
The Kings Problem and Matrix Recurrences

Anatoliy Kats, Micah Leamer, Charles Swannack, Neil Calkin

June 17, 2003

1 Introduction

Let an n×k chessboard be given. The kings problem asks for the number of ways to place kings on it so that
no two are adjacent. This amounts to finding all the configurations of the chessboard that do not include
any of the following,

K

K

K K K

K K

K

The special case where k = 1 is completely solved. Let an n × 1 board be given, and let x1(n) := the
number of allowed configurations that do not have a king in the last cell. Let x2(n) := the number of allowed
configurations that do. Then we get

x1(n) = x2(n− 1) + x1(n− 1) = x1(n− 2) + x1(n− 1)

and
x2(n) = x1(n− 1) = x2(n− 2) + x1(n− 2) = x2(n− 3) + x2(n− 2)

The sum x1(n) + x2(n) is also a Fibonacci sequence in n, appropriately offset
Let us modify this approach so that we can to generalize to higher dimensions. We summarize the

relationship above by the following matrix:

(
x1(n− 1) x2(n− 1)
x1(n− 2) x2(n− 2)

)(
1
1

)
=

(
x1(n)
x2(n)

)

Putting in the starting conditions for n = 0 and n = 1, we get a sequence in n of vectors defined explicitly
by (

1 1
1 0

)n(
1
1

)
=

(
x1(n+ 1)
x2(n+ 1)

)
= x(n+ 1)

We should examine more closely what the ones and zeroes mean in this matrix. There are two possible
combinations for the last ”column” of an n × 1 board. If the column is empty, let us say that it has
configuration x1. Else, let us say that it has configuration x2. If the (n+ 1)st cell has configuration x1, then
we can place it beside a cell that has either configuration x1 or configuration x2. That means we need both
of those to contribute to the top part of the output vector, x1(n−1). We put a one in row 1, column 1 of the
matrix to express that configuration x1 can be placed beside itself. We also put a one in row 1, column 2 to
express that configuration x1 can be put next to configuration x2. Matters are different when the (n+ 1)st

cell has configuration x2, a king. That cell can be put next to an empty cell, but not next to another king.
Then, there are contributions to x2(n− 1) from only one place in the matrix. Let us put that one in column
1, to mean that we can place combination x2 beside combination x1. The matrix we have just constructed
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has a dual nature as an adjacency matrix of a graph that has a node for every possible combination x1 and
x2.

Let us construct a similar adjacency matrix for the n× k case. We will list all possible configurations for
the last column in a very specific order. First, we list the columns with the bottom-most square empty, then
the columns with the bottom-most square full. For each of these two groups, start with the columns that
have the second square from the bottom empty. For each of the four resulting groups, start with the ones
with the third bottom-most square empty, etc. Continue moving up until all the combinations are listed.
The list for the n× 4 board is shown in figure 1.

F(4)

K

K

K K

K

K K

K

K

K

F(3) F(3)

F(5)

Figure 1: Listing these columns is isomorphic to listing rows of a 4× 1 board.

To form an adjacency we need to know which columns can be placed side by side. Clearly, if the bottom
squares in both columns are empty, we are just placing columns of n × k − 1 board. Then, the top left
corner of Ak is simply Ak−1. Next we try to place the columns in figure 1. Since kings are not allowed to be

..

K

?

..

..

Figure 2: Possible final positions of a column

placed diagonally next to each other, the position corresponding to a question mark figure 1 must be blank.
Then, the position above it can be marked with anything we choose, so we are essentially placing columns
of an n× (k − 2) board. By the order of the columns, this corresponds to putting Ak−2 immediately to the
bottom right of Ak−1. Since column placement is symmetric, that is if we can place a column to the right of
another column we can also place it to the left, the matrix is symmetric. Thus we need place another Ak−2

immediately to the top left of An−1. Since you are neither allowed to place two columns that both have a
king in the bottom position side by side, nor are you allowed to place two columns that have a king in the
last and second to last positions side by side, the remaining squares of An are filled with zeros.

More precisely, we obtain the matrix recurrence,

An =

(
An−1 An−2

An−2 0

)
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2 A Brief Overview of Tensors

Define the operation ⊗ to be the Kronecker tensor. In other words ⊗ is a well defined mapping from two
arbitrary matrices A ∈ Lin(Fm), B ∈ Lin(Fn) to the matrix A⊗B ∈ Fmn such that,

A =




a0,0 . . . a0,j−1

...
. . .

...
ai−1,0 . . . ai−1,j−1


 and B =




b0,0 . . . b0,c−1

...
. . .

...
br−1,0 . . . br−1,c−1




then

A⊗B =




a0,0B . . . a0,j−1B
...

. . .
...

ai−1,0B . . . ai−1,j−1B




More specifically

A⊗B =




a0,0b0,0 . . . a0,0b0,c−1 a0,j−1b0,0 . . . a0,j−1b0,c−1

...
. . .

... . . .
...

. . .
...

a0,0br−1,0 . . . a0,0br−1,c−1 a0,j−1br−1,0 . . . a0,j−1br−1,c−1

...
. . .

...
ai−1,0b0,0 . . . ai−1,0b0,c−1 ai−1,j−1b0,0 . . . ai−1,j−1b0,c−1

...
. . .

... . . .
...

. . .
...

ai−1,0br−1,0 . . . ai−1,0br−1,c−1 ai−1,j−1br−1,0 . . . ai−1,j−1br−1,c−1




Under this operation the following relations hold [3]. Suppose

dim(A) = dim(C) and dim(B) = dim(D)

then

A⊗B +A⊗D = A⊗ (B +D)

A⊗B + C ⊗B = (A+ C)⊗B
(A⊗B)(C ⊗D) = (AC ⊗BD)

Additionally for all c ∈ F and matrices A and B over F

c(A⊗B) = cA⊗B = Ac⊗ B = A⊗ cB = A⊗Bc = (A⊗B)c

Let Jn(λ) denote a Jordan block of size n with λ along the diagonal. Let the matrices A and B have Jordan
forms ⊕

1≤k≤s
(Jnk (αk)) and

⊕

1≤r≤t
(Jmr (βr)) respectively

then A⊗B is similar to ⊕

1≤k≤s,1≤r≤t
(Jnk (αk)⊗ Jmr(βr))

and in general [1]
Jordan(A⊗B) = Jordan(B ⊗A)

To determine the structure of the tensor product of two arbitrary matrices, it sufficies for us to show the
Jordan structure of the tensor of two Jordan blocks. Let n and m be positive integers, with n ≤ m. Let
α, β 6= 0 then

Jordan(Jn(0)⊗ Jm(0)) =
( n−1⊕

i=1

Ji(0)⊕ Ji(0)
)
⊕ (Jn(0)⊗ Im−n+1) (1)

3



Jordan(Jn(α) ⊗ Jm(0)) =
n⊕

j=1

Jm(0) (2)

similarly

Jordan(Jn(0)⊗ Jm(β)) =
m⊕

j=1

Jn(0) (3)

and

Jordan(Jn(α) ⊗ Jm(β)) =
n−1⊕

k=0

Jm−n+1+2k(αβ) (4)

Proofs of equations 1, 2, 3, 4 have appeared in Li[1].

3 Diagonalizable Recurrence

Theorem 3.1 Let α and β be diagonalizable n× n matrices, say

P1αP
−1
1 = D1

P2βP
−1
2 = D2

Then α⊗ β is diagonalizable.

Proof
(P1 ⊗ P2)(α ⊗ β)(P1 ⊗ P2)−1 = (P1 ⊗ P2)(αP−1

1 ⊗ βP−1
2 )

= (P1αP
−1
1 ⊗ P2βP

−1
2 )

= (D1 ⊗D2)

�

Corollary 3.1 Let α be a diagonalizable 2 × 2 matrix and let An = α⊗n. If A1 has eigenvalues λ1 > λ2

then An has eigenvalues λi1λ
n−i
2 with multiplicity

(
n
i

)
.

Proof
Proof by induction on n. A1 is diagonalizable by definition. Assume An−1 is diagonalizable. Then, An−1 has
eigenvalues λi1λ

n−i−1
2 with multiplicity

(
n−1
i

)
. Now, α⊗An−1 has eigenvalues λ1λ

i
1λ
n−i−1
2 with multiplicity(

n−1
i

)
and λ2λ

i
1λ
n−i−1
2 with multiplicity

(
n−1
i

)
by the definition of the Kronecker Tensor. So, the eigenvalue

λi1λ
n−i
2 has multiplicity

(
n−1
i−1

)
+
(
n−1
i

)
=
(
n
i

)
.

�

Definition 3.1 A double matrix recurence is a recurence of the form

An = α⊗An−1 + β ⊗Bn−1

Bn = γ ⊗An−1 + δ ⊗Bn−1

where α, β, γ, δ are m×m matrices.

Theorem 3.2 If A0, B0, α, β, γ, and δ (as defined in definition 3.1) are all simultaneaously diagonalized by
some matrix, say P , then An and Bn are diagonalized by P⊗n.
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Proof
Proof by induction on n. Assume that An−1 and Bn−1 are diagonalized by P⊗n−1. Then,

P⊗nAn(P⊗n)−1 = P⊗n (α⊗An−1 + β ⊗Bn−1) (P⊗n)−1

= (P ⊗ P⊗n−1) (α⊗An−1 + β ⊗Bn−1) (P−1 ⊗ (P⊗n−1)−1)

=
(
PαP−1

)
⊗
(
P⊗(n−1)An−1(P⊗(n−1))−1

)

+
(
PβP−1

)
⊗
(
P⊗(n−1)Bn−1(P⊗(n−1))−1

)

Since the tensor and sum of two diagonal matrices is again diagonal, An is diagonalizable by P⊗n. The proof
for Bn follows the same proof as that for An.

�

The adjacency matrix for the King’s problem is formed by a double matrix recurence. However there is
not a matrix P that simultaneously diagonalizes this double martix recurence. For the kings problem take,

α =

(
1 0
0 0

)
β =

(
0 1
1 0

)
γ =

(
1 0
0 0

)
δ =

(
0 0
0 0

)
.

4 Non-negative Matrices

Theorem 4.1 (Perron-Fröebnious) Given a primitive n× n matrix T there exists an eigenvalue λ such
that [4],

1 λ ∈ R and λ > 0

2 λ has unique left and right eigenvectors up to constant multiples

3 λ > |λ′ | for all eigenvalues λ
′ 6= λ

4 λ is a simple root of the characteristic equation of T

Li and Strouse [1] offer an elementry proof of the formula

Jordan(Jn(α) ⊗ Jm(β)) =

n−1⊕

k=0

Jm−n+1+2k(αβ) (5)

(5) allows us to make an alternative proof for the last part of Perron Fröbenious using only elementry
methods. More precisely, given that any non-negative primitive matrix T has a positive real dominant
eigenvalue λ with corrosponding eigenspace of dimension one it follows from the formula above that λ is a
simple root of the characteristic polynomial for T .
Proof
Let T be a non-negative primitive matrix with dominant eigenvalue λ, then λ2 is the dominant eigenvalue
of T ⊗ T . Now, since Jordan(T ) contains one and only one eigen-block for λ, Jn(λ) corrosponds to the one
dimensional eigenspace for λ. Since T is primitive, T k is strictly positive, which implies (T ⊗T )k = T k⊗T k
is strictly possitive. Ergo T ⊗ T is primitive, with dominant eigen-value λ2

Now, Jordan(T ⊗ T ) contains one and only one eigenblock for λ2, Jm(λ2) corrosponding to the one
dimensional eigenspace for λ. Also, Jordan(Jn(λ)⊗Jn(λ)) is a direct summand of Jordan(T⊗T ). Therefore,
Jordan(Jn(λ) ⊗ Jn(λ)) = Jm(λ2).

Equation 5 above implies that the the number of Jordan blocks in Jordan(Jn(λ)⊗ Jn(λ)) is n. So n = 1
and λ is a simple root of the characteristic polynomial of T .

5



5 Combinatorial Analysis of a Single Matrix recurrence

Consider a matrix α that is a Jordan block of size j. Define

cn,j,k = # of Jordan blocks of size n in the Jordan Canonical form of α⊗k

Let us first look at the simple case when α is a Jordan block of size 2. Then, we start with a Jordan block
of size 2 at level 1 (ie k = 1). Tensoring that with another Jordan block of size 2 we produce a Jordan block
of size 3 and 1 by Li[1]. Continuing the process we get the triangle as formed in figure 3.

k�
n

1 2 3 4 5 6 7 8 9
1 0 1 0 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0 0
3 0 2 0 1 0 0 0 0 0
4 2 0 3 0 1 0 0 0 0
5 0 5 0 4 0 1 0 0 0
6 5 0 9 0 5 0 1 0 0
7 0 14 0 14 0 6 0 1 0
8 14 0 28 0 20 0 7 0 1

Figure 3: The Jordan block structure of α⊗k, α a Jordan block of size 2

Each Jordan block of size n ≥ 2 at level k contributes a Jordan block of size n + 1 and n − 1 at level
k + 1, that is

cn,2,k = cn−1,2,k−1 + cn+1,2,k−1 (6)

If we continue to expand this recurrence we see that cn,2,k = cn−2,2,k−1 + 2cn,2,k−2 + cn+2,2,k−2. Continuing
further we see that this expansion appears binomial provided that n − l > 0. However, examining the case
c1,2,k = c0,2,k−1 + c2,2,k−1 we see that we must make some sort of correction for n < 2. More explicitly we
need that c1,2,k = c0,2,k−1 + c2,2,k−1 − c0,2,k−1. To achieve this allow cn,j,k 6= 0 for n < 0. Then noticing
that at level 1 we have a Jordan block of size 2, and at level 3 we must have c0,2,3 = 0, (6) implies that
c−1,2,2 = −1. Now, again using (6) we obtain figure 4.

k�
n
−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9

1 0 0 0 0 0 0 −1 0 0 0 1 0 0 0 0 0 0
2 0 0 0 0 0 −1 0 −1 0 1 0 1 0 0 0 0 0
3 0 0 0 0 −1 0 −2 0 0 0 2 0 1 0 0 0 0
4 0 0 0 −1 0 −3 0 −2 0 2 0 3 0 1 0 0 0
5 0 0 −1 0 −4 0 −5 0 0 0 5 0 4 0 1 0 0
6 0 −1 0 −5 0 −9 0 −5 0 5 0 9 0 5 0 1 0
7 −1 0 −6 0 −14 0 −14 0 0 0 14 0 14 0 6 0 1

Figure 4: The Jordan block structure of α⊗k, α a Jordan block of size 2, allowing for Jordan blocks of size
≤ 0

For j = 2 we have the initial conditions that c−1,2,0 = −1 and c1,2,0 = 1. Thus, we have that cn,2,k =
[xn]((x− x−1)(x−1 + x)k).

Next, consider the case j 6= 2. Then we start with one Jordan block of size j. Tensoring this with another
Jordan block of size j, again by Li[1], we obtain Jordan blocks of size 2j− 1, 2j− 3, · · · , 3, 1. In general if we
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have a Jordan block of size n ≥ j we produce Jordan blocks of size n+j−1, n+j−3, · · · , n−(j−3), n−(j−1).
Now, if we put this as a recurrence ignoring for now the problems occurring when n < j we have,

cn,j,k =

j∑

l=0

cn+j−1−2l,j,k−1 (7)

If we continue to expand this recurrence as before we get the initial condition that, cj,j,1 = −c−j,j,1 = 1.
Note, that ∀j c1,j,0 = −c−1,j,0 = 1. This implies that,

cn,j,k = [xn]

(
x
(
x−j+1 + x−j+3 + · · ·+ xj−3 + xj−1

)k − 1

x

(
x−j+1 + x−j+3 + · · ·+ xj−3 + xj−1

)k
)

= [xn]

(
x2 − 1

x

(
x−j+1 + x−j+3 + · · ·+ xj−3 + xj−1

)k)

= [xn+1]
(

(x2 − 1)
(
x−j+1 + x−j+3 + · · ·+ xj−3 + xj−1

)k)

= [xn+1]

(
(x2 − 1)

(
x−(j−1)

(
1 + x2 + x4 + · · ·+ x2(j−1)

))k)

= −[xn+1+(j−1)k ]

(
(1− x2j)k

(1− x2)k−1

)

Now, to simplify things a bit examine the sequence defined by the denominator. Let,

bn = [xn]
1

(1− x2)k−1

= [xn](1− x2)−(k−1)

= [xn]
∞∑

n=0

(−1)n
(−(k − 1)

n

)
x2n

=





(−1)
n
2

(−(k − 1)
n
2

)
if 2|n

0 otherwise

=





(
k + n

2 − 2
n
2

)
if 2|n

0 otherwise

Now, examining the numerator let,

an = [xn](1− x2j)k

= [xn]

∞∑

n=0

(−1)n
(
k

n

)
x2jn

=





(−1)
n
2j

(
k
n
2j

)
if 2j|n

0 otherwise
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Next, to obtain [xn]
(

(1−x2j)k

(1−x2)k−1

)
, we must convolve the sequences an and bn.

Q(n, j, k) = an ∗ bn

=

n∑

l=0

albn−l

=





bn/(2j)c∑

l

(−1)l
(
k

l

)(
k + n−2jl

2 − 2
n−2jl

2

)
if 2|n

0 otherwise

Thus, cn,j,k = −Q(n+ 1 + (j − 1)k, j, k). Note that since Q(n, j, k) is non-zero only for even n, if j is odd
then we only expect to see odd Jordan block sizes in the recursive tensor. Conversely, if j is even we expect
to see odd Jordan block sizes at odd levels and even Jordan block sizes at even levels.

6 A Basis of Eigenvectors for the Tensor of Two Jordan Blocks

Theorem 6.1 Let Jn(α) and Jn(β) be given and let,

An :=




0 α α . . . α
0 0 α . . . α
...

. . .
. . .

. . .
...

0 0 . . . 0 α
0 0 . . . 0 0




Bn :=




(−β)n−1 0 0 . . . 0

0 (−β)n−2 0
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 (−β)1 0
0 . . . 0 0 1




for integers n and m let n ≤ m. Let Zi,j denote an i× j matrix of zeros

Vm,n :=




BnA
0
nB
−1
n

BnA
1
nB
−1
n

BnA
2
nB
−1
n

...
BnA

n−1
n B−1

n

Zmn−n2,n




Vn,m :=




BnA
0
nB
−1
n

Zm−n,n
BnA

1
nB
−1
n

Zm−n,n
BnA

2
nB
−1
n

...
Zm−n,n

BnA
n−1
n B−1

n

Zm−n,n




Then the columns of Vm,n and Vn,m are a basis, in reduced row eclon form, for the eigenspace of Jm(α)⊗
Jn(β) and Jn(α) ⊗ Jm(β) respectively. Where ⊗ denotes the Kronecker tensor of two matrices.

Proof
Let [a

(k)
i,j ] be the ijth element of Akn. Then it follows from the definition of Akn that

a
(0)
i,j = [xj−i]1 and a

(1)
i,j = α[xj−i−1]

1

1− x
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so ∃k ∈ Z such that

a
(l)
i,j = αl[xj−i−l](

1

1− x )l ∀l, 1 ≥ l ≤ k

then

a
(k+1)
i,j =

n∑

h=1

(αk [xj−i−k ](
1

1− x )k)(α[xj−i−1 ]
1

1− x )

which is equivalent to

a
(k+1)
i,j =

∞∑

h=1

(αk [xj−i−k ](
1

1− x )k)(α[xj−i−1 ]
1

1− x )

since i ≤ n. So,

a
(k+1)
i,j = αk+1[xj−i−(k+1)](

1

1− x )k+1

It follows that BnA
k
nB
−1
n = [γki,j ] such that

γki,j = αk(−β)i−j [xj−i−k ](
1

1− x )k

Let er denote the rth element in the standard basis for a vector space of dimension mn
and let wj denote the jth column of Vm,n then enm · ((Jm(α)⊗ Jn(β))wj ) = αβenm · wj

en(m−1)+i · ((Jm(α) ⊗ Jn(β))wj ) = αβen(m−1)+i · wj + αen(m−1)+i+1 · wj (8)

= αβen(m−1)+i · wj (9)

since enk+r · wj = 0∀r ≥ m− k

enk · ((Jm(α) ⊗ Jn(β))wj ) = αβenk · wj + βen(k+1) · wj (10)

= αβenk · wj (11)

since ens · wj = 0 ∀ s ≥ 1
Note that

[xs](
1

1− x )t =

(
s+ t− 1

t

)
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enk+i · ((Jm(α)⊗ Jn(β))wj) = αβenk+i · wj + αenk+i+1 ·+ . . .

. . . wjβen(k+1)+i · wj + en(k+1)+i+1 · wj

= αβenk+i · wj + αγ
(k)
i+1,j + βγ

(k+1)
i,j + γ

(k+1)
i+1,j

= αβenk+i · wj + ααk(−β)i+1−j [xj−(i+1)−k ](
1

1− x )k + . . .

. . . βαk+1(−β)i−j [xj−i−(k+1)](
1

1− x )k+1 + . . .

. . . αk+1(−β)i+1−j [xj−(i+1)−(k+1) ](
1

1− x )k+1

= αβenk+i · wj + αk+1(−β)i+1−j([xj−i−k−1 ](
1

1− x )k − . . .

. . . [xj−i−k−1](
1

1− x )k+1 + [xj−i−k−2](
1

1− x )k+1)

= αβenk+i · wj + αk+1(−β)i+1−j
((

j − i− 2

k

)
−
(
j − i− 1

k + 1

)
−
(
j − i− 2

k + 1

))

= αβenk+i · wj
so

(Jm(α)⊗ Jn(β))wj = αβwj∀j
The columns of Vm, n are in reduced row echlon form and are therefore linearly independent. Also, they are
all eigenvectors with span of dimension min(m,n). It follows that they form a basis for the eigenspace of
(Jm(α) ⊗ Jn(β)).
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