them v1 and v2. We remove the edge v1v2 from G, and then pick an
arbitrary vertex v ∈ R, (v 6= v1 and v 6= v2) and remove the edges vv1 and
vv2. An example construction is illustrated in Figure 7.

Figure 7: mi(6, 2) = 9 and mi(7, 2) = 14

Thus, we summarize our results as follows.

Theorem 7. For n = 2, n = 4, or n ≥ 5,

m∗i (n, 2) =

{(
n−1

2

)
if n ≡ 2 (mod 3),(

n−1
2

)
− 1 otherwise.

By observing that the graphs constructed in the n ≥ 5 case are all isolate
free, we also have the following.
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Corollary 3. For n ≥ 5,

mi(n, 2) =

{(
n−1

2

)
if n ≡ 2 (mod 3),(

n−1
2

)
− 1 otherwise.

6 Unique maximum independent, maximum
minimal dominating, and maximum irre-
dundant sets

In this section, we consider unique β0-sets, Γ-sets, and IR-sets of cardinal-
ities at least 2. We begin with unique β0-sets.

Theorem 8. Let k ≥ 2. For n ≥ k, mβ0
(n, k) = m∗β0

(n, k) =
(
n
2

)
−
(
k
2

)
.

Proof. Let k ≥ 2, and let G be a graph on n ≥ k vertices having a unique
β0-set of cardinality k. First, observe that since G contains k mutually
non-adjacent vertices, |E(G)| ≤

(
n
2

)
−
(
k
2

)
. Since the graph Kn − E(Kk)

has a unique β0-set of cardinality k and has
(
n
2

)
−
(
k
2

)
edges, our result

follows.

As it turns out, unique Γ-sets and unique IR-sets of cardinality k can
be handled similarly.

Theorem 9. Let k ≥ 2. For n ≥ k,

mΓ(n, k) = m∗Γ(n, k) = mIR(n, k) = m∗IR(n, k) =

(
n

2

)
−
(
k

2

)
.

Proof. Let k ≥ 2, and let G be a graph on n ≥ k vertices having a unique
Γ-set or a unique IR-set of cardinality k, call it D. In either case, we have
that D is maximal irredundant.

Partition D into two subsets S1 and S2 such that every vertex in S1

has an external private neighbor, while every vertex in S2 does not have an
external private neighbor. If S1 = ∅, then D is an independent set in which
case |E(G)| ≤

(
n
2

)
−
(
k
2

)
as illustrated in the proof of Theorem 8.

Thus, suppose that S1 6= ∅. Note that for each vertex v in S1, there
is a vertex uv ∈ V (G) − D satisfying N [uv] ∩ D = {v}. We construct a
graph G′ from G as follows. For each v ∈ S1, let the vertices in N(v) ∩D
be w1, w2, . . . , wr. Note that w1, w2, . . . , wr ∈ S1, since if wj ∈ S2, then wj
does not have a private neighbor by definition of S2. Delete the edge vwi
and add the edges wiuv and vuwi for each 1 ≤ i ≤ r. If N(v) ∩ D = ∅,
no edges need to be deleted or added when considering v. Once this has
been completed, we see that D forms an independent set in G′. Since
|E(G′)| ≥ |E(G)|, we see that |E(G)| ≤

(
n
2

)
−
(
k
2

)
.
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The graph Kn−E(Kk) satisfies Γ(Kn−E(Kk)) = IR(Kn−E(Kk)) = k
and has a unique Γ-set and a unique IR-set. Thus, our result follows.

7 Concluding Remarks and Open Problems

By combining Proposition 2 and Theorems 3, 5, 6, 7, 8, and 9, we have our
main result.

Theorem. For n ≥ 6

mir(n, 2) = mγ(n, 2) ≤ mi(n, 2) ≤ mβ0
(n, 2) = mΓ(n, 2) = mIR(n, 2)

and

m∗ir(n, 2) = m∗γ(n, 2) ≤ m∗i (n, 2) ≤ m∗β0
(n, 2) = m∗Γ(n, 2) = m∗IR(n, 2).

Before concluding our work, we pose the following open problems.

• What are the values for mir(n, k) and m∗ir(n, k) for k ≥ 3?

• What are the values for mi(n, k) and m∗i (n, k) for k ≥ 3?

• For k ≥ 3 and n sufficiently large, do the following inequalities hold?

mir(n, k) ≤ mγ(n, k) ≤ mi(n, k) ≤ mβ0
(n, k) = mΓ(n, k) = mIR(n, k)

and

m∗ir(n, k) ≤ m∗γ(n, k) ≤ m∗i (n, k) ≤ m∗β0
(n, k) = m∗Γ(n, k) = m∗IR(n, k).
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