CALCULATING THE /(-REGULAR PARTITION FUNCTION
CHRISTTAN BRUUN

ABSTRACT. For positive integer n, an f-regular partition of n is a partition of n in
which no part is divisible by ¢. The f-regular partition function bs(n) counts the
number of ¢-regular partitions of n. This paper examines the calculation of by(n),
and gives data evidence for some conjectures about b(n).

1. INTRODUCTION

A partition of a positive integer n is a non-increasing sequence that sums to n,
and a partition function counts the number of partitions of n. In this paper, we will
examine the partition function b,(n), the number of partitions of n into parts not
divisible by /.

As stated above, a partition of a positive integer n is a non-increasing sequence of
positive integers that sums to n For example, the possible partitions of 5 are:

)

441

3+2

3+1+1
2+2+1
2+1+1+1
1+1+14+1+1

The (unrestricted) partition function p(n) counts the number of partitions of n, so
for this example, p(5) = 7.

Similarly, we can define other partition functions by limiting what parts are allow-
able. In particular, we can specify that no part may be divisible by a number ¢. For
¢ > 1, an (-reqular partition of a positive integer n is a partition in which none of the
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parts is divisible by ¢. For example, the 3-regular partitions of 5 are:

)

4+1

2+2+1
2+1+1+1
I1+1+1+1+1

The (-reqular partition function by(n) counts the number of ¢-regular partitions of a
positive integer n [4]. From the above example, we can see that b3(5) = 5.

2. GENERATING FUNCTIONS FOR by(n)

One of the most useful tools in studying partition functions is generating functions.
A generating function for a sequence {a,} is a function f such that

(1) f(z) =) ana"

For example, the sequence {i}°, has generating sequence
f(x) =2+ 22% + 323 + 4ot + 5a° + - - -

The partition function describes a sequence {p(n)}°,, with p(0) = 1, p(1) = 1,

p(2) =2, p(3) =3,p4) =5, pb) =7, p(6) =11, p(7) = 15, p(8) = 22, ..., so p(n)
can be written as a generating function as well. Let P(x) be the generating function

for {p(n)}7Zo, s0

(2)  Plx) =) p(n)a" =1+ + 22" + 3% + 52 + 72 + 112 + 1527 + - --
n=0

We can write this sum more succinctly as in infinite product by considering the
partition function combinatorially. For example, for the partitions of n into distinct
parts, we have the generating function

(3) fla)=1+a)1+2")1+2") (142" = [ +2"

n=1

since the coefficient of 2™ gives the number of ways to write n as the sum of distinct
parts. Similarly, we can write



Pln)=(14z+2*+-- )1+ +a* +-- )(14+2>+2°+---)- -

(4)

H(1+x"+x2”+x3"+--~)
n=1

where the first term counts the ways to have 0 ones, 1 one, 2 ones, etc., the second
term counts the ways to have 0 twos, 1 two, 2 twos, and so on, so that the coefficient
of z™ gives the partition function p(n). Then, given the identity

1
—_ xn
this becomes
(6) P(n) =[] —-a""
n=1

We can simplify this further by utilizing Euler’s Pentagonal Number Theorem|2]:

=1

This gives the identity

{ Z (—1)jx3j22_j } Zp(n)x” =1

(8)

[e.e]
{1—x—x2+x5+x7—x12—x15+---}Zp(n)x”: 1
n=0
Solving for the coefficient of z™ then gives Euler’s identity[2]

p(n) =pn—1)+pn—2)—pn->5)—pn—"7)+pn—12) +---

(9) I RS (n _ M) LN (L (n _ 332__3)
S 7 )Ly .
Then using this recurrence, we can calculate p(n) from its initial values. This gives
us a reasonable way to calculate larger values of the partition function.
We can define similar generating functions for more general partition functions.
For example, we may restrict the parts to a specific set, say H, and require that
every partition of n be composed of elements of H. Let p(H,n) be the partition
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function defined in this way. Using the same argument as for the unrestricted partition
function, this gives the following generating function|[1]:

(10) S p(H, i)t = [[ (-
=0 neH
From this equation, it is relatively simple to define the infinite product generating
function for the f-regular partition function. If we let H = {a € N : £ { a}, then
the partition function p(H,n) = by(n). The generating function for b,(n) then follows
from (10). For example, if ¢ = 3, H = {1,2,4,5,7,8,...}, and so bs3(n) would have

generating function

(I—z)(1—22)(1—23)(1 —2*)(1 —ad)---

_ Hil(l_ﬂ)_l _ P(x)
[[Z(1—a%)"t P(a?)

J=1

i bym)an = L= )0 =21 = 2)(A = 21— 27) -
(11) n=0

where P(z) = [[72,(1 — 2™)~! is the generating function for the unrestricted par-

tition function. This derivation works for every choice of ¢, so in general, b,(n) has
generating function:

(12) > htna" = 5

Using (12) and the Pentagonal Number Theorem (7), we can construct a recurrence
similar to the Euler recurrence for p(n).

P(z) o 35245 - n i p3i%+i
(13) f(z) = Pla) — (Z(_l)ﬂx 3 ) (Z be(n)x ) = Z(—l)ﬂx 2
J#0 n=0 J#0
Then, solving for the coefficient of ", we get:

(1) S (Cipn (n_ 3j22+j) :{ (1) it n = ¢ (22)

0 otherwise

3245 <,
2 —

Then if we define a correction factor xy(n), with

(~1)F ifn = ¢ (%2)

0 otherwise

(15) Xe(n) = {



we can solve for by(n) to get the recurrence:

(16 i = 3 e (n- L)

8241 <1
72 <

This recurrence is identical to the Euler recurrence for the unrestricted partition
function p(n), only with the addition of the x,(n) term. Calculating b,(n) is then the
same as calculating p(n) with this extra term.

3. A NATURAL ALGORITHM FOR CALCULATING b,(n)

4. DATA
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