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1. Introduction

Let E(b, c) = y2 + (1 − c)xy − by = x3 − bx2 be an elliptic curve where
b and c are functions of the parameter s ∈ Z. From [4], we know that there are
certain functions b(s) and c(s) which give elliptic curves E(s) with torsion subgroups
isomorphic to Z/tZ, where t is 5, 6, 7, or 10. Now, consider these curves over the
finite field Fp. We are interested in the number of points (x, y) ∈ F2

p such that
x and y satisfy the equation of the curve E(b, c). We know that the number of
points on E(b, c) over Fp is approximately p + 1. So, we now consider the error
term ap(E) = p + 1 − #E(Fp). We can bound this error term by |ap(E)| ≤ 2

√
p.

In fact, the Lang-Trotter conjecture [5] states that, for any curve E and any r ∈ Z,

πr
E(X) := #{p ≤ X : ap(E) = r} ∼ CE,r

√
X

log X
,

where CE,r is a constant depending on E and r. As in [3], we look at the Lang-
Trotter conjecture in an average sense. The main result we will prove is the following
theorem.
Theorem 1.1. Let E(s) be the paramaterization of elliptic curves having a point
of order t ∈ {5, 6, 7, 10}. Then, if∑

1≤s≤p−1

ap(E(s))=r

1 = Ct ·H(r2 − 4p) + O(1) ,

is valid for some constant Ct, then the following equation holds

1
µ(N)

∑
|s|≤N

′
πr

E(s)(X) =
4
π

Ct ·Kr ·
√

X

log X
+ O

(
X3/2

N
+

√
X

logd X

)
.

where d > 0,
∑′

represents the sum over non-singular curves, µ(N) represents the
number of curves in the sum, and Kr is the constant defined in [1].

2. Isomorphisms of t-torsion Curves

Every elliptic curve has the form y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

Through a series of simple transformations outlined in [8], such a curve can be
rewritten in the form y2 = x3 + Ax + B. This is called the curve’s Weierstrauss
normal form.

Once we have our curves in Weierstrauss normal form, we can look at the possible
ways two curves can be isomorphic. Given that our point at infinity must be unique,
the only valid transformations which can be made are x = u2x′ and y = u3y′.
Substituting these into the Weierstrauss form, we see that A = u4A′ and B = u6B′

1
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are the only valid relations between the coefficients of isomorphic curves in this
form.

From [4], we know that t-torsion curves, where t ∈ {5, 6, 7, 10}, can be parame-
terized to give (0, 0) as a point of order t:

t Parameterization
5 y2 + (1− s)xy − sy = x3 − sx2

6 y2 + (1− s)xy − (s2 + s)y = x3 − (s2 + s)x2

7 y2 + (1− s2 + s)xy − (s3 − s2)y = x3 − (s3 − s2)x2

10 y2 + 1−2s−2s2+2s3

s2−3s+1 xy − s3(2s2−3s+1)
(s2−3s+1)2 y = x3 − s3(2s2−3s+1)

(s2−3s+1)2 x2

Applying our valid transformations to these parameterizations gives a set of
equations describing all possible isomorphic pairs (s, S). Unfortunately, the equa-
tions are too complicated for Maple. Attempts to use the Hasse-Weil bounds failed
as the resulting curves are singular. However, we have found computational evi-
dence which seems to point to constants for all four cases. The results for t = 5 are
shown in Tables 1.

Table 1. 5-Torsion

Prime Number of Classes Average Number of Isomorphisms per Class
151 64 2.343750000
293 147 1.986394558
449 225 1.991111111
599 299 2.000000000
743 371 2.000000000
877 439 1.995444191
997 499 1.995991984

If we can establish the existence of a constant Ct for a particular t, we will have
shown that all curves with t-torsion satisfy the following relationship:∑

1≤s≤p−1

ap(E(s))=r

1 = Ct ·H(r2 − 4p) + O(1) .

3. Average Values of πr
E(X)

As a first step, we define the set

Sr
f (X) := {B(r) < p ≤ X : p ≡ r − 1 (mod t); 4p ≡ r2, r2 − f2 (mod 4f2)},

where

B(r) := max(r2/4, 5) and dp(f) :=
r2 − 4p

f2
.

Since Sr
f (X) consists only of primes, we may assume that the upper bound of the

set, X, is prime. Now, we prove the following proposition:

Proposition 3.1. Given a class of elliptic curves E(s) over Fp with the relationship∑
1≤s≤p−1

ap(E(s))=r

1 = Ct ·H(r2 − 4p) + O(1) ,
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the following equation holds:

1
µ(N)

∑
|s|≤N

′
πr

E(s)(X)

= Ct ·
4N

πµ(N)
· 1√

X log X

∑
f≤2

√
X

1
f

∑
p∈Sr

f (r−1,t,X)

L(1, χd) log p

− Ct ·
4N

πµ(N)

∫ X

2

 ∑
f≤2

√
y

1
f

∑
p∈Sr

f (r−1,t,y)

L(1, χd) log p

 d

dy

[
1

√
y log y

]
dy

+ O
(

X3/2

N
+ log X

)
,

where L(1, χd) is the Dirichlet L-Series L(1, χd) :=
∑∞

n=1
χd(n)

n , and χd is a char-
acter modulo |dp(f)|.

Proof. Let r ∈ Z and E(s) be the parameterization of an elliptic curve having a
point of order t ∈ {5, 6, 7, 10}. Since ap(E(s)) = r, we have p + 1 − r = #E(Fp).
Also, since the group of points on E(s) has a subgroup of order t, we can reduce this
modulo t to give p + 1− r ≡ 0 (mod t). Thus, p ≡ r − 1 (mod t). Now, rewriting
πr

E(s)(X) as a sum and changing the order of summation, we can write

(1)
1

µ(N)

∑
|s|≤N

′
πr

E(s)(X) =
1

µ(N)

∑
B(r)≤p≤X

p≡r−1 (mod t)

 ∑
|s|≤N

ap(E(s))=r

1

+ O
(

X

N log X

)
,

where the error term comes from no longer excluding singular curves in our sum.
Using the assumed relationship for our curves, we can write

(2)
∑

1≤s≤p−1

ap(E(s))=r

1 = Ct ·H(r2 − 4p) + O(1),

where the O(1) accounts for singular curves. If instead of taking this sum over all
1 ≤ s ≤ p− 1 we take it over |s| ≤ N , we have roughly 2N/P times as many curves
which are counted. Thus, we have

∑
|s|≤N

ap(E(s))=r

1 =
(

Ct ·H(r2 − 4p) + O(1)
)(

2N

p
+ O(1)

)

= Ct ·
2N

p
·H(r2 − 4p) + O

(
H(r2 − 4p) +

2N

p

)
.(3)
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If we now subsitute this into equation (1), we obtain

(4)

1
µ(N)

∑
|s|≤N

′
πr

E(s)(X) =

Ct

µ(N)

∑
B(r)≤p≤X

p≡r−1 (mod t)

(
2N

p
H(r2 − 4p) + O

(
H(r2 − 4p) +

2N

p

))

+ O
(

X

N log X

)
.

Since
∑

p O
(

N
p

)
can be bounded by

∫X

B(r)
(1/y) dy = log X, we can rewrite this

term as O (log X). This substitution makes the right hand side

(5)

Ct

µ(N)

∑
B(r)≤p≤X

p≡r−1 (mod t)

(
2N

p
H(r2 − 4p) + O

(
H(r2 − 4p)

))

+ O
(

X

N log X
+ log X

)
.

Factoring out H(r2 − 4p) and using the equality

H(r2 − 4p) = 2
∑

f≤2
√

X

h(dp(f))
w(dp(f))

,

we get

(6)

4Ct

µ(N)

∑
p∈Sr

f (r−1,t,X)

∑
f≤2

√
X

(
h(dp(f))
w(dp(f))

(
N

p
+ O(1)

))

+ O
(

X

N log X
+ log X

)
.

After reversing the order of summation, our expression becomes

(7)

4Ct

µ(N)

∑
f≤2

√
X

∑
p∈Sr

f (r−1,t,X)

(
h(dp(f))
w(dp(f))

(
N

p
+ O(1)

))

+ O
(

X

N log X
+ log X

)
.

From [7], we know that

(8) h(dp(f)) =
w(dp(f))

√
dp(f)

2π
L(1, χd) ,
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where χd = χdp(f) and dp(f) =
(
4p− r2

)
/f2. By applying this substitution and

noticing that 4
µ(N) ·

√
dp(f)

2π L(1, χd) ·O(1) is O
(

1
N ·

√
p log p

f

)
, we have

(9)

2Ct

πµ(N)

∑
f≤2

√
X

∑
p∈Sr

f (r−1,t,X)

(
N
√

4p− r2

pf
L(1, χd)

)

+ O

 1
N

∑
f≤2

√
X

∑
p∈Sr

f (r−1,t,X)

(√
p log p

f

)
+ O

(
X

N log X
+ log X

)
.

The middle term can be bounded using the Brun-Titchmarsh Inequality. Since
p ≤ X, we can bound

√
p log p by

√
X log X, which gives

1
N

∑
f≤2

√
X

∑
p∈Sr

f (r−1,t,X)

√
p log p

f
≤

√
X log X

N

∑
f≤2

√
X

∑
p∈Sr

f (r−1,t,X)

1
f

.

Now we can split this into two sums and pull the 1/f out of the inner sums, giving
us

(10)
√

X log X

N

 ∑
f≤X1/4

√
t

1
f

∑
p∈Sr

f (r−1,t,X)

1 +
∑

X1/4
√

t
≤f≤2

√
X

1
f

∑
p∈Sr

f (r−1,t,X)

1


Observe that 1

log (X
k ) ≤ 2

log X if and only if log X − log k ≥ 1
2 log X if and only if

√
X ≥ k. In this case, k = tf2, so the last statement is true iff f ≤ X1/4

√
t

. Next,
recall the Brun-Titchmarsh inequality [2]:

π(X, k, `) := #{p < X : p ≡ k (mod `)} <
3X

φ(k) log
(

X
k

) .
Substituting this inequality and the Brun-Titchmarsh inequality into (10), we get
(11)

√
X log X

N

 ∑
f≤X1/4

√
t

1
f

∑
p∈Sr

f (r−1,t,X)

1 +
∑

X1/4
√

t
≤f≤2

√
X

1
f

∑
p∈Sr

f (r−1,t,X)

1



≤
√

X log X

N

 ∑
f≤X1/4

√
t

6X

f2φ(f) log X
+

∑
X1/4
√

t
≤f≤2

√
X

1
f

∑
p∈Sr

f (r−1,t,X)

1

 .

For f ≥ X1/4
√

t
, which is equivalent to f2 ≥

√
X
t , we have

#{n ≤ X : n ≡ a (mod [t, f2])}} =
X

[t, f2]
≤ X

f2
≤ tX√

X
= t

√
X .
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Also,
∑

f≤X1/4
√

t

1
f2 is bounded by a constant because

∑
f≥0

1
f2 is a convergent series.

Let c1 =
∑

f≤X1/4
√

t

1
f2 . Hence, we can bound (11) by

(12)
√

X log X

N

 6c1X

log X
+

∑
X1/4
√

t
≤f≤2

√
X

t
√

X

f

 .

Now, we obviously have ∑
X1/4
√

t
≤f≤2

√
X

1
f
≤

∑
f≤2

√
X

1
f
≤ log X ,

so we get an upper bound for (12):
√

X log X

N

(
6c1X

log X
+ t

√
X log X

)
=

6c1X
3/2

N
+

tX(log X)2

N
= O

(
X3/2

N

)
After these substitutions and absorbing the O

(
X

N log X

)
into O

(
X3/2/N

)
, the ex-

pression in (9) becomes

(13)

2Ct

πµ(N)

∑
f≤2

√
X

∑
p∈Sr

f (r−1,t,X)

(
N
√

4p− r2

pf
L(1, χd)

)

+ O
(

x3/2

N
+ log X

)
.

Now, using the approximations
√

4p− r2 = 2
√

p + O
(

1√
p

)
and µ(N) = O(N), we

see (13) becomes

(14)

4NCt

πµ(N)

 ∑
f≤2

√
X

∑
p∈Sr

f (r−1,t,X)

L(1, χd)√
pf


+ O

 1
N

∑
f≤2

√
X

∑
p∈Sr

f (r−1,t,X)

N · L(1, χd)
p3/2f

+ O
(

X3/2

N
+ log X

)
The second term of the three above can be absorbed into O (log X). To see this,
notice:

(15)

O

 1
N

∑
f≤2

√
X

∑
p∈Sr

f (r−1,t,X)

N · L(1, χd)
p3/2f

 =

O

 ∑
f≤2

√
X

1
f

∑
p∈Sr

f (r−1,t,X)

L(1, χd)
p3/2

 ,

Switching the order of summation gives

(16) O

 ∑
p∈Sr

f (r−1,t,X)

L(1, χd)
p3/2

∑
f≤2

√
X

1
f

 .
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We know the
∑

f≤2
√

X
1
f term can be bounded by log X via integration. Using [6],

we can bound the value of L(1, χd) with

O (log dp(f)) = O
(
log
√

4p− r2/f
)

< O(log X) .

So, (16) is smaller than

(17) O

log X · log X ·
∑

p∈Sr
f (r−1,t,x)

1
p3/2

 .

Using integration to bound the last sum, we see this expression is less than

(18) O
(

log X · log X · 1√
X

)
< O(log X) ,

so the second term in (14) can be absorbed in the error term. Thus our total
expression is now:

(19)
4NCt

πµ(N)

∑
f≤2

√
X

∑
p∈Sr

f (r−1,t,X)

L(1, χd)√
pf

+ O
(

X3/2

N
+ log X

)
.

The 1/f can be factored out of the inner sum in the first term, and the expression
becomes

(20)
4NCt

πµ(N)

∑
f≤2

√
X

1
f

∑
p∈Sr

f (r−1,t,X)

L(1, χd)√
p

+ O
(

X3/2

N
+ log X

)
.

Next, we will use partial summation to rewrite the main term of (20). First,
index the primes in the set Sr

f (r − 1, t, X) as p1, p2, . . . , pq. Rewriting the main
term of (20) with these indices gives

(21)
4NCt

πµ(N)

∑
f≤2

√
X

1
f

q∑
i=1

L(1, χd)√
pi

.

Next, we recall partial summation:

q∑
i=1

aibi =
q−1∑
i=1

Ai (bi − bi+1) + Aqbq, where Ai =
i∑

k=1

ak .

Applying partial summation to (21) with ai = L(1, χd) log pi and bi = 1√
pi log pi

gives us

(22)

4NCt

πµ(N)

∑
f≤2

√
X

1
f

[
q−1∑
i=1

(
i∑

k=1

L(1, χd) log pk

(
1

√
pi log pi

− 1
√

pi+1 log pi+1

))

+
q∑

k=1

L(1, χd) log pk ·
1

√
pq log pq

]
.

Since pq and X are both the largest prime in the set Sr
f (r − 1, t, X), we have

pq = X. So, we can pull 1/
(√

pq log pq

)
= 1/

(√
X log X

)
out front of the last
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sum. Expanding the result gives
(23)

− 4NCt

πµ(N)

∑
f≤2

√
X

1
f

q−1∑
i=1

(
i∑

k=1

L(1, χd) log pk

(
1

√
pi+1 log pi+1

− 1
√

pi log pi

))

+
4NCt

πµ(N)
· 1√

X log X

∑
f≤2

√
X

1
f

q∑
k=1

L(1, χd) log pk

= − 4NCt

πµ(N)

∑
f≤2

√
X

1
f

q−1∑
i=1

(
i∑

k=1

L(1, χd) log pk

(
1

√
pi+1 log pi+1

− 1
√

pi log pi

))

+
4NCt

πµ(N)
· 1√

X log X

∑
f≤2

√
X

1
f

∑
p∈Sr

f (r−1,t,X)

L(1, χd) log p ,

because {pk}q
k=1 = Sr

f (r − 1, t,X). By basic calculus, we can surely write

1
√

pi+1 log pi+1
− 1
√

pi log pi
=
∫ pi+1

pi

d

dy

(
1

√
y log y

)
dy .

So, we can rewrite the first term in (23) as

(24) − 4NCt

πµ(N)

∑
f≤2

√
X

1
f

q−1∑
i=1

(
i∑

k=1

L(1, χd) log pk

∫ pi+1

pi

d

dy

(
1

√
y log y

)
dy

)
.

Since
∑i

k=1 L(1, χd) log pk is a constant with respect to the integral, we can write
it inside the integral:

(25) − 4NCt

πµ(N)

∑
f≤2

√
X

1
f

q−1∑
i=1

∫ pi+1

pi

i∑
k=1

L(1, χd) log pk ·
d

dy

(
1

√
y log y

)
dy.

Now notice that as k ranges from 1 to i, pk ranges through all values in the set
Sr

f (r − 1, t, y). So, we can rewrite the inner-most sum in (25) as∑
p∈Sr

f (r−1,t,y)

L(1, χd) log p · d

dy

(
1

√
y log y

)
.

So, (25) becomes

(26) − 4NCt

πµ(N)

∑
f≤2

√
X

1
f

q−1∑
i=1

∫ pi+1

pi

∑
p∈Sr

f (r−1,t,y)

L(1, χd) log p · d

dy

(
1

√
y log y

)
dy.

Note that we are integrating over many small intervals [pi, pi+1]. Also note that we
are adding the value of these integrals for 1 ≤ i ≤ q − 1. This means we are really
just integrating over the interval [p1, pq]. Also, remember that pq = X. Taking all
of this into account allows us to rewrite (26) as

(27) − 4NCt

πµ(N)

∑
f≤2

√
X

1
f

∫ X

p1

∑
p∈Sr

f (r−1,t,y)

L(1, χd) log p · d

dy

(
1

√
y log y

)
dy.
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If the first prime in our set Sr
f (r − 1, t,X) is 2, then our integral goes from 2 to

X. If the first prime in our set is not 2, then the set Sr
f (r − 1, t, y) is empty for

2 ≤ y < p1, and∫ p1

2

∑
p∈Sr

f (r−1,t,y)

L(1, χd) log p · d

dy

(
1

√
y log y

)
dy = 0.

So, we can write (27) as

(28)

− 4NCt

πµ(N)

∑
f≤2

√
X

1
f

∫ X

2

∑
p∈Sr

f (r−1,t,y)

L(1, χd) log p · d

dy

(
1

√
y log y

)
dy

=
4NCt

πµ(N)

∫ X

2

 ∑
f≤2

√
y

1
f

∑
p∈Sr

f (r−1,t,y)

L(1, χd) log p

 d

dy

[
1

√
y log y

]
dy.

Finally, substituting (28) into (23) gives
(29)

4NCt

πµ(N)
· 1√

X log X

∑
f≤2

√
X

1
f

∑
p∈Sr

f (r−1,t,X)

L(1, χd) log p

− 4NCt

πµ(N)

∫ X

2

 ∑
f≤2

√
y

1
f

∑
p∈Sr

f (r−1,t,y)

L(1, χd) log p

 d

dy

[
1

√
y log y

]
dy,

which, in addition to the error terms in (20), proves Proposition 3.1. �

Now, using an argument similar to that in [1], we see

Proposition 3.2. Given an integer r and any d > 0,∑
f≤2

√
X

1
f

∑
p∈Sr

f (r−1,t,X)

L(1, χd) log p = KrX + O
(

X

logd X

)
,

where

Kr =
∞∑

f=1

1
f

∞∑
k=1

cr
f (k)

kφ([t, kf2])
and cr

f (k) =
∑

a (mod 4k)

a≡0,1 (mod 4)

(r2−af2,4kf2)=4

4(r−1)≡r2−af2 (mod (12,4kf2))

(a

k

)
.

Putting propositions 3.1 and 3.2 together yields

(30)

1
µ(N)

∑
|s|≤N

′
πr

E(s)(X)

= Ct ·
4N

πµ(N)
· 1√

X log X

(
KrX + O

(
X

logd X

))
− Ct ·

4N

πµ(N)

∫ X

2

(
Kry + O

(
y

logd y

))
d

dy

[
1

√
y log y

]
dy

+ O
(

X3/2

N
+ log X

)
.
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Factoring out Kr and evaluating the derivative gives

(31)

1
µ(N)

∑
|s|≤N

′
πr

E(s)(X)

= Ct ·Kr ·
4N

πµ(N)

( √
X

log X
+
∫ X

2

dy
√

y log2 y
+
∫ X

2

dy

2
√

y log y

)

+ O

(
X3/2

N
+

√
X

logd X

)
.

Using the fact that µ(N) = 2N + O(1), the equation becomes
(32)

1
µ(N)

∑
|s|≤N

′
πr

E(s)(X) =
2
π

Ct ·Kr ·

( √
X

log X
+
∫ X

2

dy
√

y log2 y
+
∫ X

2

dy

2
√

y log y

)

+ O

(
X3/2

N
+

√
X

logd X

)
.

Evaluating the first integral, we have∫ X

2

dy
√

y log2 y
= −

√
X

log X
−

√
2

log 2
+

1
2

∫ X

2

dy
√

y log y

= −
√

X

log X
+ π1/2(X) + O (1) .

where π1/2(X) =
∫X

2
dy

2
√

y log y ∼
√

X
log X as in [3] with an error term smaller than

O
( √

X
log X

)
. Thus, ∫ X

2

dy
√

y log2 y
= O

( √
X

log X

)
.

Applying this observation to (32) gives

(33)

1
µ(N)

∑
|s|≤N

′
πr

E(s)(X) =
2
π

Ct ·Kr ·

( √
X

log X
+ O

( √
X

log X

)
+
∫ X

2

dy

2
√

y log y

)

+ O

(
X3/2

N
+

√
X

logd X

)
.

Combining the O
( √

X
log X

)
and O

( √
X

logd X

)
terms and substituting the asymptotic

π1/2 =
∫X

2
dy

2
√

y log y ∼
√

X
log X as above, we find

(34)
1

µ(N)

∑
|s|≤N

′
πr

E(s)(X) =
4
π

Ct ·Kr ·
√

X

log X
+ O

(
X3/2

N
+

√
X

logd X

)
.

which is exactly the result of Theorem 1.1.
Given our conjecture that the constant Ct exists for t ∈ {5, 6, 7, 10}, an im-

mediate corollary to the theorem would be that for all curves E(s) with 5,6,7, or
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10-torsion, the following equation holds

1
µ(N)

∑
|s|≤N

′
πr

E(s)(X) =
4
π
· Ct ·Kr ·

√
X

log X
+ O

(
X3/2

N
+

√
X

logd X

)
.
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