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Kevin Lee James On con gruences for the coefficients of modular forms and some
applications

(Under the direction of Andrew Granville)

In this dissertation, we will study two different conjectures about elliptic curves

and modular forms. First, we will exploit the theory developed by Shimura and

Waldspurger to address Goldfeld’s conjecture which states that the density of rank

zero curves in a family of quadratic twists of an elliptic curve should be 1/2. In

particular, we will find lower bounds for the density of rank zero curves in several

families of quadratic twists. Next, we will use a beautiful theorem of Frey to verify

that the 3-part of the Birch and Swinnerton-Dyer conjecture holds for four different

families of elliptic curves. More precisely, we will verify for four different elliptic

curves E and for all D in some subset SE of the square-free natural numbers having

positive lower density that

ord3

(
L(ED, 1)

ΩED

)

= 0 if and only if ord3

(
#X

∏

p cp(ED)

#E(Q)2tor

)

= 0.

INDEX WORDS: Elliptic Curves, L-series, Modular Forms, Shimura Lift, Ternary

Quadratic Forms, Waldspurger.
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Chapter 1

Introduction

We start with a brief overview of the necessary theory: Given any cusp form

f =
∑

n≥1 an(f)qn of weight k, we denote by L(f, s) the L-function of f . For

Re(s) > k/2 + 1, the value of L(f, s) is given by L(f, s) =
∑

n≥1
an(f)
ns and, one can

show that L(f, s) has analytic continuation to the entire complex plane. The value

of L(f, s) at s = k/2 will be of particular interest to us, and we will refer to this

value as the central critical value of L(f, s).

Let χ
D

denote the Dirichlet character associated to the extension Q(
√
D)/Q,

that is χ
D

(n) =
(

∆D

n

)
, where ∆D denotes the discriminant of Q(

√
D)/Q, and

(
∆D

n

)
is the Kronecker-Legendre symbol. Define the Dth quadratic twist of f to be

fχ
D

=
∑

n≥1 an(f)χ
D

(n)qn. For any integer D, the L-function of fχ
D

is the twist of

L(f, s) by χ
D

, that is L(fχ
D
, s) is the analytic continuation of

∑

n≥1

an(f)χ
D

(n)

ns to

the whole complex plane. We will be interested in determining how often L(fχ
D
, s)

has nonzero central critical value as D varies. Since χ
Dm2 = χ

D
, we will restrict our

attention to the square-free integers D. We expect that as we let D vary over all of

the square-free integers, a positive proportion of the L-functions L(fχ
D
, s) will have

nonzero central critical value. In fact it has been conjectured by Goldfeld in [19]

that for eigenforms f of weight 2, L(fχ
D
, 1) 6= 0 for 1

2 of the square-free integers.

Given an elliptic curve E : y2 = x3 + Ax2 + Bx + C with A,B,C ∈ Z of

conductor NE and an integer D, we define the Dth quadratic twist of E to be the

curve ED : y2 = x3 + ADx2 + BD2x + CD3. Let L(ED, s) denote the L-function

associated to ED (see section 2). For square-free D coprime to 2N , L(ED, s) is

simply the Dth quadratic twist of L(E1, s).
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Given a weight 2 newform f with integer coefficients, we can use the theory of

Eichler and Shimura to find an elliptic curve E over Q so that L(E, s) = L(f, s).

Thus ifD is coprime to 6NE , then L(ED, s) = L(fχ
D
, s). Also, one has the following

theorem which was developed from deep ideas of Kolyvagin [28], by Murty, Murty

[34] and by Bump, Friedberg and Hoffstein [7] (see also [22] for a shorter proof).

Theorem 1.1. Let E be a modular elliptic curve. If L(E, 1) 6= 0, then the rank

of E is 0.

So, if f is a weight 2 newform having the property that a positive proportion of

the twists of L(f, s) have nonzero central critical value and if E is the elliptic curve

associated to f through the theory of Eichler and Shimura, then this implies that

a positive density of the quadratic twists ED of E have rank 0.

There have been many papers which have proved results in this direction. For

example, in [5, 7, 17, 22, 32, 34, 39, 53, 54] one can find general theorems on the

vanishing and nonvanishing of the quadratic twists of a given L-function. These

theorems ensure that an infinite number of the quadratic twists of an L-function

associated to a cusp form will have nonzero central critical value. In [40], Ono has

shown several examples of cusp forms f associated to elliptic curves such that for a

positive density of the primes p, the pth quadratic twist of L(f, s) will have nonzero

central critical value. Ono also proves a Theorem which gives sufficient conditions

under which a cusp form associated to an elliptic curve will have this property.

Using methods similar to those of Ono, we prove the following theorem (see

Chapter 5).

Theorem 1.2. The elliptic curve Ep : y2 = x3−32p3 has rank 0 for at least 1/3

of the primes p.

An outline of the proof is as follows. Let E : y2 = x3 + 4. Since E has complex

multiplication by
√
−3 it follows that it is modular. Let F denote the weight 2

newform with L(F, s) = L(E, s). We are able to exhibit a weight 3/2 eigenform
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f =
∑

n≥1 an(f)qn which lifts through the Shimura correspondence to F . Then

using Waldspurger’s theorem we see that L(E−2D, 1) = 0 if and only if aD(f) = 0,

for any square-free D coprime to 6. Thus it follows from Theorem 1.1 that if aD 6= 0

then ED has rank 0. Next, using a theorem of Sturm we prove that an(F ) ≡ an(f)

modulo 2. Thus, we have that if aD(F ) is odd then aD(f) 6= 0 and therefore E−2D

has rank 0. Now, we recall that for odd primes p, ap(F ) ≡ #E(Fp) modulo 2. So

for any odd prime p such that E(Fp) contains no points of order 2, we will have that

E−2p has rank 0. Note that E(Fp) contains order 2 points precisely when x3 + 4

has a root modulo 2. Now, we can use the Chebotarev density theorem to see that

x3 + 4 has no root modulo 2 for 1/3 of the primes p, and the theorem follows.

Subsequently, Ono and Skinner [43] used the theory of Galois representations

to extend Ono’s theorem to all even weight eigenforms. Using the theorems of

Waldspurger, they argue that if F is a weight 2k newform then there exists an

integer N and an eigenform g(z) =
∑

n≥1 an(g)q
n ∈ Sk+ 1

2
(N) such that for each

square-free natural number D,

aD(g)2 =

{

±L(Fχ
(−1)kD

, k)Dk− 1
2 , if D is relatively prime to 4N

0, otherwise.
(1)

Then using the theory of Galois representations and the Chebotarev density

theorem, they prove the following theorem.

Theorem 1.4. Suppose E/Q is a modular elliptic curve, and F is the weight 2

newform for which L(E, s) = L(F, s). Let g ∈ S3/2(N) be an eigenform with integer

coefficients satisfying (1). Define s0 by

s0 = min{s : aD(g) 6≡ 0 (mod 2s+1) for any square-free D > 1 coprime to 4N}.

If there exists a single prime p1 not dividing 4N for which ap1(g) 6≡ 0 modulo 2s0+1,

then the rank of E−p is 0 for a positive proportion of the primes p.

Ono and Skinner verify the hypotheses of this theorem for all modular elliptic

curves of conductor ≤ 100.
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In a series of two papers [20, 21], Heath-Brown has done an extensive investigation

of the behavior of the 2-Selmer groups associated to the quadratic twists of the

congruent number curve: y2 = x3−x. He states as a corollary to one of his theorems

that at least 5/16 of these quadratic twists have rank 0. This implies via the Birch

and Swinnerton-Dyer conjecture that at least 5/16 of the quadratic twists of the

L-function L(E, s) associated to the congruent number curve should have nonzero

central critical value. It is well known that the congruent number curve is modular,

thus there is a weight 2 modular form f such that L(f, s) = L(E, s).

In [54], Gang Yu has used similar techniques to those developed in [20, 21]

to study the twists of all elliptic curves whose torsion subgroup is Z/2Z × Z/2Z.

Assuming the parity conjecture for elliptic curves, he shows that any elliptic curve

with torsion subgroup as above has the property that a positive density of its

quadratic twists have rank zero.

Using some ideas developed by Frey in [16] and a theorem of Davenport and

Heilbronn [12] as improved by Nakagawa and Horie [35], Wong [53] was able to

show the existence of an infinite family of non-isomorphic elliptic curves such that

a positive proportion of the quadratic twists of each curve has rank 0. Thus, the

Birch and Swinnerton-Dyer and Shimura-Taniyama conjectures plus the result of

Wong imply the existence of an infinite family of weight 2 cusp forms {fi} such

that a positive proportion of the twists of each L(fi, s) have nonzero central critical

value.

In Chapter 6, we exhibit weight 2 newforms F such that L(Fχ
D
, 1) 6= 0 for a

positive density of the square-free natural numbers D. We will now describe the

first of those results.

Let E denote the elliptic curve with equation y2 = x3 − x2 + 72x + 368. Then

E is a modular curve (it is the −1 twist of X0(14)). We let F denote the weight 2

cusp form whose Mellin transform is L(E, s). We then prove unconditionally:

Theorem 1.5. For F as above we have that for at least 7/64 of the square-free
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natural numbers D,

L(Fχ
D
, 1) 6= 0.

In light of Theorem 1.1, we have as a corollary to Theorem 1.5

Corollary 1.6. For at least 7/64 of the square-free natural numbers D, ED :

y2 = x3 −Dx2 + 72D2x− 368D3 has rank 0.

Our proof differs from those of Heath-Brown and Wong in that while they work

directly with the Selmer groups of elliptic curves, our proof uses the theory of

modular forms developed by Waldspurger and Shimura to gain information about

the central critical values of the L-functions associated to elliptic curves. An outline

of the proof of Theorem 1.5 is as follows. Using ideas of Schoeneberg [44] and

Siegel [46], we construct a weight 3/2 cusp form f as the difference of the theta

functions associated to two inequivalent ternary quadratic forms Q1 and Q2 which

together make up a genus of ternary forms. This f will be an eigenform for all

of the Hecke operators and will lift through the Shimura correspondence to Fχ
−1

.

By a theorem of Waldspurger [51] we will be able to equate the vanishing of the

central critical values of the quadratic twists of L(F, s) to the vanishing of certain

Fourier coefficients of f . Since our ternary forms Q1 and Q2 are the only forms

in a certain genus of ternary forms, we are able to study the automorph structure

of these forms to show that the Fourier coefficients of f are related modulo 3 to

certain class numbers of imaginary quadratic number fields. We will then use the

Davenport-Heilbronn Theorem (see [35]) to show that at least 7/64 of these class

numbers are not divisible by 3, and hence, the associated Fourier coefficients of f

are nonzero. It will then follow that at least 7/64 of the quadratic twists of L(F, s)

have nonzero central critical value.
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We will also show in Chapter 6:

Theorem 1.7. Suppose that k is a positive integer. Then there exists a cusp

form Φ ∈ S2k(126 · C) with the property that L(Φχn
, k) 6= 0 for at least 7/64 of the

square-free natural numbers n where C is 1 (resp. 9) when k is even (resp. odd).

An outline of the proof is as follows. Let S denote the set of square-free natural

numbers n so that 3 - an(f). Then it follows from the outline of the proof of

Theorem 1.5 given above that the lower density of S is at least 7/64. Given any

positive integer k, we multiply our weight 3/2 cusp form f by a weight k modular

form with integer coefficients which is congruent to 1 modulo 3, thus obtaining a

weight (2k+ 3)/2 cusp form φk, whose Fourier coefficients, having indices in S, are

not divisible by 3 and hence are nonzero. We then write this form as a finite linear

combination of forms fi which are eigenforms for all but finitely many of the Hecke

operators. Next, we lift each of the forms fi through the Shimura correspondence

[45] to a weight 2k+2 form Fi. It is not hard to see from the definition of the Shimura

Lift and from the definitions of the Hecke operators that each Fi is also eigenform

for all but finitely many of the Hecke operators having the same eigenvalues as

fi. Thus by the theory of newforms developed in [1, 31] we know that there exist

newforms Gi of weight 2k+ 2 such that for each i, Gi and fi are eigenforms having

the same eigenvalues for all but finitely many of the Hecke operators. Next, we are

able to use Waldspurger’s theorem to see that since for all n ∈ S, an(φk) 6= 0, it

follows that for such n, L((Gi)χn
, 1) 6= 0 for at least one of the Gi’s. Thus there is

some linear combination Φ of the Gi’s having the property that L(Φχn
, 1) 6= 0 for

all n ∈ S.

Next we summarize the techniques used to prove Theorem 1.5 into the following

proposition.

Proposition 1.8. Suppose that Q1 and Q2 are even integral primitive positive

definite ternary quadratic forms and that Q1 and Q2 are the only forms in a genus
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of forms. Let Ai denote the number of automorphs of Qi (i = 1, 2). Assume that

3 - A1A2 but 3 | A1 + A2. Suppose also that f = (θQ1 − θQ2) ∈ S3/2(N,χq
) is

a Hecke-eigenform which lifts through the Shimura correspondence to a cusp form

F ∈ S2(N/2). Then F is also a Hecke-eigenform, and hence there is a unique

weight 2 newform G of trivial character having λp(F ) = λp(G) for all but finitely

many of the primes p. Letting NG denote the level of G, we put

W = lcm[
∏

p, odd
p|NG

p,
∏

p, odd
p|dQ1

p],

R =






a ∈ (Z/8WZ)∗ : ∃ a square-free n ≡ a

(mod 8W ) with 3 - an(f)






and,

δ =
#R

12W
∏

p|W (1 − 1
p2 )

.

(6.19)

Then, the set of square-free natural numbers n such that L(G · χ−qn
, 1) 6= 0 has

lower density at least δ in the square-free natural numbers.

Using Proposition 1.8, we prove results similar to Theorem 1.5 for nine other

families of curves. We summarize these results in the table below. For each curve

E, we list a Weierstrass equation for E, the conductor NE of E, and the lower bound

δE on the lower density of square-free natural numbers d such that L(E−d, 1) 6= 0.

E NE δE

y2 = x3 + 8 576 1/4
y2 = x3 + 1 36 5/24

y2 = x3 + 4x2 − 144x− 944 19 19/240
y2 = x3 + x2 + 4x+ 4 20 5/72
y2 = x3 + x2 − 72x− 496 26 13/112
y2 = x3 + x2 + 24x+ 144 30 5/128
y2 = x3 + x2 − 48x+ 64 34 17/144
y2 = x3 + x2 + 3x− 1 44 11/144

y2 = x3 + 5x2 − 200x− 14000 50 5/24

In chapter 7, we turn our attention to the Birch and Swinnerton-Dyer conjec-

ture. As a special case of the Birch and Swinnerton-Dyer conjecture, we have the

following:
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Conjecture 1.9. If E is an elliptic curve of rank 0 then

L(E, 1)

ΩE
=

#X(E/Q)
∏

p cp(E/Q)

#E(Q)2tor
. (2)

In [36], Nekovář studies the 3-part of the Birch and Swinnerton-Dyer conjecture

for the curves ED : y2 = 4x3 − 27D3 for all square-free D with |D| ≡ 1 modulo 3

excluding 0 > D ≡ 5 modulo 8 and 1 < D ≡ 1 modulo 8. In particular, he proved

that for E and D as above:

L(ED, 1)

ΩED

∏

p, prime cp(ED/Q)
6≡ 0 (mod 3) if and only if S(ED/Q)3 = 0, (3)

where S(ED/Q)3 denotes the subgroup of points of order 3 of the Selmer group

of ED. We note that in the case that ED has rank 0 and no 3-torsion, one has

S(ED/Q)3 = X(ED/Q)3.

Nekovář explicitly calculated the Selmer ranks of these curves in terms of the

3-rank of certain class groups of imaginary quadratic fields. He then used Wald-

spurger’s Theorem to calculate the central critical values of the L-functions of these

curves in terms of the Fourier coefficients of certain weight 3/2 forms. Next, he ob-

tained congruences modulo 3 between these Fourier coefficients and class numbers of

the imaginary quadratic fields mentioned above. These congruences unfortunately

fail to hold for 0 > D ≡ 5 modulo 8 and 1 < D ≡ 1 modulo 8. In [41], Ono is able to

prove the correct congruences for these missing D’s using a theorem of Sturm. Ono

thus removes the condition that D 6≡ 1 modulo 8 when D > 1 and the condition

that D 6≡ 5 modulo 8 when D is negative.

In chapter 7, we partially verify the 3-part of the Birch and Swinnerton-Dyer

conjecture for four different families of curves. We use a general theorem of Frey

which relates the 3-part of Selmer groups of elliptic curves to the 3-part of certain

class groups of imaginary quadratic fields. Using Frey’s Theorem along with our

work in chapter 6, we are able to prove:
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Proposition 1.10. Suppose that f ∈ S3/2(N) and G ∈ S2(M) are as in Propo-

sition 1.8. Let E/Q be the elliptic curve with L(E, s) = L(G, s). Suppose that E

has a rational point P of order 3. Assume that either E is given by y2 = x3 + 1 or

that P is not in the kernel of the reduction modulo 3 map. Further, suppose that

for all odd primes q | NE with q ≡ 2 modulo 3, we have that 3 | ord3(∆E). Define

W = lcm






∏

p|M
p6=2,3

p,
∏

p|N
p6=2,3

p




 . (1.11)

Let R be the set of all a ∈ (Z/24WZ)∗ satisfying the following conditions:

1. There exists a square-free natural number n ≡ a modulo 24W such that

3 - an(f) and such that ord3

(
L(E−n)
ΩE−n

)

= 0.

2. For all square-free natural numbers d ≡ a modulo 24W , 3 -
∏

p cp(E−d/Q)

3. There exists an integer m depending only on a such that for all square-free

natural numbers d ≡ a modulo 24W , ΩE−d

√
d/ΩE−1 = m.

4. If 2 | NE then a ≡ 1 modulo 4.

5. If ` 6= 2, 3 is prime and ` | NE, then

(−a
`

)

=







−1, if ord`(jE) ≥ 0

−1, if ord`(jE) < 0 and γ`(E) = 1

1, otherwise.

(1.12)

6. If ord3(jE) < 0 then a ≡ 1 modulo 3.

Put

δ =
#R

32W
∏

p|W (1 − 1
p2 )

(1.13)

Then there exists a subset S of the square-free natural numbers having lower density

at least δ such that for all d ∈ S we have

ord3

(
L(Ed, 1)

ΩEd

)

= 0 ⇐⇒ ord3

(
#X(Ed/Q)

∏

p cp(Ed/Q)

#Ed(Q)2tor

)

= 0. (1.14)

We then use Proposition 1.10 to prove for the four elliptic curves E in the table

below of conductor NE that there exists a subset SE of the square-free natural

numbers having lower density at least δE such that for all d ∈ S (1.14) holds.
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E NE δE

y2 = x3 + 1 36 1/8
y2 = x3 + x2 + 72x− 368 14 7/128
y2 = x3 + 4x2 − 144x− 944 19 19/640
y2 = x3 + x2 − 72x− 496 26 13/224

The remainder of the dissertation is organized as follows. Chapters 2,3 and 4

give a brief explanation of the background material that we will need: In chapter

2, we will review the basic theory of elliptic curves. In chapter 3, we will review the

basic theory of modular forms and explain the theory of Shimura and Waldspurger.

In chapter 4, we will explain our construction of modular forms of weight 3/2 from

ternary quadratic forms. In chapter 5, we will obtain nonvanishing results for the

L-functions of the prime quadratic twists of a particular elliptic curve. In particular

we will prove Theorem 1.2. In chapter 6, we will obtain nonvanishing results for

the L-functions of a positive density of the quadratic twists of ten different curves.

In chapter 7, we will partially verify the 3-part of the Birch and Swinnerton-Dyer

conjecture for four different families of elliptic curves.
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Chapter 2

Elliptic Curves

In this chapter, we will review the basic terminology and facts about elliptic

curves which we will need in the remainder of this thesis. However, we will not

attempt to give a complete treatment of the theory of elliptic curves. For a more

detailed account of this theory, the reader is referred to [27, 47].

2.1 Elliptic Curves.

An elliptic curve over a number field k is the set of all solutions in C2 of a non-

singular cubic polynomial in k[x, y] (ie. a cubic polynomial f(x, y) in two variables

with coefficients in k such that for every pair (a, b) ∈ C2 satisfying f(a, b) = 0, we

have either ∂f
∂x |(a,b) 6= 0 or ∂f

∂y |(a,b) 6= 0) plus one point at infinity. We denote the

set of points on E with coordinates in k2 by E(k). Two elliptic curves E and E ′

over k are said to be biratinally equivalent over k if we can obtain the equation of

E′ from the equation of E via a k-linear change of variables. Thus we may think

of an elliptic curve as being expressed by many different equations.

2.2 The Group Law.

Given an elliptic curve E defined over k, we can define a group law on E(k) as

follows. We take the point at infinity to be the identity element denoted O. For

points P and Q of E(k), let L denote the line passing through P and Q and denote

by P ∗Q the third point of intersection of L with E. Then define P +Q to be the

reflection of P ∗Q through the x-axis. One can prove that the operation + makes

E(k) into an abelian group. Also, it can be shown that the x− and y−coordinates
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of (P + Q) can be expressed as rational functions defined over k in the x− and

y− coordinates of P and Q. Thus, if two elliptic curves are birationally equivalent,

then it follows that their group structures are isomorphic.

By the Mordell-Weil theorem we know that E(k) is finitely generated. Thus,

E(k) ∼= E(k)tor ⊕ Zr, where E(k)tor denotes the subgroup of E(k) consisting of

all elements in E(k) which have finite order. The number r is referred to as the

rank of E. In what follows we will be interested in elliptic curves defined over Q.

The torsion subgroups of these curves are very well understood. Therefore, we will

restrict our attention to the ranks of these curves.

2.3 Complex Multiplication of Elliptic Curves.

Given an elliptic curve E defined over Q, an endomorphism of E is a birational

map φ : E → E which is a group homomorphism on E(Q). We will denote the ring

of endomorphisms of a curve E by End(E). For any curve the multiplication by n

maps [n] : E → E given by

[n](P ) = P + P + · · · + P
︸ ︷︷ ︸

n times

(2.1)

are endomorphisms. In fact, for almost all elliptic curves over Q the multiplication

by n maps are the only endomorphisms. If End(E) contains any nontrivial maps

which are not given by multiplication by n for some n, then we say that E has

complex multiplication.

For example if E : y2 = x3 − x, then the map φ : E → E given by φ((x, y)) =

(−x, iy) is an endomorphism of E and it is not the same as multiplication by n for

any integer n. In this case, E is said to have complex multiplication by Z[i].

2.4 Weierstrass Equations.

One can show that any elliptic curve over Q is birationally equivalent to one

given by an equation in so called Weierstrauss form:
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y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (2.2)

where the ai’s are in Z.

Given a Weierstrass equation as in (2.2), we define the following quantities:

b2 = a2
1 + 4a2,

b4 = 2a4 + a1a3,

b6 = a2
3 + 4a6,

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4,

c4 = b22 − 24b4,

c6 = −b32 + 36b2b4 − 216b6,

∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6 and

jE =
c34
∆
.

(2.3)

If E is an elliptic curve given by a Weierstrass equation as above and p is a prime,

then we say that this equation for E is minimal at p if ordp(∆) is minimal over all

possible Weierstrass equations for E. It is a theorem of Tate [49] that for any elliptic

curve E defined over Q there exists a minimal Weierstrass equation for E which is

simultaneously minimal at all primes. We define the minimal discriminant ∆E of

E to be the discriminant of the minimal Weierstrass equation for E.

2.5 Reduction of Elliptic Curves.

Given an elliptic curve E over Q with minimal Weierstrass equation as in (2.2),

we can consider the reduction Ẽ of E modulo a prime p. That is we can consider

the the set of all solutions in F̄2
p to the equation

y2 + ã1xy + ã3y = x3 + ã2x
2 + ã4x+ ã6, (2.4)

where ãi denotes the reduction of ai modulo p. We denote this set of solutions along

with the point at infinity by Ẽ, and we denote the set of all solutions to (2.4) with

coordinates in F2
p as E(Fp).
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Note that equation (2.4) gives a nonsingular curve if and only if p - ∆E and, in

this case, we say that E has good reduction at p. If p | ∆E , then we say that E

has bad reduction at p. There are two types of bad reduction. If Ẽ has only double

point, then we say that E has multiplicative reduction, but if Ẽ has a cusp then we

say that E has additive reduction.

In any case, the set of nonsingular points Ẽns of Ẽ can be made into a group

with an addition law analogous to the one discussed in section 2.2. In the case of

bad reduction, one can prove that

Ens(Fp) ∼=
{

F∗
p if E has multiplicative reduction

F+
p if E has additive reduction.

(2.5)

We define the conductor NE of an elliptic curve E to be the integer,

NE =
∏

p|∆E

pfp , (2.6)

where if p ≥ 5, fp is given by,

fp =

{
1 if E has multiplicative reduction at p

2 if E has additive reduction at p.
(2.7)

In any case (including p = 2 and 3), fp can be calculated using the following formula

due to Ogg:

fp = ordp(∆E) + 1 −Mp, (2.8)

where Mp denotes the number of irreducible components on the special fiber of the

Néron minimal model of E at p. The quantity Mp can be easily computed using

Tate’s Algorithm [49]

2.6 L-series.

If we are given an elliptic curve E defined over Q with minimal discriminant ∆E ,

then putting ap = p+ 1 − #E(Fp), we can define the L-series of E by

L(E, s) =
∏

p|∆E

1

1 − app−s
∏

p-∆E

1

1 − app−s + p1−2s
(s ∈ C) (2.9)

Using Hasse’s theorem which says that |ap| < 2
√
p, one can show that the product

in (2.9) converges and is holomorphic for Re(s) > 3/2. Also, we have the following

conjecture:
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Conjecture 2.6.1. Let E be an elliptic curve defined over Q and let L(E, s)

be its associated L-series. Then

1. L(E, s) has analytic continuation to the entire complex plane.

2. L(E, s) satisfies a functional equation relating the functions L(E, s) and

L(E, 2 − s).

This conjecture is easily shown to be true for all modular elliptic curves (see

chapter 3 for the definition of modular) and, we will always assume that we are

working with modular curves. In fact, by the recent work of Wiles and Taylor [50,

52] we now know that large families of elliptic curves are indeed modular.

Our motivation for studying the L-series L(E, s) of the curve E is the following

conjecture of Birch and Swinnerton-Dyer [2, 3]:

Conjecture 2.6.2. Suppose that E is an elliptic curve defined over Q with

associated L-series L(E, s). Then

1. The order of vanishing of L(E,S) at s = 1 is equal to the rank of E.

2. Let r denote the rank of E. Then

lims→1

[
L(E,s)
(s−1)r

]

ΩE
=

#X(E/Q)2rR(E/Q)
∏

p cp

#E(Q)2tor
, (2.10)

where ΩE denotes the real period of E, X(E/Q) denotes the Tate-Shafarevic

group of E, R(E/Q) denotes the elliptic regulator of E and the cp’s are the

local Tamagawa factors for E (see [47] for the definitions of these).

In fact, Coates and Wiles [8] proved that if E is an elliptic curve having complex

multiplication and if L(E, 1) 6= 0 then E has rank 0. Later Kolyvagin [28] showed

that if E is a modular curve and if L(E, 1) 6= 0 then E can be proved to have

rank 0 provided that E satisfies one additional somewhat technical condition. (The

condition is that there must exist a suitable imaginary quadratic extension K/Q

with a Heegner point yK of E(K) having infinite order.) This condition can be

simplified to the following hypothesis (see for instance [6]).
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Hypothesis 2.6.3. For any modular elliptic curve E, there exists a square-free

integer D such that L(ED, s) has a first order zero at s = 1 and such that χ
D

(p) = 1

for all primes p | NE, where NE denotes the conductor of E.

Two completely different proofs that Hypothesis 2.6.3 holds for all modular el-

liptic curves were independently found by Bump, Friedberg and Hoffstein [5, 7] and

by Murty and Murty [34] (see also [22] for a shorter proof). Thus we have the

following extension of Coates and Wiles’ theorem.

Theorem 2.6.4. If E is a modular elliptic curve over Q such that L(E, 1) 6= 0

then the E has rank zero and X(E/Q) is finite.

2.7 Twisting.

For any elliptic curve E : y2 = x3 + Ax + B defined over Q and any integer D,

we define the Dth quadratic twist ED of E to be the curve given by

ED : Dy2 = x3 +Ax+B

which can be rewritten ED : y2 = x3 + AD2x+BD3. We note that EDm2 is bira-

tionally equivalent to ED over Q for all m ∈ Z, so we may restrict our attention to

quadratic twists by a square-free integer. As D varies over the square-free integers,

we get an infinite family of quadratic twists of E. It was conjectured by Goldfeld

[19] that the rank of ED should be 0 for density one half of the square-free integers

D and 1 for density one half of the square-free integers with curves of higher rank

occurring too sparsely to account for a positive density of the square-free integers.

In [29], there is substantial computational evidence supporting this conjecture.

Constructing the L-series associated to ED as above, we see that for D coprime

to 6NE it is just the Dth quadratic twist of the L-series of E, that is

L(ED, s) =
∏

p|∆E

1

1 − apχD
(p)p−s

∏

p-∆E

1

1 − apχD
(p)p−s + p1−2s

, (2.11)

where χ
D

(t) is the quadratic character associated to the quadratic extension Q(
√
D)

of Q, that is χ
D

(t) =
(

∆
t

)
, where ∆ denotes the discriminant of Q(

√
D)/Q.
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Chapter 3

Modular Forms

In this section, we recall some basic definitions and theorems for modular forms

of integral and half integral weight that we will need. For a more detailed account

of the theory of modular forms, see [27] or [45].

3.1 Modular Forms of Integral Weight.

Let Γ0(N) denote the set of matrices

(
a b
c d

)

∈ SL2(Z) with c ≡ 0 (mod N).

Definition 3.1.1. Let k be an integer, N a natural number and let χ be a

Dirichlet character modulo N . Denote by H the upper half complex plane {τ ∈ C :

Re(τ) > 0}. We define a modular form of weight k, level N and character χ to be

a holomorphic function f : H → C satisfying the following conditions:

1. f(aτ+bcτ+d ) = χ(d)(cτ + d)kf(τ) for all τ ∈ H and all

(
a b
c d

)

∈ Γ0(N)

2. f is holomorphic at all of the cusps of H/Γ0(N).

The space of such functions is denoted Mk(N,χ) If, in addition, f vanishes at all

of the cusps of H/Γ0(N) then f is called a cusp form. The subspace of cusp forms

is denoted Sk(N,χ).

Note that if the character χ in the above definition is the trivial character modulo

N , then we will denote the space of modular forms and the subspace of cusp forms

of level N , weight k and character χ simply by Mk(N) and Sk(N) respectively. If f

is a modular form, then by condition 1 above, f(τ + 1) = f(τ). So, f has a Fourier

expansion of the form: f(τ) =
∑

n≥0 an(f)qn, where q = e2πiτ . If f is a cusp form

then a0(f) = 0.
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3.2 Hecke Operators and the Petersson Inner Product

Next, we define the Hecke operators Tp on a space of modular forms as follows.

Definition 3.2.1. Let f ∈Mk(N,χ) be a modular form with Fourier expansion

f(τ) =
∑

n≥0 an(f)qn. Then for each prime p we put (Tpf)(τ) =
∑

n≥0 bnq
n, where

bn = anp(f) + χ(p)pk−1an/p(f) (3.1)

with an/p(f) = 0 if p - n.

It can be proven that, if f ∈Mk(N,χ), then Tpf ∈Mk(N,χ), and if f is a cusp

form then so is Tpf .

If f ∈ Sk(N,χ), and if there is a complex number λp(f) such that Tpf = λp(f)f ,

then we say that f is an eigenform for Tp with eigenvalue λp(f). In fact, one can

show that there exists a basis for Sk(N,χ) of forms which are eigenforms for all of

the Tp with p - N . The proof follows from the fact that the Hecke operators are

self-adjoint with respect to the Petersson inner product which we define below. We

will refer to any modular form which is an eigenform for all but finitely many of

the Hecke operators as a Hecke-eigenform.

There is a hermitian inner product, the Petersson inner product, defined on the

spaces of cusp forms as follows.

Definition 3.2.2. Let f, g ∈ Sk(N,χ) be two cusp forms and let R denote a

fundamental domain for the action of Γ0(N) on H. Then, we define the Petersson

inner product of f and g by

< f, g >=

∫

R

f(τ) ¯g(τ)σk
dρdσ

σ2
,

where τ = ρ+ iσ.

One can prove that this definition is independent of the choice of fundamental

domain R.
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3.3 Oldforms and Newforms

Given a particular cusp form, it is straight forward to construct other cusp forms

of higher levels: Indeed, if N = AB and if f(τ) ∈ Sk(A,χ), then we also have

f(τ) ∈ Sk(N,χ) and f(Bτ) ∈ Sk(N,χ). Cusp forms in Sk(N,χ) formed in this

way are called old forms, and the space spanned by these old forms is denoted

Sold
k (N,χ). The orthogonal complement with respect to the Petersson inner product

of Sold
k (N,χ) is denoted Snew

k (N,χ). It is important to note that the forms in

Snew
k (N,χ) are referred as new forms (two words), while the term newform (one

word) is reserved for more special members of this space (see the next paragraph).

If we restrict our attention to Snew
k (N,χ), then there is a basis of forms which are

eigenforms for all of the Hecke operators and whose first nonzero coefficient is 1. We

will refer to members of such a basis for Snew
k (N,χ) as the newforms of Sk(N,χ).

By the work of Atkin and Lehner [1] and Li [31], we know that no two newforms

have the same set of eigenvalues, and that if f ∈ Sk(N,χ) is a Hecke-eigenform then

there is a unique newform g ∈ Snew
k (M,χ) for some M | N such that for all primes

p - N , λp(f) = λp(g), and f can be written

f(τ) =
∑

d| N
M

cdg(dτ) (3.2)

where the cd ∈ C. This property of integral weight cusp forms is referred to as

“Multiplicity One”. (See [1],[26], [27], and [31] for a more detailed discussion of old

and newforms.)

3.4 L-series for Modular Forms.

For any cusp form f(τ) =
∑

n≥1 an(f)qn ∈ Sk(N,χ), we have an L-series given

by the Mellin transform of f :

L(f, s) =
∑

n≥1

an(f)

ns.
(3.3)

One can prove that this sum converges for Re(s) > k and that L(f, s) has analytic

continuation to the whole complex plane. Also, if χ is a real character, then one
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can prove that any cusp form f ∈ Sk(N,χ) can be written as a sum of two forms

f1, f2 ∈ Sk(N,χ) such that each L(fi, s) (i = 1, 2) satisfies the following functional

equation:

(√
N

2π

)s

Γ(s)L(fi, s) = (−1)i

(√
N

2π

)k−s

Γ(k − s)L(fi, k − s). (3.4)

It is of interest to determine the behavior of these L-functions in the critical strip,

0 ≤ Re(s) ≤ k. In particular, we will be interested in determining the so called

central critical value L(f, k/2). It is this value which is conjectured to contain

certain arithmetic information. For example, if we are given any weight 2 newform

of trivial character, then by the theory of Eichler and Shimura, we can find an

elliptic curve E such that L(E, s) = L(f, s), and then the Birch and Swinnerton-

Dyer conjecture implies that L(f, 1) determines the rank of E.

As for elliptic curves, there is a notion of twisting of modular forms defined as

follows. If f(τ) =
∑
an(f)qn ∈ Sk(N,χ) and ψ is a Dirichlet character modulo M ,

then fψ(τ) =
∑
an(f)ψ(n)qn ∈ Sk(NM

2, χψ2). This new cusp form fψ is called

the twist of f by ψ.

The Mellin transform of fψ is the twist of L(f, s) by ψ:

L(fψ, s) = L(f ⊗ ψ, s) =
∑

n≥1

an(f)ψ(n)

ns
. (3.5)

We note that if f(τ) =
∑

n≥1 an(f)qn ∈ Sk(N,χ) is an eigenform for all of the

Hecke operators Tp with corresponding eigenvalue λp(f), then its L-series has an

Euler product expansion:

L(f, s) = a1(f)
∏

p prime

1

1 − λp(f)p−s + χ(p)pk−1−2s
. (3.6)

Also, if f is as above, and if ψ is a Dirichlet character modulo M , then it follows

from the definition of the Hecke operators that fψ ∈ Sk(NM
2, χψ2) is also an eigen-

form for all of the Hecke operators Tp acting on Sk(NM
2, χψ2) with corresponding



21

eigenvalues λp(fψ) = ψ(p)λp(f). Thus,

L(fψ, s) = a1(f)
∏

p prime

1

1 − λp(f)ψ(p)p−s + χ(p)ψ2(p)pk−1−2s
. (3.7)

As for elliptic curves, we will be interested in quadratic twists of cusp forms and

their L-series, that is twists by quadratic characters. So, as in chapter 2 we will

denote by χ
n

the character associated to the quadratic extension Q(
√
n)/Q.

3.5 Modular Elliptic Curves.

As mentioned in the previous section, if we are given f ∈ Snew
2 (N,χ), then we can

find an elliptic curve E defined over Q of conductor N such that L(E, s) = L(f, s).

Any such elliptic curve coming from modular forms is called a modular elliptic

curve. In fact it is conjectured that all elliptic curves over Q are modular, and the

recent papers of Wiles [52], Taylor and Wiles [50] and Diamond [13] show that large

families of elliptic curves are indeed modular.

3.6 Modular Forms of Half-Integral Weight.

We will also need to discuss modular forms of half-integral weight, which are

defined as follows:

Definition 3.6.1. Let k be an odd integer, N an integer which is divisible by

4 and let χ be a Dirichlet character modulo N . Then a modular form of weight

k/2, level N , and character χ is a holomorphic function f : H → C satisfying the

following conditions:

1. f(aτ+bcτ+d ) =

{
χ(d)χ

c
(d)ε−kd (

√
cτ + d)kf(τ), if c 6= 0

χ(d)f(τ), otherwise

for all τ ∈ H and all

(
a b
c d

)

∈ Γ0(N)

where εd =

{
1, if d ≡ 1 (mod 4)

i, if d ≡ 3 (mod 4).

2. f is holomorphic at all of the cusps of H/Γ0(N).
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As before, the space of such functions will be denoted Mk/2(N,χ) and if f vanishes

at all of the cusps of H/Γ0(N) then f will be called a cusp form. The subspace of

cusp forms is denoted Sk/2(N,χ).

As in the case of integral weight forms, there are Hecke operators on the spaces

of half-integral weight modular forms:

Definition 3.6.2. Suppose f(τ) =
∑

n≥1 an(f)qn ∈ Sk/2(N,χ). Let λ = k−1
2 .

Then for p a prime, we put (Tpf)(τ) =
∑

n≥1 bnq
n where

bn = ap2n(f) + χ(p)

(
(−1)λn

p

)

pλ−1an(f) + χ(p2)pk−2an/p2(f) (3.8)

with an/p2(f) = 0 if p2 - n.

As before, if f ∈ Sk/2(N,χ) then so is Tpf , and one can prove that there is a basis

for Sk/2(N,χ) of forms which are eigenforms for all of the Tp with p - N . However,

if we define oldforms and newforms as in the integral weight case, the spaces of half-

integral weight cusp forms do not, in general, have the ‘Multiplicity One” property.

The notion of twisting by a Dirichlet character ψ modulo M is very similar to that

of the integral weight case the only difference being that if f ∈ Sk/2(N,χ) is an

eigenform for Tp with eigenvalue λp(f) then fψ ∈ Sk/2(NM
2, χψ2) is an eigenform

for Tp with eigenvalue λp(fψ) = ψ2(p)λp(f).

3.7 The Theory of Shimura and Waldspurger.

The main link between modular forms of integral weight and those of half-integral

weight is the correspondence given by the following theorem of Shimura [45].

Theorem 3.7.1. [Shimura] Let k ≥ 3 be an odd integer, N ∈ 4N, χ a Dirichlet

character modulo N , and let f(τ) =
∑

n≥1 an(f)qn ∈ Sk/2(N,χ). Further, let t be

a square-free positive integer, and ψt the character modulo tN defined by

ψt(m) = χ(m)

(−1

m

) k−1
2
(
t

m

)

. (3.9)
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Define a function gt(τ) =
∑

n≥1 an(g)q
n by the formal identity:

∑

n≥1

an(g)

ns
=




∑

m≥1

ψt(m)m
k−3
2

ms








∑

m≥1

atm2(f)

ms



 . (3.10)

Suppose that f is an eigenform for Tp for all prime factors p of N not dividing the

conductor of ψt. Then gt ∈ Mk−1(M,χ2) for some integer M . If k ≥ 5, then gt is

a cusp form.

It was later proven by Niwa [37] that M could be taken to be N/2. Any of the

forms gt in Theorem 3.7.1 are often referred to as a Shimura lift of f , or f is said

to lift through the Shimura correspondence to gt. One can show that the Shimura

lift commutes with the Hecke operators. So, if the form f in Theorem 3.7.1 is an

eigenform for some Tp on Sk/2(N,χ) with eigenvalue λp(f), then the forms gt are

also eigenforms for the corresponding Tp on Mk−1(M,χ2) with the same eigenvalue,

that is λp(g) = λp(f).

Next, we need to understand a little of the theory developed by Waldspurger in

[51] which will provide a tool for obtaining information about the central critical

values of the L-series L(fχn
, s) associated to the quadratic twists of a particular

integral weight newform f . Before stating his results, we need to introduce one

more bit of notation. If f ∈ S2k(N,χ) is a newform, and if ψ is a Dirichlet character

modulo M , then fψ ∈ S2k(NM
2, χψ2) is an eigenform for all of the Hecke operators.

Hence, by the theory of newforms developed in [1] and [31], there exists a unique

newform of weight 2k and character χψ2 which we will denote f · ψ with the same

eigenvalues as fψ for all but finitely many of the Hecke operators. In fact, it is the

central critical values of the L(f · ψ, s) which Waldspurger’s theorem allows us to

relate to the Fourier coefficients of a half-integral weight form.

Since fψ and f · ψ have the same eigenvalues for all but a finite number of the

Hecke operators, it follows that L(f ·ψ, s) and L(fψ, s) differ only by a finite number

of Euler factors. In fact, f · ψ and fψ can have different eigenvalues only for those
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Tp with p | NM2. Hence, letting S denote the finite set of primes at which the

Euler factors of L(f ·χ
n
, s) and L(fχn

, s) differ, it follows from (3.6) and (3.7) that

for Re(s) ≥ k + 1, A(s)L(f · ψ, s) = B(s)L(fψ, s) where

A(s) =
∏

p∈S

1

1 − λp(f)ψ(p)p−s

B(s) =
∏

p∈S

1

1 − λp(f · ψ)p−s
.

(3.11)

Since f and f ·ψ are newforms, it follows from Theorem 2, Corollary 1 and Corollary

2 of [38], that for p ∈ S, |λp(f)| and |λp(f ·ψ)| are either 0, pk−1 or p
2k−1

2 depending

on the conductor of χ. In any of these cases, we can see that A(s) and B(s) are

both meromorphic on C and that neither of them has a pole at s = k. Thus, we

may pick an open region U in C such that U ∩ {s : Re(s) > k + 1} is nonempty,

k ∈ U and the function A(s)L(f · ψ, s) − B(s)L(fψ, s) is holomorphic on U . Since

A(s)L(f · ψ, s)−B(s)L(fψ, s) is identically 0 on U ∩ {s : Re(s) > k+ 1}, it follows

that A(s)L(f · ψ, s) − B(s)L(fψ, s) = 0 for all s ∈ U . In particular, we have

A(k)L(f · ψ, k) = B(k)L(fψ, k). Since A(k), B(k) 6= 0, we have that L(fψ, k) = 0 if

and only if L(f · ψ, k) = 0. We note also that if E is a modular elliptic curve and

if f is the weight 2 newform associated to E, then f · χ
n

is the newform associated

to the nth quadratic twist En of E.

Now, we are ready to state a special case of the main theorem in [51]:

Theorem 3.7.2. Let k ≥ 3 be an odd integer, N an integer divisible by 4, χ a

Dirichlet character modulo N , and M some divisor of N so that χ2 is a Dirichlet

character modulo M . Suppose F ∈ Snew
k−1(M,χ2) is a newform with Hecke eigenval-

ues λp(F ). Suppose also that there exists a cusp form f ∈ Sk/2(N,χ) having the

property that for all but finitely many primes p, Tpf = λp(F )f . Finally suppose

that the Dirichlet character ν defined by ν(n) = χ(n)(−1
n )

k−1
2 has conductor divisi-

ble by 4. Let Nsf denote the square-free natural numbers. Then there is a function
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A : Nsf → C, depending only on F and satisfying the following condition:

(A(t))2 = L(F · ν−1χ
t
,
k − 1

2
) · ε(ν−1χt, 1/2), (3.12)

where ε(ψ, s) is chosen so that if L(ψ, s) is the Dirichlet L-function for the Dirichlet

character ψ and if

Λ(ψ, s) =

{

π−s/2Γ( s2 )L(ψ, s) if ψ(−1) = 1

π−(s+1)/2Γ( s+1
2 )L(ψ, s) if ψ(−1) = −1

then

Λ(ψ−1, 1 − s) = ε(ψ, s)Λ(ψ, s).

Moreover f can be written as a finite C-linear combination of Hecke eigenforms

fi such that at(fi) = c(tsf , F )A(t), where tsf denotes the square-free part of t and

c(tsf , F ) ∈ C.

In particular, we can deduce from Theorem 3.7.2 that if at(f) 6= 0 then L(F ·
ν−1χ

t
, k−1

2 ) 6= 0. Also, we will find it convenient to use the following theorem which

is stated as Corollary 2 to the main theorem in [51]:

Theorem 3.7.3. Let k, N , χ, M , F and f be as in Theorem 3.7.2. If n1 and

n2 are positive square-free integers such that n1

n2
∈ (Q×

p )2 for all p | N , then letting

` = k−1
2 we have:

an1(f)2L(F · χ`
−1
χ−1χ

n2
, `)χ(n2/n1)n

`− 1
2

2 = an2(f)2L(F · χ`
−1
χ−1χ

n1
, `)n

`− 1
2

1 .

So, letting

W =







∏

p|N
p if 2 - N

8
∏

p|N
p>2

p if 2 | N, (3.13)

if we can find a set of representatives mi ∈ N for (Z/WZ)×/(Z/WZ)×
2

such that

ami
(f) 6= 0, then from Theorem 3.7.3 we have for any positive square-free integer

n coprime to W :

L(F · χ`
−1
χ−1χ

n
, `) = χ−1(n)

an(f)2

n`−
1
2

βmi
(3.14)
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where

βmi
= χ−1(m−1

i )
L(F · χ`

−1
χ−1χ

mi
, `)m

`− 1
2

i

ami
(f)2

, (3.15)

and mi ≡ n in (Z/WZ)×/(Z/WZ)×
2
. So, if βmi

6= 0, then in order to determine

how often the twists of L(F, s) have non-zero central critical value, it is enough to

understand how often the Fourier coefficients of f are non-zero.

3.8 Computation.

Finally, we note that since the spaces Sk(N,χ) and Sk/2(N,χ) are finite dimen-

sional, we can use computers to work with the forms in them. For instance to check

that two forms in the same space are equal it suffices to check that their first few

Fourier coefficients agree. In particular we have the following theorem (see [15] for

a proof).

Theorem 3.8.1. Suppose that f, g ∈Mk(N,χ) and suppose that an(f) = an(g)

for 0 ≤ n ≤ kN
12

∏

p|N

(

1 + 1
p

)

. Then f = g.

Corollary 3.8.2. Suppose that f, g ∈ Mk/2(N,χ) where k is odd and 4 | N .

Suppose also that an(f) = an(g) for 0 ≤ n ≤ (k+1)N
24

∏

p|N

(

1 + 1
p

)

. Then f = g.

Proof. Let θ(τ) =
∑

n∈Z q
n2

denote the classical theta-function. Then we know

that θ ∈ M1/2(4, χ2). Thus fθ, gθ ∈ M k+1
2

(N,χχ2). Now the result follows from

Theorem 3.8.1.

Also, checking that a given modular form is an eigenform with respect to a given

Tp only requires a finite computation. In particular, we have the following corollary

of Theorem 3.8.1.

Corollary 3.8.3. Suppose h ∈ Mk(N,χ) (resp. Mk/2(N,χ)) is a nonzero

cusp form and let t denote the smallest natural number such that at(h) 6= 0. Then

h is an eigenform for Tp if and only if ai(Tph) =
at(Tph)
at(h)

ai(h) for all 0 ≤ i ≤
kN
12

∏

p|N

(

1 + 1
p

)

(resp. 0 ≤ i ≤ (k+1)N
24

∏

p|N

(

1 + 1
p

)

.
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Proof. By definition h is an eigenform for Tp if and only if there is a λ ∈ C

such that Tph = λh. Since, at(h) 6= 0, the only possibility for λ is
at(Tph)
at(h)

. Now the

desired result follows by taking f = Tph and g =
at(Tp(h)
at(h)

h in Theorem 3.8.1 (resp.

Corollary 3.8.2).

We also have the following analog of Theorem 3.8.1, due to Sturm [48], which

enables us to check when the Fourier coefficients of two integral weight modular

forms having integer coefficients are congruent modulo a prime.

Theorem 3.8.4. Let f and g ∈ Mk(N,χ) be modular forms with integer co-

efficients and let p be any prime. Suppose that an(f) ≡ an(g) modulo p for

0 ≤ n ≤ k
12N

∏

p|N (1 + 1
p ). Then an(f) ≡ an(g) modulo p for all nonnegative

integers n.

Similarly, to check that f ∈ Sk(N,χ) is an eigenform for all of the Hecke operators

Tp with p - N , it suffices to check that f is an eigenform for the first few primes not

dividing N . More precisely, from the theory of newforms developed in [1] and [31]

we have the following theorem.

Theorem 3.8.5. Let N denote the set of all newforms of weight k, character χ

and level any divisor of N . Pick a set of primes P = {p1, p2, . . . , pj} not dividing

N such that for any form g ∈ N the sequence of eigenvalues, λp1(g), . . . , λpj
(g),

distinguish g among all the forms in N . Then f ∈ Sk(N,χ) is an eigenform for all

of the Hecke operators Tp with p - N if and only if f is an eigenform for all Tp with

p ∈ P .

Proof. By the main results in [1] and [31], we know that any f ∈ Sk(N,χ) can

be uniquely written as

f(τ) =
∑

g∈N

∑

d| N
Ng

cg,dgd(τ), (3.16)

where Ng denotes the level of the newform g ∈ N , and gd(τ) = g(dτ). By the

definition of the Hecke operators (Definition 3.2.1), it follows that for all primes
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p - N , λp(gd) = λp(g) and that the Hecke operators are linear. Hence, we have for

any prime p - N ,

(Tpf)(τ) =
∑

g∈N

∑

d| N
Ng

cg,d(Tpgd)(τ)

=
∑

g∈N

∑

d| N
Ng

cg,dλp(g)gd(τ).
(3.17)

Thus, from our assumption that Tpf = λp(f)f for all p ∈ P , it follows that for all

p ∈ P and for all gd in (3.17) with cg,d 6= 0 that λp(gd) = λp(f). By our choice of

P , it follows that there is at most one g ∈ N such that λp(g) = λp(f) for all p ∈ P .

Thus,

f(τ) =
∑

d| N
Ng

cdgd(τ). (3.18)

It follows form (3.18) that for all primes p - N , f is an eigenform for Tp with

eigenvalue λp(f) = λp(g).

The number j of primes needed in P depends on N , k and χ and can be deter-

mined by looking at tables of newforms. For instance, if we examine the tables of

Cremona [11], we find that there are three newforms of weight 2, trivial character

and level dividing 38. Each of these newforms has a distinct eigenvalue for T3. So,

in this case, we can take P = {3}. Further examining the tables of [11], we see

that there are twelve newforms of weight 2, trivial character and level dividing 978.

Letting f1, . . . , f12 denote these newforms, we list their eigenvalues for T5, T7 and

T11 in the following table:
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i λ5(fi) λ7(fi) λ11(fi)

1 −4 2 −6
2 −1 −1 0
3 −1 −3 −4
4 −3 −1 0
5 0 3 −3
6 2 2 4
7 −3 −3 −6
8 −4 5 1
9 −3 1 2
10 −1 −1 −2
11 −3 −3 −4
12 0 −1 3

We can see that in this case we can take P = {5, 7, 11}. For cusp forms of low

weight, we note that in practice the size of P is usually quite small.

As a corollary to Theorem 3.8.5, we can prove a similar statement for cusp

forms of half-integral weight. Before stating the corollary, however, we need to

discuss a few more details. Let ψ denote a Dirichlet character of conductor r with

ψ(−1) = −1. Then θψ,t(τ) =
∑∞
n=1 ψ(n)nqtn

2

is a weight 3/2 cusp form (see

[45]). In fact, θψ,t(τ) ∈ S3/2(4tr
2,
(−1

·
)
ψ). Let U3/2(N,χ) denote the orthogonal

complement of < θψ,t > in S3/2(N,χ). It can be shown [18] that any f ∈ U3/2(N,χ)

lifts through the Shimura lift to a cusp form. Also, U3/2(N,χ) is fixed by the Hecke

operators. Now we are ready to state the corollary.

Corollary 3.8.6. Suppose that k is odd, N ∈ 4N, and that χ is a Dirichlet

character modulo N . Suppose that f ∈ Sk/2(N,χ) (U3/2(N,χ) if k = 3). Let N
denote the set of all newforms of weight k− 1, character χ2 and level any divisor of

N/2. Pick a set of primes P as in Theorem 3.8.5. Then f is an eigenform for all

of the Hecke operators Tp with p - N if and only if for all p ∈ P , f is an eigenform

for Tp.

Proof. Choose a basis {fi}Mi=1 for Sk/2(N,χ) (or U3/2(N,χ) if k = 3) such that

each fi is an eigenform for all of the Hecke operators Tp with p - N . For each fi
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we choose a square-free natural number ti such that atim2(fi) 6= 0 for some natural

number m. Then we apply Theorem 3.7.1 with t = ti to each of the fi to get a

nontrivial Hecke-eigenform Fi ∈ Sk−1(N/2, χ
2). Now for each 1 ≤ i ≤ M let Gi

denote the unique newform of weight k − 1 and character χ with λp(Gi) = λp(Fi)

for all primes p - N . Then, we define a map S : Sk/2(N,χ) → Sk−1(N/2, χ
2) in the

following way. If f ∈ Sk/2(N,χ), then for 1 ≤ i ≤ M , we choose ci ∈ C so that

f =
∑M
i=1 cifi and, we define S(f) =

∑M
i=1 ciGi. Since the Shimura map commutes

with the Hecke operators, it follows that our map S also commutes with the Hecke

operators. Thus, f is a Hecke-eigenform if and only if S(f) is a Hecke-eigenform

and they have the same eigenvalues. Now the desired result follows from Theorem

3.8.5.
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Chapter 4

Ternary Quadratic Forms

In this chapter we recall some basic definitions and facts from the theory of

ternary quadratic forms. We will be particularly interested in building weight 3/2

cusp forms from ternary quadratic forms.

4.1 Constructing Cusp Forms from Ternary Quadratic Forms.

Let Q be the ternary quadratic form given by

Q(x, y, z) = ax2 + by2 + cz2 + ryz + sxz + txy (4.1)

with a, b, c, r, s, t ∈ Z. Then, define ΘQ formally as

ΘQ(τ) =
∑

x,y,z∈Z

qQ(x,y,z). (4.2)

It turns out for certain types of ternary forms Q, that ΘQ is a modular form of

weight 3/2. We will be able to say more about this theta function (eg. what its

level and character are) a bit later, but first we need to review some facts about

ternary forms.

Henceforth, we will be concerned only with positive definite ternary quadratic

forms with integer coefficients, that is forms Q(x, y, z) as above satisfying:

1. Q(x, y, z) ≥ 0 for all x, y, z ∈ R, and

2. Q(x, y, z) = 0 if and only if x = y = z = 0.

Also, we will restrict our attention to the forms Q(x, y, z) = ax2 + by2 + cz2 + ryz+

sxz + txy which are primitive, that is forms with gcd(a, b, c, r, s, t) = 1.

Given a ternary quadratic form Q(x, y, z) = ax2 + by2 + cz2 + ryz + sxz + txy,

we associate to it the matrix
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AQ =





2a t s
t 2b r
s r 2c



 . (4.3)

We define the discriminant dQ and divisor mQ of Q as

dQ =
det(AQ)

2
= 4abc+ rst− ar2 − bs2 − ct2, (4.4)

mQ = gcd(A1,1, A2,2, A3,3, 2A2,3, 2A1,3, 2A1,2), (4.5)

where Ai,j denotes the (i, j)-cofactor of AQ. Finally, we define the level of Q to be

NQ =
4dq
mQ

. (4.6)

We note that we could also define NQ to be the smallest positive integer N such

that NA−1
Q is an integral matrix having even diagonal entries. Then we have the

following special case of a theorem in [45] which is a generalization of an earlier idea

of Schoenberg [44]:

Theorem 4.1.1. Suppose that Q is a primitive positive definite ternary qua-

dratic form. Letting the notation be as above we have: ΘQ ∈M3/2(NQ, χdQ
).

Two ternary forms Q1 and Q2 with coefficients in a ring R are said to be equiv-

alent over R if there is a 3 × 3 matrix U with entries in R and determinant a unit

in R such that AQ2 = UAQ1U
T , where UT denotes the transpose of U . If Q1 and

Q2 are equivalent over Z then we simply say that they are equivalent. Since the

only units in Z are ±1, we see that if Q1 and Q2 are equivalent, then they have the

same discriminants. The forms of a certain discriminant can then be grouped into

equivalence classes. In fact, if we are given a particular discriminant d then there

are only a finite number of equivalence classes of forms having that discriminant.

This fact comes from our next theorem which is due to Eisenstein and is Proposition

3 in [30] (see also [14] and [24]).

Definition 4.1.2. Given a ternary quadratic form Q(x, y, z) = ax2+by2+cz2+

ryz + sxz + txy, we say that Q is reduced if all of the following conditions hold:

1. a ≤ b ≤ c,
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2. r, s and t are either all positive or all non-positive,

3. a ≥ |t|; a ≥ |s|; b ≥ |r|,
4. a+ b+ r + s+ t ≥ 0,

5. if a = t then s ≤ 2r; if a = s then t ≤ 2r; if b = r then t ≤ 2s,

6. if a = −t then s = 0; if a = −s then t = 0; if b = −r then t = 0,

7. if a+ b+ r + s+ t = 0 then 2a+ 2s+ t ≤ 0,

8. if a = b then |r| ≤ |s|; if b = c then |s| ≤ |t|.

Theorem 4.1.3. Every primitive positive definite ternary quadratic form is

equivalent to a unique reduced form. Also, if Q(x, y, z) = ax2 + by2 + cz2 + ryz +

sxz + txy is a reduced form of discriminant d then d/4 ≤ abc ≤ d.

If Q1 and Q2 are ternary forms with coefficients in Z which are equivalent over

the p-adic integers Zp for all primes p and are equivalent over the reals, then we say

that Q1 and Q2 are in the same genus. Equivalently, we may think of two ternary

quadratic forms Q1 and Q2 as being in the same genus if Q1 and Q2 represent the

same set of values as we let the variables x, y and z vary over all rational numbers. It

follows from our definitions that forms which are equivalent are in the same genus.

It can be shown that all forms in a given genus have the same discriminant and level

(see [30]). Hence we can speak of breaking a genus up into its equivalence classes,

and by Theorem 4.1.3 and condition 3 of Definition 4.1.2, there are only finitely

many of these equivalence classes in a genus of forms. Also, we have the following

theorem due to Siegel [46].

Theorem 4.1.4. Let Q1 and Q2 be two positive definite quadratic forms which

are in the same genus. Then (ΘQ1 − ΘQ2) is a cusp form.

Let ri(n) = #{x, y, z ∈ Z : Qi(x, y, z) = n} (i = 1, 2). Then,

ΘQ1(τ) − ΘQ2(τ) =
∑

n≥1

(r1(n) − r2(n))qn ∈ S3/2(NQ1 , χdQ1
). (4.7)
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We note that if Q1 and Q2 are equivalent, then r1(n) = r2(n) for all positive integers

n. We only get a nonzero cusp form if Q1 and Q2 are in the same genus but are

not equivalent.

We can check if two ternary forms are in the same genus as follows. Given a

primitive positive definite ternary quadratic form Q(x, y, z) = ax2 + by2 + cz2 +

ryz + sxz + txy, we put

a′ =
A1,1

mQ
,

b′ =
A2,2

mQ
,

c′ =
A3,3

mQ
,

r′ =
2A2,3

mQ
,

s′ =
2A1,3

mQ
,

t′ =
2A1,2

mQ
.

(4, 8)

Then we can define the reciprocal of Q to be the ternary form

Q′(x, y, z) = a′x2 + b′y2 + c′z2 + r′yz + s′xz + t′xy. (4.9)

By replacing Q with an equivalent form if necessary, we can ensure that a and c′

are coprime to each other and to mQmQ′ (see [30, p.410]). For odd primes p | mQ

we define (Qp ) = (ap ), where (ap ) denotes the Legendre symbol. Similarly, for odd

primes p | mQ′ , we define (Q
′

p ) = ( c
′

p ). If 16 | mQ then we put (Q4 ) = (−1)
a−1
2 and

if 32 | mQ then we put (Q8 ) = (−1)
a2−1

8 . We define (Q
′

4 ) and (Q
′

8 ) similarly. We call

this collection of symbols the genus symbols for Q. The following theorem, which is

Proposition 4 in [30], gives a way to tell when two forms are in the same genus:

Theorem 4.1.5. Let Q1 and Q2 be primitive positive definite ternary quadratic

forms with coefficients in Z. Then Q1 and Q2 are in the same genus if and only if

they have the same discriminant, the same level and the same collection of genus

symbols.

4.2 Representations by a Genus of Ternary Quadratic Forms.

We will also be interested in the number of representations of an integer n by a

ternary quadratic form, since differences of these representation numbers will be the



35

coefficients of our weight 3/2 cusp forms. We will be particularly interested in the

case when n is a square-free integer. In general, these representation numbers may

be very hard to understand, hence we will content ourselves with understanding the

number of representations of an integer n by a genus of forms. First we need some

more terminology.

If Q is a ternary form and X = (x0, y0, z0)
T is such that Q(X) = 1

2X
TAQX = n,

then we will refer to X as a representation of n by Q. If gcd(x0, y0, z0) = 1 then

we say that X is a primitive representation. We will restrict our attention to

only considering primitive representations, and we note that if n is a square-free

integer then all representations of n are primitive. We note also that if there is a

representation X of n by Q, then there exists a solution X to Q(X) = n in Zp for

all primes p. However, the converse is not true. What can be said is the following

(see [24, pp. 186–187] for a proof).

Theorem 4.2.1. If there is a solution to Q(X) ≡ n (mod pr+1) for every prime

p | 2dQ, where pr is the highest power of p dividing n or 4n depending on whether

p is odd or even, and if there is a real solution to Q(X) = n, then n is represented

by some form Q′ which is in the same genus as Q.

We call a 3 × 3 matrix U with integer coefficients an automorph of the ternary

form Q if U has determinant 1 and if UTAQU = AQ. If U is an automorph of Q

and X = (x0, y0, z0)
T is a representation of n by Q, then putting Y = UX, we find

that Q(Y ) = 1
2Y

TAQY = 1
2X

TUTAUX = 1
2X

TAX = Q(X) = n. We will think

of such representations X and Y as being essentially the same. Hence, we say that

two representations X1 and X2 are essentially distinct if there is no automorph U

of Q such that X1 = UX2.

Now, suppose that {Q1, Q2, . . . , Qk} is a complete set of representatives for the

equivalence classes of forms belonging to a particular genus of positive definite

ternary quadratic forms. We will denote by ri(n) the number of representations of
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n by Qi, and we will denote by Ri(n) the number of essentially distinct primitive

representations of n by Qi. When n is square-free we have

Ri(n) = ri(n)/Ai, (4.10)

where Ai denotes the number of automorphs of Qi. We will also denote by R(Q,n)

the number of essentially distinct primitive representations of n by the genus con-

taining Q. Thus for any 1 ≤ i ≤ k we have

R(Qi, n) =
k∑

j=1

Rj(n). (4.11)

There is a theorem due to Gauss which relates the values of R(Q,n) to the

values of class numbers of orders in imaginary quadratic fields. Before stating this

theorem, we need to define the Hilbert symbol.

Definition 4.2.2. For a and b nonzero p-adic integers, we define the Hilbert

symbol (a, b)p as follows

(a, b)p =

{
1, if ax2 + by2 = 1 has a solution in Qp

−1, otherwise.
(4.12)

The Hilbert symbol is fairly easy to compute using the following Theorem (see

[24] for a proof).

Theorem 4.2.3. Let a and b be nonzero p-adic integers. Then

1. (a, b)p = (b, a)p.

2. (aρ2, bσ2)p = (a, b)p.

3. (a,−a)p = 1.

4. If a = pra1 and b = psb1 where a1 and b1 are units, then

(a, b)p =







(
−1
p

)rs (
a1

p

)s (
b1
p

)r

, if p is odd
(

2
a1

)s (
2
b1

)r

(−1)(a1−1)(b1−1)/4, if p = 2.
(4.13)

We note that if p - 2ab, then it follows immediately from statement 4 of Theorem

4.2.3 that (a, b)p = 1. Now we can state Gauss’ Theorem (see [24] Theorem 86).
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Theorem 4.2.4. Let Q = ax2 + by2 + cz2 + 2ryz + 2sxz + 2txy be a primitive

positive definite ternary quadratic form with matrix A and let Ω denote the gcd of

the 2-rowed minors of A. Put ∆n =
4dQn
Ω2 . Then, for all n > 1 and prime to 2dQ

we have

R(Q,n) =

{
2−t(∆1)h(−4∆n)ρ, if the genus of Q represents n

0 otherwise.
(4.14)

where t(n) denotes the number of odd prime factors of n, h(d) denotes the class

number of the quadratic order with discriminant d and

ρ =







1
2 , if ∆n ≡ 1, 2 (mod 4) or 4 (mod 8)

2, if ∆n ≡ 7 (mod 8) and Ω is odd

1, if ∆n ≡ 7 (mod 8) and Ω is even

1, if ∆n = 3

1, if ∆n ≡ 3 (mod 8), ∆n 6= 3 and c2(Q)(−1)r = 1
1
3 , if ∆n ≡ 3 (mod 8), ∆n 6= 3 and c2(Q)(−1)r 6= 1
1
4 , if ∆n ≡ 0 (mod 8).

(4.15)

where r is the highest power of 2 in Ω and

c2(Q) = (−1,
−det(A)

8
)2(a, t

2 − ab)2(ab− t2,
−det(A)

8
)2

denotes the Hasse symbol.

Since we will find it more convenient to work with the class number of the ring of

integers in a imaginary quadratic field, we state the following theorem which relates

the class number of an order in an imaginary quadratic field to the class number of

the ring of integers of that field (see [10] for a proof).

Theorem 4.2.5. Let D ≡ 0, 1 modulo 4 be negative and let m be a positive

integer. Then,

h(m2D) =
h(D)m

[O∗ : O′∗]

∏

p|m

(

1 −
(
D

p

)
1

p

)

,

where O∗ and O′∗ are the unit groups of the orders of discriminant D and m2D,

respectively.
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We remark that since we are dealing with orders O in imaginary quadratic fields,

the group of units O∗ of O is simply {±1} except in the following two cases. If

O = Z[i], then O∗ = {±1,±i}, and if O = Z[ω] where ω denotes a cube root of

unity, then O∗ = {±1,±ω,±ω2}.
For a more detailed account of quadratic forms, see the books of Jones [24] and

Dickson [14], and for more information on how to build cusp forms from ternary

quadratic forms, see the paper of Lehman [30], especially the tables in the appendix.
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Chapter 5

Prime Twists

As in Chapter 2 we will denote by ED the Dth quadratic twist of an elliptic curve

E and by L(ED, s) the L-function associated to ED. We will obtain information on

how often L(Ep, 1) 6= 0 as p varies over all prime numbers.

5.1 Statement of Results

In this chapter,we will prove the following theorem.

Theorem 5.1.1. Let Ep : y2 = x3 − 32p3. Then L(Ep, 1) 6= 0 for at least 1
3 of

the primes p.

Although this theorem follows from a more general theorem of Ono and Skinner

mentioned in Chapter 1, it is not included in the specific examples worked out in

[40]. We would like to discuss a different and somewhat simpler proof of this result

that does not explicitly involve the theory of Galois representations.

Using the Coates-Wiles theorem (see Theorem 2.6.4), we can then deduce the

following.

Corollary 5.1.2. The curve y2 = x3 − 32p3 has only the trivial point (at

infinity) for at least 1
3 of the primes p.

5.2 Proof of Results

Denote by ED the elliptic curve ED : y2 = x3 + 4D3 where D is any square-free

integer, and let L(E1, s) =
∑

n≥1
an

ns .

Now, we note that ED has complex multiplication by Z[ω], where ω is a cube root

of unity. Thus, it follows form work of Shimura that ED is modular. Therefore, for
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square-free D coprime to 6 fD(z) =
∑∞
n=1 an

(
D

n

)
qn ∈ S2(ND) (q = e2πiz) where

ND is the conductor of ED. Also, fD is an eigenform for all of the Hecke operators.

Let,

g(z) =
1

2




∑

x,y,z∈Z

qx
2+27y2+6z2 −

∑

x,y,z∈Z

q4x
2+2xy+7y2+6z2



 =

∞∑

n=1

bnq
n. (5.1)

Then by Theorems 4.1.1 and 4.1.4, we have that g(z) ∈ S 3
2
(216,

(
2
·
)
). By Theorem

3.7.1, we see that the Shimura lift G of g is in S2(108). Using (5.1) and Theorem

3.7.1, We calculated the first 100 Fourier coefficients of G and noticed that an(G) =

an(f1) for 0 ≤ n ≤ 100. Thus it follows from Theorem 3.8.1 that G = f1, that is g

lifts through the Shimura correspondence to f1. Now we can apply Waldspurger’s

Theorem (Theorem 3.7.3) to gain information about the values L(ED, 1). In our

case Waldspurger’s theorem specializes to the following.

Theorem 5.2.1. For D ≡ 1 modulo 6,

L(E−2D, 1) =
b2D√
D
β, (5.2)

where β = L(E−2, 1) ≈ 1.363.

Thus, L(E−2D, 1) = 0 if and only if bD = 0.

Let θt(τ) =
∑

n∈Z q
tn2

. Then θt ∈ S1/2(4t, χt). Thus, f1 ∈ S2(108) ⊆ S2(216),

and gθ2 ∈ S2(216). We calculated the first 100 Fourier coefficients of f1 and gθ2 and

noted that an(f1) ≡ an(gθ2) modulo 2 for 0 ≤ n ≤ 100. Thus by Sturm’s theorem

(see Theorem 3.8.4), we have that an(f1) ≡ an(gθ2) modulo 2 for all nonnegative

integers n, that is gθ2 ≡ f1 modulo 2. Now, we notice that θ2 ≡ 1 modulo 2. Hence

g ≡ f1 modulo 2. So, for all nonnegative integers n we have

an(f1) ≡ an(g) (mod 2). (5.3)

Recall now that ap(f1) = p + 1 − #E1(Fp). Thus, it follows from (5.3) that for

any odd prime p, ap(g) ≡ #E1(Fp) modulo 2. Next we note that #E1(Fp) ≡ 1
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modulo 2 precisely when E1(Fp) has no point of order 2, that is when x3 + 4 has

no root modulo p. In particular, if x3 + 4 has no root modulo p, then ap(g) 6= 0.

So, Theorem 5.1.1 follows from Theorem 5.2.1 and the following lemma.

Lemma 5.4. The polynomial x3 + 4 has no root modulo p for 1
3 of the primes p.

Proof. Note that for p ≡ 2 modulo 3, cubing is an automorphism of Fp. So,

x3 + 4 always has a root modulo p when p ≡ 2 modulo 3. Thus we will restrict our

attention to p ≡ 1 modulo 3 from now on. Hence, we have
(−3
p

)
= 1. Now, we note

that
(
p
3

)
=
(−3
p

)
= 1, which implies that p splits in Z[ω], where ω denotes a cube

root of unity.

We have

Q(ω) p1p2
∣
∣
∣
∣

∣
∣
∣
∣

Q p ≡ 1 (mod 3)

Now, x3 + 4 is irreducible over Z[ω] and it has a root in Z[ω]/pi (i = 1, 2) if and

only if it has a root modulo p. (In fact Z[ω]/pi ∼= Fp.) Thus the splitting of x3 + 4

modulo p determines the splitting of pi in Z[ω, 4
1
3 ]. In particular, if x3 + 4 has no

root modulo p, then the pi’s remain inert in O
Q(ω,4

1
3
) , and p splits into exactly two

primes in O
Q(ω,4

1
3 )

Q(ω, 4
1
3 ) P1P2
∣
∣
∣
∣

∣
∣
∣
∣

Q p ≡ 1 (mod 3)

Now, Q(ω, 4
1
3 )/Q is a Galois extension with Galois group S3. So, the residual

degrees f(P1) and f(P2) are the same, and the ramification indices of P1 and P2

are the same namely 1. Thus f(P1) = f(P2) = 3. This tells us that the order of

the Frobenius σPi
is 3. So, the size of the conjugacy class of σPi

in S3 is 2. The

Lemma now follows from the Chebetarev Density Theorem.
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Since f is an eigenform for all of the Hecke operators, it follows that the an’s are

multiplicative, that is if gcd (m,n) = 1 then amn = aman. Thus we can deduce the

following corollary form Theorem 5.1.1:

Corollary 5.2.2. If D is a square free natural number such that if p | D then

x3 + 4 has no root modulo p, then L(ED, 1) 6= 0.
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Chapter 6

Positive Density Nonvanishing Results

In this Chapter we will be interested in studying certain cusp forms and the

behavior of their Mellin transforms. In particular, we will exhibit examples of

weight two newforms f for which we can prove that L(fχ
D
, 1) 6= 0 for a positive

density of square-free integers D. We will then be able to show the existence of

cusp forms of higher weight having this property. In the first section we will discuss

our first positive density result in detail. In the second section we will give some

other positive density results, but will omit some of the details as the techniques

used are the same as those discussed in section one.

6.1 A Positive Density Nonvanishing Result

Let F ∈ Snew
2 (112) be the newform associated to the modular elliptic curve

E : y2 = x3 − x2 + 72x+ 368 of conductor 112, that is L(F, s) = L(E, s). It turns

out that Fχ
−1

= η(τ)η(2τ)η(7τ)η(14τ), where

η(τ) = q
1
24

∏

n≥1

(1 − qn). (6.1)

Now putting
Q1(x, y, z) = x2 + 7y2 + 7z2, and

Q2(x, y, z) = 2x2 + 4y2 + 7z2 − 2xy,
(6.2)

we can define f(τ) formally as

f(τ) =
1

2

(
∑

x,y,z∈Z

qQ1(x,y,z) −
∑

x,y,z∈Z

qQ2(x,y,z)

)

=
∑

n≥1

an(f)qn.
(6.3)

Using Theorem 4.1.5, one can prove the following Lemma.
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Lemma 6.1.1. If Q1 and Q2 are defined as above then Q1 and Q2 are in the

same genus. Furthermore, up to equivalence of forms, Q1 and Q2 are the only

forms in the genus containing them.

Proof. Using Theorem 4.1.3 we can find all reduced forms of discriminant 196.

There are 13 of them in all. Computing the levels of each of these, we see that there

are only 3 forms having discriminant 196 and level 28:

Q1(x, y, z) = x2 + 7y2 + 7z2,

Q2(x, y, z) = 2x2 + 4y2 + 7z2 − 2xy, and

Q3(x, y, z) = 3x2 + 5y2 + 5z2 − 4yz − 2xz − 2xy.

(6.4)

Now, we would like to compute the genus symbols of each of these 3 forms. It will

be necessary, however, to first replace Q1, Q2 and Q3 by the equivalent forms

S1(x, y, z) = 11x2 + y2 + 7z2 + 4xy,

S2(x, y, z) = 11x2 + 2y2 + 7z2 + 14xz + 2xy, and

S3(x, y, z) = 5x2 + 5y2 + 3z2 + 2yz − 2xz + 4xy.

(6.5)

To see that these forms are equivalent, let

U1 =





2 0 1
1 0 0
0 1 0



 , U2 =





0 1 1
−1 0 0
0 0 1



 , U3 =





0 0 1
0 −1 0
1 0 0



 . (6.6)

Then we have UiAQi
UTi = ASi

for i = 1, 2, 3. Now, we compute the reciprocals of

S1, S2, and S3;

S′
1(x, y, z) = x2 + 11y2 + z2 − 4xy,

S′
2(x, y, z) = 2x2 + 4y2 + 3z2 + 2yz − 4xz − 2xy, and

S′
3(x, y, z) = 2x2 + 2y2 + 3z2 − 2yz − 2xz − 2xy.

(6.7)

Each of these has divisor 4. Thus, the only genus symbols that are defined for

Q1, Q2, and Q3 are:
(
Q1

7

)

=
(
S1

7

)
= 1,

(
Q2

7

)

=
(
S2

7

)
= 1, and

(
Q3

7

)

=
(
S3

7

)
= −1.

Therefore, it follows from Theorem 4.1.5 that Q1 and Q2 are in the same genus.
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Since Q1, Q2, and Q3 are the only forms up to equivalence having discriminant

196 and level 28, and since Q3 has a different genus symbol than Q1 and Q2, it

also follows from Theorem 4.1.5 that Q1 and Q2 are the only forms in the genus

containing them.

It now follows from Theorem 4.1.1, Lemma 6.1.1 and Theorem 4.1.4 that f ∈
S3/2(28). There are no cusp forms of the form θψ,t in S3/2(28) Thus, we can use

Theorem 3.8.6 to check by computer that f is a Hecke-eigenform. Also, we can

use Theorem 3.7.1 and Theorem 3.8.1 to check that f lifts through the Shimura

correspondence to Fχ
−1

.

Now applying (3.14) with W = 56 and choosing as representatives for the square

classes modulo 56: m1 = 1, m2 = 15, and m3 = 85 (none of the other square

classes modulo 56 have any integers m in them with am 6= 0), we have the following

theorem.

Theorem 6.1.2. For square-free natural numbers n ≡ 1, 9, 15, 23, 25, 29, 37,

39 or 53 modulo 56,

L(Fχ
n
, 1) =

an(f)2√
n

β, (6.8)

where β ≈ 1.325 (the value of β was approximated by using the Apecs package with

MAPLE).

Since Q1 and Q2 represent all of the equivalence classes of ternary quadratic

forms in the same genus as themselves, we can combine Theorem 4.2.1, Theorem

4.2.4, and Theorem 4.2.5 to get the following theorem.

Theorem 6.1.3. For all square-free natural numbers n ≥ 11 with n ≡ 1, 9 or

11 modulo 14,

R(Q1, n) =







h(−4n)
2 , if n ≡ 1, 9, 25 (mod 28)

3H(−n), if n ≡ 11, 43, 51 (mod 56)

h(−n), if n ≡ 15, 23, 39 (mod 56),

(6.9)
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where h(∆) denotes the class number of the imaginary quadratic extension of Q

with discriminant ∆.

From (6.3) we have that 2an(f) = r1(n)−r2(n), where ri(n) denotes the number

of representations of n by Qi. A simple calculation shows that the number of

automorphs of Q1 and Q2 are 8 and 4, respectively. Thus, we have R(Q1, n) =

r1(n)
8 + r2(n)

4 and, hence r1(n)−r2(n) ≡ 2R(Q1, n) modulo 3. So, by Theorem 6.1.3,

we have for square-free n ≥ 9 and n ≡ 1, 9 or 11 modulo 14

2an(f) = r1(n) − r2(n) ≡ 2R(Q1, n) (mod 3)

≡







h(−4n) (mod 3), if n ≡ 1, 9, 25 (mod 28),

0 (mod 3), if n ≡ 11, 43, 51 (mod 56),

2h(−n) (mod 3), if n ≡ 15, 23, 39 (mod 56).

(6.10)

Thus, we can immediately deduce:

Proposition 6.1.4. Suppose n ≥ 9 is square-free. Then,

1. If n ≡ 1, 9 or 25 modulo 28 then

an(f) ≡ 0 (mod 3) if and only if h(−4n) ≡ 0 (mod 3)

2. If n ≡ 15, 23 or 39 modulo 56 then

an(f) ≡ 0 (mod 3) if and only if h(−n) ≡ 0 (mod 3)

Now, we recall the following theorem of Davenport and Heilbronn [12] as im-

proved by Nakagawa and Horie [35].

Theorem 6.1.5. Let h3(∆) denote the number of ideal classes of the quadratic

extension of Q of discriminant ∆ having order 1 or 3. Further, suppose that m and

N satisfy:

1. If p is an odd prime dividing (N,m) then p2 | N and p2 - m, and

2. If N is even, then either 4 | N and m ≡ 1 modulo 4 or 16 | N and m ≡ 8

or 12 modulo 16.
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Then

∑′

0>∆>−x
∆≡m (mod N)

h3(∆) ∼ 2#{∆ : 0 > ∆ > −x;∆ ≡ m (mod N)} (6.11)

as X → ∞, where
∑′

denotes the sum over fundamental discriminants ∆.

From Theorem 6.1.5, we can deduce:

Corollary 6.1.6. Suppose that m and N are as in Theorem 6.1.5. Let T

denote the set of discriminants ∆ of imaginary quadratic extensions of Q in the

arithmetic progression ∆ ≡ m modulo N . Then there is a subset S of T having

lower density at least 1
2 in T such that if ∆ ∈ S then 3 - h(∆), that is,

lim inf
x→∞

(
#{∆ : 0 > ∆ > −x;∆ ∈ S}
#{∆ : 0 > ∆ > −x;∆ ∈ T}

)

≥ 1

2
(6.12)

Proof. Note that ∆ always denotes the discriminant of some imaginary qua-

dratic extension of Q. We have

∑′

0>∆>−x
∆≡m (mod N)

h3(∆) ≥
(

∑′

0>∆>−x
∆≡m (mod N)

3|h(∆)

3

)

+

(
∑′

0>∆>−x
∆≡m (mod N)

3-h(∆)

1

)

= 3 · #{∆ : 0 > ∆ > −x;∆ ≡ m (mod N)}−

2 · #{∆ : 0 > ∆ > −x;∆ ≡ m (mod N); 3 - h(∆)}.

The result now follows from Theorem 6.1.5.

Combining Corollary 6.1.6 with Proposition 6.1.4, we obtain:
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Theorem 6.1.7. There is a subset S of the square-free natural numbers n ≡ 1,

9, 15, 23, 25, 29, 37, 39 or 53 modulo 56 having lower density at least 1
2 , that is

lim inf
x→∞











#{0 < n < x : n ∈ S}

#






0 < n < x :

n is square-free; n ≡ 1, 9,
15, 23, 25, 29, 37, 39 or
53 (mod 56)

















≥ 1

2
, (6.13)

such that an(f) 6= 0 for all n ∈ S.

Proof. For square-free natural numbers n ≡ 1, 9 or 25 modulo 28, there is a

quadratic extension k of Q with discriminant ∆k = −4n, namely, k = Q(
√−n).

Also, ∆k = −4n ≡ 12, 76 or 108 modulo 112 and, these arithmetic progressions

satisfy the hypotheses of Corollary 6.1.6. So, there is a subset S ′ of the square-free

natural numbers n ≡ 1, 9 or 25 modulo 28 having lower density 1
2 such that for all

n ∈ S′, h(−4n) is not divisible by 3.

On the other hand if n ≡ 15, 23 or 39 modulo 56, then there is a quadratic

extension k of Q with discriminant ∆k = −n, namely, k = Q(
√−n). As before,

we note that we have ∆k = −n ≡ 17, 33 or 41 modulo 56 and, these arithmetic

progressions also satisfy the hypotheses of Corollary 6.1.6. So, there is a subset S ′′

of the square-free natural numbers n ≡ 15, 23 or 39 modulo 56 having lower density

1/2 such that for all n ∈ S ′′, h(−n) is not divisible by 3.

So taking S = S′ ∪ S′′, and combining the statements above with Proposition

6.1.4, gives the desired result.

Now, we note that the lower density of our set S above is 7/64. To see this,

note that we are considering 9 arithmetic progressions modulo 56, which gives 63

arithmetic progressions modulo 392. Also, recall that we are only concerned with

the square-free numbers, and there are only 288 arithmetic progressions modulo 392

in which square-free numbers appear. This is because the arithmetic progressions

n ≡ m modulo 392 do not contain any square-free numbers when m is a multiple of
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either 4 or 49. Thus, our 63 arithmetic progressions modulo 392 account for 7/32 (

= 62/288 ) of the square-free numbers and 1/2 of these are in S. Thus, combining

Theorem 6.1.7 with (6.8) gives us our first positive density nonvanishing result.

Theorem 6.1.8. There is a subset S of the square-free natural numbers having

lower density at least 7/64 such that L(Fχ
D
, 1) 6= 0 for all D ∈ S.

Now, by Theorem 2.6.4, we know that if the L-series associated to an elliptic

curve has nonzero central critical value, then the curve has Mordell-Weil rank 0.

Thus, since L(En, 1) = L(Fχn
, 1), we deduce from Theorem 6.1.8:

Corollary 6.1.9. For at least 7/64 of the square-free natural numbers n, the

elliptic curve En : y2 = x3 − nx2 + 72n2x+ 368n3 has rank 0.

Now, we would like similar results for forms of higher weight. Let’s start by

considering the modular form

g(τ) =
η3(τ)

η(3τ)
=
∏

n≥1

(1 − qn)3

(1 − q3n)
∈M1(9, χ−3). (6.14)

First we note that (1−qn)3

1−q3n ≡ 1 (mod 3), so that g ≡ 1 (mod 3). Thus, if we

construct a modular form φk as φk(τ) = f(τ)gk(τ), then φk ≡ f (mod 3) and,

φk ∈ S 2k+3
2

(252, χk
3
). Thus writing the Fourier expansion of φk as

φk(τ) =
∑

n≥1

an(φk)q
n, (6.15)

we have an(φk) ≡ an(f) modulo 3. Thus, from Theorem 6.1.7, we know that there

exists a subset S of the square-free natural numbers having lower density 7/64 such

that an(φk) 6= 0 for all n ∈ S.

Next we write φk =
∑L
i=1 αifi, where each of the fi’s is in S 2k+3

2
(252, χk

3
) and is

an eigenform for all of the Hecke operators Tp with p 6= 2, 3 or 7. Let Fi ∈ S2k+2(126)

denote a Shimura lift of fi for i = 1, . . . , L. Then it is not hard to check from the

definition of the Hecke operators and the definition of the Shimura lift (see Chapter
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3) that each Fi is also an eigenform for all of the Hecke operators Tp with p 6= 2, 3

or 7, and for such p, λp(Fi) = λp(fi). From the main theorem in [1], we can then

deduce that there are weight 2k + 2 newforms Gi of trivial character and of level

some divisor of 126 with λp(Gi) = λp(fi).

Define a primitive Dirichlet character µ : (Z/32Z)× → C of order 8 by setting

µ(3) = µ(5) = e
πi
4 . Note that µ2 is an order 4 Dirichlet character modulo 16, and

that µ4(n) = ( 2
n ).

We note that Gi ·µ2 is an eigenform for all of the Hecke operators Tp with p 6= 2, 3

or 7 having λp(Gi · µ2) = µ2(p)λp(Gi) = λp((fi)µ). Also, (fi)µ ∈ S 2k+3
2

(252 ·
162, χk

3
µ2). Hence the character ν from Theorem 3.7.2 is given by

ν =

{
χ3µ

2, if k is odd

χ−1µ
2, if k is even.

(6.16)

In either case, the conductor of ν is divisible by 4. Thus each of the Gi ·µ2 satisfies

the hypotheses of Theorem 3.7.2. Thus, by part 1 of Theorem 3.7.2, there exist

functions Ai : Nsf → C, where Nsfdenotes the square-free natural numbers, such

that

(Ai(D))2 = L(Gi · ψk
χ

D
, k + 1) · ε(ψ

k
χ

D
, 1/2), (6.17)

where

ψk =

{
χ3 , if k is odd

χ−1 , if k is even.
(6.18)

By part 2 of Theorem 3.7.2, we can write (fi)µ =
∑M
j=1 βjfi,j , where an(fi,j) is some

multiple of Ai(n). Thus, for any odd square-free n if an(fi) 6= 0, then Ai(n) 6= 0

and therefore L(Gi · ψk
χ

n
, k + 1) 6= 0.

We saw above that if n ∈ S, then an(φk) 6= 0, which implies that for some

1 ≤ i ≤ L, we have an(fi) 6= 0 and therefore L(Gi · ψk
χ

n
, k + 1) 6= 0, which

also implies that L((Gi)ψ
k
χn
, k + 1) 6= 0. In Lemma 6.1.10 below we show that

there exist γ1, . . . , γL ∈ C such that if we put Φ =
∑L
i=1 γiGi then we will have

L(Φψ
k
χn
, k + 1) =

∑L
i=1 γiL((Gi)ψ

k
χn
, k + 1) 6= 0 for all n ∈ S. Thus replacing Φ

by Φψ
k
, we will have proved
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Theorem 6.1.11. Suppose that k is a positive integer. Then there exists a cusp

form Φ ∈ S2k(126 · C) with the property that L(Φχn
, k) 6= 0 for all n ∈ S, where S

is the same set of lower density at least 7/64 as in Theorem 6.1.8and C is 1 (resp.

9) when k is even (resp. odd).

Now it remains to prove:

Lemma 6.1.10. Suppose that for each 1 ≤ i ≤ N we have a sequence {si(n)}n∈N

of complex numbers with the property that for each n ∈ N at least one of the si(n)’s

is non-zero. Then there exists γ1, . . . , γN ∈ C such that
∑N
i=1 γisi(n) 6= 0 for all

n ∈ N.

Proof. For any n ∈ N there is at least one i such that si(n) 6= 0. Thus,
∑N
i=1 si(n)xi = 0 is the equation of an (N − 1)-dimensional hyperplane An in CN .

Letting A denote the union of all of the An’s, we have that A is a measure zero

subset of CN . Thus, the complement of A is non-empty. Now, we can choose any

γ1, . . . , γN where (γ1, . . . , γN ) 6∈ A.

Remark. Actually, this proof shows that Theorem 6.1.11holds for ”almost all”

cusp forms in S2k(126 · C). The techniques used in the proof of Theorem 2 will

work for several other curves as well (see section 2 of this chapter). We hope to

generalize Theorem 2 to include large families of curves. Then, applying the same

techniques as in the proof of Theorem 4, we will be able to show the existence of

many cusp spaces of arbitrary even weight in which almost all cusp forms F will

have the property that for a positive proportion of the square-free natural numbers

n, L(Fχn
, 1) 6= 0.

6.2 More Positive Density Nonvanishing Results

In this section we will first summarize the techniques of section 1 into one propo-

sition (Proposition 6.2.1). Then, we will show nine more examples of weight 2

newforms f for which we can prove, using Proposition 6.2.1, that L(f
χD
, 1) 6= 0 for

a positive proportion of the square-free numbers D.
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Proposition 6.2.1. Suppose that Q1 and Q2 are the only ternary quadratic

forms in a genus of forms. Let Ai denote the number of automorphs of Qi (i = 1, 2).

Assume that 3 - A1A2 but 3 | A1 + A2. Suppose also that f = (θQ1 − θQ2) ∈
S3/2(NQ1 , χdQ1

) is a Hecke-eigenform which lifts through the Shimura correspon-

dence to a cusp form F ∈ S2(NQ1/2). Then F is also a Hecke-eigenform, and hence

there is a unique weight 2 newform G of trivial character having λp(F ) = λp(G) for

all but finitely many of the primes p. Letting NG denote the level of G, we put

W = lcm[
∏

p, odd
p|NG

p,
∏

p, odd
p|dQ1

p],

R =






a ∈ (Z/8WZ)∗ : ∃ a square-free n ≡ a

(mod 8W ) with 3 - an(f)






and,

δ =
#R

12W
∏

p|W (1 − 1
p2 )

.

(6.19)

Then, the set of square-free natural numbers n such that L(G · χ
−dQ1

n
, 1) 6= 0 has

lower density at least δ in the square-free natural numbers.

We note that the character χ
dQ1

is by definition the same as χ
d

sf

Q1

where asf

denotes the square-free part of a. We omitted the square-free notation in the state-

ment of Proposition 6.2.1 simply to ease notation. In the examples that follow the

proof of Proposition 6.2.1, we will only write the square-free part of dQ1 .

Proof. Suppose that a ∈ R. Then there exists n ≡ a modulo 8W such that

3 - an(f), and hence an(f) 6= 0. By Waldspurger’s main theorem (Theorem 3.7.2),

we know that L(G · χ−qQ1
n
, 1) 6= 0. Thus, putting

βa =
L(G · χ

−dQ1
n
, 1)

√
n

an(f)2
, (6.20)

Theorem 3.7.3 gives us for all square-free m ≡ a modulo 8W ,

L(G · χ
−dQ1

m
, 1) =

am(f)√
m

βa. (6.21)
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Thus, for m ≡ a modulo 8W , we have that L(G · χ
−dQ1

m
, 1) = 0 if and only if

am(f) = 0.

Now we note that since an(f) 6= 0, it follows from our choice of W and Theorem

4.2.1 that for all m ≡ a modulo 8W , R(Q1,m) 6= 0. Thus, combining Gauss’

theorem (Theorem 4.2.4) with Theorem 4.2.5, we have that for all m ≡ a modulo

8W ,

R(Q1,m) = ρh(∆m), (6.22)

where ∆m denotes the discriminant of Q(
√
m)/Q, and ρ depends only on the con-

gruence class of a modulo 8W . Since 3 - A1A2 and 3 | (A1 + A2), we have that

A1A2R(Q1,m) = A2r1(m) + A1r2(m) ≡ A2(r1(m) − r2(m)) modulo 3. From our

construction of f , we have that am(f) = r1(m)−r2(m). Therefore, 3 | am(f) if and

only if 3 | ρh(∆m). Recall that 3 - an(f) and n ≡ a modulo 8W . Thus, 3 - ρh(∆n).

Since h(∆n) ∈ N, it follows that ord3(ρ) ≤ 0. Also, by the Davenport-Heilbronn

theorem (Theorem 6.1.5), we have for at least half of the square-free natural num-

bers m ≡ a modulo 8W , that 3 - h(∆m). Since ρh(∆m) = R(Q1,m) ∈ N, we have

that ord3(ρ) = 0 and hence 3 | am(f) if and only if 3 | h(∆m). Now, applying Theo-

rem 6.1.5 again, we see for each a ∈ R, that for at least 1/2 of the square-free m ≡ a

modulo 8W , L(G · χ
−dQ1

m
, 1) 6= 0. We note that each a ∈ R gives rise to W arith-

metic progressions modulo 8W 2, and that the total number of arithmetic progres-

sions modulo 8W 2 in which square-free numbers reside is 8W 2(1− 1
4 )
∏

p|W (1− 1
p2 ).

Thus the density of square-free natural numbers m which are congruent modulo

8W to some a ∈ R is #R·W
6W 2

Q

p|W (1− 1
p2 )

. The proposition now follows from Theorem

6.1.5.

We now compute several examples. We begin with forms Q1 and Q2 with

automorphs A1 and A2 respectively, where both have discriminant ∆, level N

and character χ∆ . Let q denote the square-free part of ∆. We use Theorem

4.1.5 to check that Q1 and Q2 are the only forms in the genus of ternary forms
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containing them. It then follows from Theorem 4.1.1 and Theorem 4.1.4, that

f(τ) = (ΘQ1(τ) − ΘQ2(τ)) ∈ S3/2(N,χq
). In each of the examples which we com-

puted it was the case that there were no modular forms of type θψ,t in S3/2(N,χq
).

Thus, we could use Theorem 3.8.6 to check computationally that f was a Hecke-

eigenform. Also, using Theorem 3.8.1, we checked that f lifted through the Shimura

lift to an integer multiple of a normalized weight 2 newform H. In particular,

λp(f) = λp(H) for all primes p - N . Thus in each example, f satisfied the con-

ditions of Proposition 6.2.1 with H taking the role of the newform G. Now let

F = H · χ−q
. By the theory of Eichler and Shimura, we know that there is an

elliptic curve F such that L(E, s) = L(F, s). In our examples the level of F was

always less than 1000. So, we were able to determine E simply by consulting the

tables of Cremona [11]. It was then a simple matter to calculate W . Also, we were

able to determine R by computing the first few hundred Fourier coefficients of f

and thus determine δ. So, Proposition 6.2.1, yields the following result.

Theorem 6.2.2. There is a subset S of the square-free natural numbers having

lower density at least δ such that L(Fχ
D
, 1) 6= 0 for all D ∈ S.

Applying Theorem 2.6.4, we have,

Corollary 6.2.3. For at least δ of the square-free natural numbers n, the el-

liptic curve En has rank 0.

Examples

1.
Q1(x, y, z) = x2 + y2 + 18z2,

Q2(x, y, z) = 2x2 + 2y2 + 5z2 − 2xz,

A1 = 8, A2 = 4.

∆ = 72, N = 72, q = 2,

E : y2 = x3 − 8 and

δ = 1/4.
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2.

Q1(x, y, z) = x2 + 4y2 + 10z2 − 4yz,

Q2(x, y, z) = 2x2 + 2y2 + 9z2,

A1 = 8, A2 = 4,

∆ = 144, N = 72, q = 1,

E : y2 = x3 − 1 and

δ = 5/24.

3.

Q1(x, y, z) = 4x2 + 19y2 + 20z2 − 4xz,

Q2(x, y, z) = 7x2 + 11y2 + 23z2 − 10yz − 6xz − 2xy,

A1 = 4, A2 = 2,

∆ = 5776, N = 76, q = 1,

E : y2 = x3 − 4x2 − 144x+ 944 and

δ = 19/240.

4.

Q1(x, y, z) = x2 + 10y2 + 10z2,

Q2(x, y, z) = 4x2 + 5y2 + 6z2 − 4xz,

A1 = 8, A2 = 4,

∆ = 400, N = 40, q = 1,

E : y2 = x3 − x2 + 4x− 4 and

δ = 5/72.
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5.

Q1(x, y, z) = 2x2 + 7y2 + 13z2 − 2xy,

Q2(x, y, z) = 5x2 + 6y2 + 8z2 + 6yz + 2xz + 4xy,

A1 = 4, A2 = 2,

∆ = 676, N = 52, q = 1,

E : y2 = x3 − x2 − 72x+ 496 and

δ = 13/112.

6.

Q1(x, y, z) = x2 + 15y2 + 15z2,

Q2(x, y, z) = 4x2 + 4y2 + 15z2 − 2xy,

A1 = 8, A2 = 4,

∆ = 900, N = 60, q = 1,

E : y2 = x3 − x2 + 24x− 144n3 and

δ = 5/128.

7.

Q1(x, y, z) = x2 + 17y2 + 17z2,

Q2(x, y, z) = 2x2 + 9y2 + 17z2 − 2xy,

A1 = 8, A2 = 4,

∆ = 1156, N = 68, q = 1,

E : y2 = x3 − x2 − 48x− 64 and

δ = 17/144.
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8.
Q1(x, y, z) = 2x2 + 11y2 + 22z2,

Q2(x, y, z) = 6x2 + 8y2 + 11z2 − 4xy,

A1 = 4, A2 = 2,

∆ = 1936, N = 88, q = 1,

E : y2 = x3 − x2 + 3x+ 1 and

δ = 11/144.

9. In this example we use 4 ternary quadratic forms. We simply apply the

process described above twice and combine the results.

Q1(x, y, z) = 2x2 + 3y2 + 25z2 − 2xy,

Q2(x, y, z) = 3x2 + 7y2 + 7z2 + 4yz + 2xz + 2xy,

Q3(x, y, z) = x2 + 10y2 + 15z2 − 10yz,

Q4(x, y, z) = 4x2 + 4y2 + 9z2 − 2yz − 2xz − 2xy,

A1 = 4, A2 = 2, A3 = 4, A4 = 2,

∆ = 500, N = 100, q = 5,

E : y2 = x3 − 5x2 − 200x+ 14000 and

δ = 5/24.
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Chapter 7

Birch and Swinnerton-Dyer Type Results

In this chapter, we consider part 2 of the Birch and Swinnerton-Dyer Conjecture

(Conjecture 2.6.2) modulo 3 for certain rank zero elliptic curves. More precisely, we

consider the following congruence which is a weak form of the Birch and Swinnerton-

Dyer conjecture.

Conjecture 7.1. Let E be a rank zero elliptic curve. Then

L(E, 1)

ΩE
#E(Q)2tor ≡ #X(E/Q)

∏

p

cp(E/Q) (mod 3), (7.1)

where L(E, s), ΩE, X(E/Q) and cp(E/Q) denote the L-series, real period, Tate-

Shafarevic group and local Tamagawa factors of E respectively.

We will use a theorem due to Frey [16] along with some of the techniques in

Chapter 6 to prove for certain elliptic curves E that for a positive proportion of the

square-free integers d,

ord3

(
L(Ed, 1)

ΩEd

)

= 0 ⇐⇒ ord3

(
#X(Ed/Q)

∏

p cp(Ed/Q)

#Ed(Q)2tor

)

= 0. (7.2)

We note that we can use Tate’s algorithm [49] to calculate the cp(Ed/Q)’s. In

the examples we consider here, Tate’s algorithm shows that if we let W =
∏

p|NE
p6=2,3

p,

then there exist a ∈ (Z/24WZ)∗ such that 3 -
∏

p cp(Ed/Q) for all d ≡ a modulo

24W .

We also have the following lemma concerning #Ed(Q)tor.
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Lemma 7.2. Let E be an elliptic curve defined over Q. There are at most 2

square-free integers d such that 3 | Ed(Q)tor. Further, if Ed1 and Ed2 both have a

3-torsion point, then d2 = −3d1.

Proof. We will let C denote the conductor of χ
[d1,d2]

, where [m,n] denotes the

least common multiple of m and n. Suppose that Ed1 and Ed2 both have a point

of order 3, where d1 6= d2 and where d1 and d2 are both square-free. Then we have

that for all primes p - d1d2∆E , 3 | #Ed1(Fp) and 3 | #Ed2(Fp) (see [47], Proposition

VII.3.1). Also, we note that

#Ed2(Fp) = (p+ 1)(1 − χ
[d1,d2]

(p)) + χ
[d1,d2]

(p)#Ed1(Fp). (7.3)

Thus, by (7.3) we obtain 3 | (p + 1)(1 − χ
[d1,d2]

(p)) whenever p - d1d2∆E . If

additionally p ≡ 1 modulo 3, then we deduce χ
[d1,d2]

(p) = 1. Suppose now that

3 - C. Since d1 6= d2, χ[d1,d2]
is not trivial. Thus, there is an a coprime to C

such that if n ≡ a modulo C, then χ
[d1,d2]

(n) = −1. Now we can use the Chinese

remainder theorem to find an a′ such that a′ ≡ a modulo C and a′ ≡ 1 modulo

3. By Dirichlet’s theorem on primes in an arithmetic progression, we then see that

there are infinitely many primes p ≡ a′ modulo 3C. Now, if p ≡ a′ modulo 3C,

then p ≡ a modulo C and hence, χ
[d1,d2]

(p) = −1. On the other hand, for such

p - ∆E , we have that p ≡ 1 modulo 3 and we have already seen that this implies

that χ
[d1,d2]

(p) = 1 contradicting our last statement. Thus, we deduce that 3 | C
and hence, that 3 | [d1, d2]. Now write [d1, d2] = 3b. Then we have for primes

p - d1d2∆E

χ
[d1,d2]

(p) = χ3(p)χb
(p) =

{
χ

b
(p), if p ≡ 1 (mod 12)

−χ
b
(p), if p ≡ 7 (mod 12),

(7.4)

and therefore

χ
b
(p) =

{
1, if p ≡ 1 (mod 12)

−1, if p ≡ 7 (mod 12),
(7.5)

Let C
′

denote the conductor of χ
b
. Since [d1, d2] is square-free, it follows that 3 - b

and therefore, 3 - C
′

. Since χ
b
(n) is completely determined by the congruence class
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of n modulo C
′

, and since 3 - C
′

, it follows from (7.5) that for primes p - d1d2∆E

χ
b
(p) =

{
1, if p ≡ 1 (mod 4)

−1, if p ≡ 3 (mod 4).
(7.6)

Thus, we see that C
′

must be 4 and that c = −1. This proves the lemma.

The Theorem of Frey discussed in the next section will allow us to relate the

3-divisibility of X(Ed/Q) to the 3 divisibility of h(Q(
√
−d)). Then using the tech-

niques from Chapter 6 we will be able to establish (7.2) for certain elliptic curves.

7.1 A Theorem of Frey.

In this section, we discuss a theorem of Frey [16] which relates the subgroups

of elements of order p in the Selmer groups of twists of an elliptic curve to the

subgroups of elements of order p of certain class groups where p = 3, 5 or 7. First,

we need to introduce some notation.

Let E be an elliptic curve over Q with minimal Weierstrauss equation y2+a1xy+

a3y = x3 + a2x
2 + a4x+ a6. We define the quantities c4, c6 and jE as in (2.3), and

make the following definition.

Definition 7.1.1. Let E be an elliptic curve over Q with ordp(jE) < 0 and let

q be an odd prime not dividing NE. Then we define γq(E) =
(

−c4c−1
6

q

)

, where c−1
6

denotes the inverse of c6 modulo q.

Now we are ready to state Frey’s Theorem. Actually, we will only state a weak

version of the Corollary to the main Theorem in [16].

Theorem 7.1.2. Let E be an elliptic curve over Q with a rational point P of

odd prime order p. Assume also that either E is given by y2 = x3 + 1 or that P is

not in the kernel of the reduction modulo p map. Further, suppose that for all odd

primes q | NE, we have that if q ≡ −1 modulo p, then ordq(∆E) ≡ 0 modulo p. Let

d be a square-free natural number prime to pNE such that

1. If 2 | NE then d ≡ 1 modulo 4.
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2. If q 6= 2 or p but q | NE, then

(−d
q

)

=







−1, if ordq(jE) ≥ 0

−1, if ordq(jE) < 0 and γq(E) = 1

1, otherwise.

(7.7)

3. If ordp(jE) < 0 then
(

−d
p

)

= −1.

Finally let ∆d denote the discriminant of Q(
√
−d)/Q. Then,

h(∆d)p | #S(E−d/Q)p | (h(∆d)p)
2, (7.8)

where h(∆)p denotes the order of the subgroup of elements of order p in the ideal

class group for the ring of integers of Q(
√
−d), and S(E/Q)p denotes the subgroup

of elements of order p in the Selmer group of E.

The Selmer and Tate-Shafarevic groups of an elliptic curve are difficult to ex-

plicitly define. The reader is referred to [47 pages 296–306] for a discussion of these

groups. We simply note that the Selmer group S(E/Q) of E and the Tate-Shafarevic

group X(E/Q) of E are related by the following short exact sequence which holds

for any prime p.

0 → E(Q)/pE(Q) → S(E/Q)p → X(E/Q)p → 0. (7.9)

In particular, we see that if E−d(Q) has rank zero and has no p-torsion then it

follows from (7.9) that S(E−d/Q)p ∼= X(E−d/Q)p. This last observation will allow

us to gain information about X(E−d/Q) via Theorem 7.1.2.

7.2 Results.

In this section, we will combine Frey’s Theorem (Theorem 7.1.2) with Proposition

6.2.1 to establish (7.2) for certain elliptic curves over Q (see Proposition 7.2.1). We

will also give four examples of such curves.

Before stating the proposition we note that for any square-free natural number d

coprime to 6NE , ΩE−d
=

mΩE−1√
d

, where m ∈ N. If we have a minimal equation for
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E−1 and we twist it by a square-free natural number d coprime to 6NE , then the

new equation may no longer be minimal at 2 and 3. The integer m just accounts for

any change of variables which may be necessary in order to make this new equation

for E−d minimal. In fact m can be calculated as follows. For p = 2, 3, we put

mp = ordp(∆E−1) − ordp(∆E−d
). Then, m = 2m2/123m3/12.

Proposition 7.2.1. Suppose that f ∈ S3/2(N) and G ∈ S2(M) are as in Propo-

sition 6.2.1. Let E be the modular elliptic curve with L(E, s) = L(G, s), and suppose

that E satisfies the hypotheses of Theorem 7.1.2 with p = 3. Also, define

W = lcm






∏

p|M
p6=2,3

p,
∏

p|N
p6=2,3

p




 . (7.10)

Let R be the set of all a ∈ (Z/24WZ)∗ satisfying the following conditions:

1. There exists a square-free natural number n ≡ a modulo 24W such that

3 - an(f) and such that ord3

(
L(E−n,1)

ΩE−n

)

= 0.

2. For all square-free natural numbers d ≡ a modulo 24W , 3 -
∏

p cp(E−d/Q)

3. There exists an integer m depending only on a such that for all square-free

natural numbers d ≡ a modulo 24W , ΩE−d

√
d/ΩE−1 = m.

4. If 2 | NE then a ≡ 1 modulo 4.

5. If ` 6= 2, 3 is prime and ` | NE, then

(−a
`

)

=







−1, if ord`(jE) ≥ 0

−1, if ord`(jE) < 0 and γ`(E) = 1

1, otherwise.

(7.11)

6. If ord3(jE) < 0 then a ≡ 1 modulo 3.

Put

δ =
#R

32W
∏

p|W (1 − 1
p2 )

(7.12)

Then there exists a subset S of the square-free natural numbers having lower density

at least δ such that for all d ∈ S we have

ord3

(
L(Ed, 1)

ΩEd

)

= 0 ⇐⇒ ord3

(
#X(Ed/Q)

∏

p cp(Ed/Q)

#Ed(Q)2tor

)

= 0. (7.13)
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Proof. Suppose that a ∈ R. Then there exists n ≡ a modulo 24W such that

3 - an(f), and hence an(f) 6= 0. By Waldspurger’s main theorem (Theorem 3.7.2),

we know that L(G · χ−n
, 1) 6= 0. Thus, putting

βa =
L(G · χ−n

, 1)
√
n

an(f)2
, (7.14)

Theorem 3.7.3 gives us for all square-free d ≡ a modulo 24W ,

L(G · χ
−d
, 1) =

ad(f)2√
d

βa. (7.15)

Dividing through (7.15) by ΩE−1 and using condition 3 above we have for all square-

free natural numbers d ≡ a modulo 24W :

L(E−d, 1)
ΩE−d

= ad(f)2αa, (7.16)

where

αa =
L(E−n, 1)

ΩE−n
an(f)2

. (7.17)

From condition 1 we have that ord3(αa) = 0. Thus, ord3(L(E−d, 1)/ΩE−d
) = 0 if

and only if 3 - ad(f).

Arguing as in the proof of Proposition 6.2.1, we can show that for all square-

free d ≡ a modulo 24W , 3 | ad(f) if and only if 3 | h(∆d). Thus, we have for all

square-free natural numbers d ≡ a modulo 24W ,

ord3

(
L(E−d
ΩE−d

)

= 0 ⇐⇒ 3 - h(∆d). (7.18)

Let S be the set of all square-free natural numbers d such that d ≡ a modulo 24W

for some a ∈ R and such that ad(f) 6= 0. We note that by the Davenport-Heilbronn

theorem (Theorem 6.1.5), we know that for any a ∈ R, at least half of the square

free natural numbers d ≡ a modulo 24W have the property that 3 - h(∆d). For

such d it follows that 3 - ad(f). Thus for each a ∈ R at least half of the square-free

natural numbers d ≡ a modulo 24W are in S. So, an argument analogous to the
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one given in the proof of Proposition 6.2.1 will yield that S has lower density at

least δ in the set of all square-free natural numbers. Also, by Lemma 7.2, we can

remove from S any d for which E−d(Q) has points or order 3 without affecting the

density of S. Hence, we will assume for the remainder of the proof that S contains

no such d.

Now, we note that for any d ∈ S, we have that ad(f) 6= 0 and therefore by (7.15)

it follows that L(E−d, 1) 6= 0. Thus, by Theorem 2.6.4, we know that E−d has rank

0. Therefore, for all d ∈ S we have that E−d has rank 0 and that 3 - E−d(Q)tor.

Hence, it follows from (7.9) that X(E−d/Q)3 ∼= S(E−d/Q) for all d ∈ S. Since

we are assuming that E satisfies the hypotheses of Theorem 7.1.2, and since the

conditions 4, 5 and 6 imposed on d are the same as the conditions imposed on d in

Theorem 7.1.2, it follows that for all d ∈ S,

h(∆d)3 | #X(E−d/Q)3 | (h(∆d)3)
2, (7.19)

Thus for all d ∈ S we have

3 | X(E−d/Q) ⇐⇒ 3 | h(∆d). (7.20)

Now, the proposition follows from (7.18), (7.20) condition 2 and our assumption

that for all d ∈ S, 3 - E−d(Q)tor.

Example 7.2.1 Let E : y2 = x3 + 1 be the modular elliptic curve of conductor

36 and let

f =
1

2

∑

x,y,z∈Z

(qx
2+4y2+10z2−4yz − q2x

2+2y2+9z2). (7.21)

Let G ∈ S2(36) denote the newform with L(G, s) = L(E, s). We recall from

Example 6.2.2 that f and G satisfy the hypotheses of Proposition 6.2.1. Since

E : y2 = x3 + 1 and since the only odd prime dividing NE is 3, we see that E

satisfies the hypotheses of Theorem 7.1.2. Thus, we can apply Proposition 7.2.1.

In this case, we have W = 1. We will let R0 ⊂ (Z/24Z)∗ be the set R0 =

{1, 5, 13, 17}.
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We can verify that each a ∈ R0 satisfies condition 1, by simply calculating the

first 20 coefficients of f and using the APECS package with MAPLE to compute

the values of L(E−n, 1)/ΩE−n
. Next, we use Tate’s Algorithm to check that for

each a ∈ R0 and for all square-free natural numbers d ≡ a modulo 312, we have

3 -
∏

p cp(E−d/Q). Thus, all of the a ∈ R0 satisfy condition 2. Also, using Tate’s

Algorithm, we can verify that for all square-free natural numbers d coprime to 12,

we have ΩE−d
√
d/ΩE−1 = 1. Thus, condition 3 is satisfied by each a ∈ R0. Since

for each a ∈ R0, a ≡ 1 modulo 4, condition 4 is also satisfied. In this case, condition

5 is vacuous. Since, jE = 0, condition 6 is vacuous. Thus we can take R = R0 and

we calculate δ = 1/8. Thus by Proposition 7.2.1, we have proved:

Theorem 7.2.2. Let E : y2 = x3 + 1. Then there is a set S ⊂ N having lower

density 1/8 in the square-free natural numbers such that for all d ∈ S

ord3

(
L(Ed, 1)

ΩEd

)

= 0 ⇐⇒ ord3

(
#X(Ed/Q)

∏

p cp(Ed/Q)

#Ed(Q)2tor

)

= 0. (7.22)

Example 7.2.2 Let, E : y2 = x3 + x2 + 72x − 368 be the modular curve of

conductor 14. Actually, E is the twist by -1 of the elliptic curve considered in

section 6.1. Let

f =
1

2

∑

x,y,z∈Z

(qx
2+7y2+7z2 − q2x

2+4y2+7z2−2xy) ∈ S3/2(28). (7.23)

Let G ∈ S2(14) denote the newform with L(G, s) = L(E, s). We recall from section

6.1 that f and G satisfy the hypotheses of Proposition 6.2.1. Also, P = (2, 2) ∈
E(Q) has order 3 and is not in the kernel of the reduction modulo 3 map. Further,

we note that the only odd prime dividing NE is 7 which is 1 modulo 3. Thus, E

satisfies the hypotheses of Theorem 7.1.2.

In this case, we have W = 7 (and therefore 24W=168). We will let R0 ⊂
(Z/168Z)∗ be the set R0 = {1, 25, 29, 37, 53, 65, 85, 109, 113, 121, 137, 149}

By calculating the first 500 coefficients of f and using the APECS package with

MAPLE to calculate L(E−n, 1)/ΩE−n
, we were able to verify condition 1 for each
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a ∈ R0. We can use Tate’s Algorithm to calculate that for d ≡ 1 modulo 4,

c2(E−d/Q) is either 2 or 4. Similarly, we can check that for d ≡ 1, 2, or 4 modulo 7,

c7(E−d/Q) = 1. For any other prime p not dividing d, we have cp = 1. For primes

p | d (p 6= 2, 7), Tate’s Algorithm yields that cp(E−d/Q) is 1, 2 or 4. Thus, all of the

a ∈ R0 satisfy condition 2 of Proposition 7.2.1. Also, using Tate’s Algorithm, we

can verify that for all square-free natural numbers d ≡ 1 modulo 4 with (d, 42) = 1,

we have ΩE−d
√
d/ΩE−1 = 1. Thus, condition 3 is satisfied by each a ∈ R0. Since

for all a ∈ R0, we have a ≡ 1 modulo 4, condition 4 is satisfied. Now, we note

that ord7(jE) = −3 and that γ7(E) = 1. Since for all a ∈ R0, a ≡ 1, 2 or 4

modulo 7 we have that
(−a

7

)
= −1, and therefore condition 5 is also satisfied.

Since, ord3(jE) = 0, condition 6 is vacuous. Thus we can take R = R0 and we

calculate δ = 7/128. Thus by Proposition 7.2.1, we have proved:

Theorem 7.2.3. Let E : y2 = x3 + x2 + 72x− 368. Then there is a set S ⊂ N

having lower density at least 7/128 in the square-free natural numbers such that for

all d ∈ S

ord3

(
L(Ed, 1)

ΩEd

)

= 0 ⇐⇒ ord3

(
#X(Ed/Q)

∏

p cp(Ed/Q)

#Ed(Q)2tor

)

= 0. (7.24)

Example 7.2.3 Let E : y2 = x3 +4x2−144x−944 be the modular elliptic curve

of conductor 19 from Example 6.2.3, and let

f =
1

2

∑

x,y,z∈Z

(q4x
2+19y2+20z2−4xz − q7x

2+11y2+23z2−10yz−6xz−2xy). (7.25)

Let G ∈ S2(19) denote the newform with L(G, s) = L(E, s). We recall from

Example 6.2.3 that f and G satisfy the hypotheses of Proposition 6.2.1. Also,

P = (5,−10) ∈ E(Q) has order 3 and is not in the kernel of the reduction modulo 3

map. Further, we note that the only odd prime dividing NE is 19 which is 1 modulo

3. Thus, E satisfies the hypotheses of Theorem 7.1.2.

In this case, we have W = 19 (and therefore 24W=456). We will let R0 ⊂
(Z/456Z)∗ be the set R0 = {7, 11, 23, 35, 43, 47, 55, 163, 175, 187, 191, 199, 215, 311,
343, 347, 359, 367}.
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As in the previous example we can verify that each a ∈ R0 satisfies condition

1, by calculating the first several coefficients of f and using APECS and MAPLE

to compute the values of L(E−n, 1)/ΩE−n
. As before, we use Tate’s Algorithm to

check that for each a ∈ R0 and for all square-free natural numbers d ≡ a modulo

24W , we have 3 -
∏

p cp(E−d/Q). Thus, all of the a ∈ R0 satisfy condition 2 of

Proposition 7.2.1. Also, using Tate’s Algorithm, we can verify that for all d ≡ 3

modulo 4 and coprime to 114, we have ΩE−d
√
d/ΩE−1 = 1. Thus, condition 3 is

satisfied by each a ∈ R0. Since 2 - NE , condition 4 is vacuous. Now, we note that

ord19(jE) = −3 and that γ19(E) = 1, and it is not hard to check that for all a ∈ R0

that
(−a

19

)
= −1. Thus, condition 5 is also satisfied. Since, ord3(jE) = 0, condition

6 is vacuous. Thus we can take R = R0 and we calculate δ = 19/640. Thus by

Proposition 7.2.1, we have proved:

Theorem 7.2.4. Let E : y2 = x3 +4x2 − 144x− 944. Then there is a set S ⊂ N

having lower density at least 19/640 in the square-free natural numbers such that

for all d ∈ S

ord3

(
L(Ed, 1)

ΩEd

)

= 0 ⇐⇒ ord3

(
#X(Ed/Q)

∏

p cp(Ed/Q)

#Ed(Q)2tor

)

= 0. (7.27)

Example 7.2.4 Let E : y2 = x3 + x2 − 72x− 496 be the modular elliptic curve

of conductor 26 from Example 6.2.5, and let

f =
1

2

∑

x,y,z∈Z

(q2x
2+7y2+13z2−2xy − q5x

2+6y2+8z2+6yz+2xz+4xy). (7.28)

Let G ∈ S2(26) denote the newform with L(G, s) = L(E, s). We recall from

Example 6.2.5 that f and G satisfy the hypotheses of Proposition 6.2.1. Also,

P = (4, 4) ∈ E(Q) has order 3 and is not in the kernel of the reduction modulo 3

map. Further, we note that the only odd prime dividing NE is 13 which is 1 modulo

3. Thus, E satisfies the hypotheses of Theorem 7.1.2.

In this case, we have W = 13 (and therefore 24W=312). We will let R0 ⊂
(Z/312Z)∗ be the set R0 = {5, 37, 41, 73, 85, 89, 97, 109, 125, 137, 145, 149, 161, 193,
197, 229, 241, 245, 253, 265, 281, 293, 301, 305}.
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As before, we can verify that each a ∈ R0 satisfies condition 1, by calculating

the first several coefficients of f and using APECS and MAPLE to compute the

values of L(E−n, 1)/ΩE−n
. As before, we use Tate’s Algorithm to check that for

each a ∈ R0 and for all square-free natural numbers d ≡ a modulo 312, we have

3 -
∏

p cp(E−d/Q). Thus, all of the a ∈ R0 satisfy condition 2. Also, using Tate’s

Algorithm, we can verify that for all square-free natural numbers d ≡ 1 modulo 4

and coprime to 78, we have ΩE−d
√
d/ΩE−1 = 1. Thus, condition 3 is satisfied by

each a ∈ R0. Since for each a ∈ R0, a ≡ 1 modulo 4, condition 4 is also satisfied.

Now, we note that ord13(jE) = −3 and that γ13(E) = 1, and it is not hard to check

that for all a ∈ R0 that
(−a

19

)
= −1. Thus, condition 5 is also satisfied. Since,

ord3(jE) = 0, condition 6 is vacuous. Thus we can take R = R0 and we calculate

δ = 13/224. Thus by Proposition 7.2.1, we have proved:

Theorem 7.2.5. Let E : y2 = x3 + x2 − 72x− 496. Then there is a set S ⊂ N

having lower density at least 13/224 in the square-free natural numbers such that

for all d ∈ S

ord3

(
L(Ed, 1)

ΩEd

)

= 0 ⇐⇒ ord3

(
#X(Ed/Q)

∏

p cp(Ed/Q)

#Ed(Q)2tor

)

= 0. (7.29)
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