CALCULATING THE *l*-REGULAR PARTITION FUNCTION

CHRISTIAN BRUUN

ABSTRACT. For positive integer n, an ℓ -regular partition of n is a partition of n in which no part is divisible by ℓ . The ℓ -regular partition function $b_{\ell}(n)$ counts the number of ℓ -regular partitions of n. This paper examines the calculation of $b_{\ell}(n)$, and gives data evidence for some conjectures about $b_{\ell}(n)$.

1. INTRODUCTION

A partition of a positive integer n is a non-increasing sequence that sums to n, and a partition function counts the number of partitions of n. In this paper, we will examine the partition function $b_{\ell}(n)$, the number of partitions of n into parts not divisible by ℓ .

As stated above, a *partition* of a positive integer n is a non-increasing sequence of positive integers that sums to n For example, the possible partitions of 5 are:

$$54 + 13 + 23 + 1 + 12 + 2 + 12 + 1 + 1 + 11 + 1 + 1 + 1 + 1$$

The (unrestricted) partition function p(n) counts the number of partitions of n, so for this example, p(5) = 7.

Similarly, we can define other partition functions by limiting what parts are allowable. In particular, we can specify that no part may be divisible by a number ℓ . For $\ell > 1$, an ℓ -regular partition of a positive integer n is a partition in which none of the

Date: September 8, 2003.

Key words and phrases. partition function, l-regular partition function.

CHRISTIAN BRUUN

parts is divisible by ℓ . For example, the 3-regular partitions of 5 are:

$$5 \\ 4 + 1 \\ 2 + 2 + 1 \\ 2 + 1 + 1 + 1 \\ 1 + 1 + 1 + 1 + 1 + 1$$

The ℓ -regular partition function $b_{\ell}(n)$ counts the number of ℓ -regular partitions of a positive integer n [4]. From the above example, we can see that $b_3(5) = 5$.

1

2. Generating Functions for $b_{\ell}(n)$

One of the most useful tools in studying partition functions is generating functions. A generating function for a sequence $\{a_n\}$ is a function f such that

(1)
$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$

For example, the sequence $\{i\}_{i=1}^{\infty}$ has generating sequence $f(x) = x + 2x^2 + 3x^3 + 4x^4 + 5x^5 + \cdots$

The partition function describes a sequence $\{p(n)\}_{n=0}^{\infty}$, with p(0) = 1, p(1) = 1, p(2) = 2, p(3) = 3, p(4) = 5, p(5) = 7, p(6) = 11, p(7) = 15, p(8) = 22, ..., so p(n) can be written as a generating function as well. Let P(x) be the generating function for $\{p(n)\}_{n=0}^{\infty}$, so

(2)
$$P(x) = \sum_{n=0}^{\infty} p(n)x^n = 1 + x + 2x^2 + 3x^3 + 5x^4 + 7x^5 + 11x^6 + 15x^7 + \cdots$$

We can write this sum more succinctly as in infinite product by considering the partition function combinatorially. For example, for the partitions of n into distinct parts, we have the generating function

(3)
$$f(x) = (1+x)(1+x^2)(1+x^3)(1+x^4)\dots = \prod_{n=1}^{\infty} (1+x^n)$$

since the coefficient of x^n gives the number of ways to write n as the sum of distinct parts. Similarly, we can write

(4)
$$P(n) = (1 + x + x^{2} + \dots)(1 + x^{2} + x^{4} + \dots)(1 + x^{3} + x^{6} + \dots) \dots$$
$$= \prod_{n=1}^{\infty} (1 + x^{n} + x^{2n} + x^{3n} + \dots)$$

where the first term counts the ways to have 0 ones, 1 one, 2 ones, etc., the second term counts the ways to have 0 twos, 1 two, 2 twos, and so on, so that the coefficient of x^n gives the partition function p(n). Then, given the identity

(5)
$$\frac{1}{1-x^n} = 1 + x^n + x^{2n} + x^{3n} + x^{4n} + \cdots$$

this becomes

(6)
$$P(n) = \prod_{n=1}^{\infty} (1 - x^n)^{-1}$$

We can simplify this further by utilizing Euler's Pentagonal Number Theorem[2]:

(7)
$$\prod_{n=1}^{\infty} (1-x^n) = 1 + \sum_{j=1}^{\infty} (-1)^j \left(x^{\frac{3j^2+j}{2}} + x^{\frac{3j^2-j}{2}} \right) = \sum_{j=-\infty}^{\infty} (-1)^j x^{\frac{3j^2-j}{2}}$$

This gives the identity

(8)
$$\left\{\sum_{j=-\infty}^{\infty} (-1)^j x^{\frac{3j^2-j}{2}}\right\} \sum_{n=0}^{\infty} p(n) x^n = 1$$
$$\left\{1 - x - x^2 + x^5 + x^7 - x^{12} - x^{15} + \cdots\right\} \sum_{n=0}^{\infty} p(n) x^n = 1$$

Solving for the coefficient of x^n then gives Euler's identity[2]

(9)
$$p(n) = p(n-1) + p(n-2) - p(n-5) - p(n-7) + p(n-12) + \cdots$$
$$= \sum_{j \in \mathbb{Z}} (-1)^{j+1} p\left(n - \frac{3j^2 + j}{2}\right) + \sum_{j \in \mathbb{Z}} (-1)^{j+1} p\left(n - \frac{3j^2 - j}{2}\right)$$

Then using this recurrence, we can calculate p(n) from its initial values. This gives us a reasonable way to calculate larger values of the partition function.

We can define similar generating functions for more general partition functions. For example, we may restrict the parts to a specific set, say H, and require that every partition of n be composed of elements of H. Let p(H, n) be the partition

CHRISTIAN BRUUN

function defined in this way. Using the same argument as for the unrestricted partition function, this gives the following generating function[1]:

(10)
$$\sum_{i=0}^{\infty} p(H,i)x^{i} = \prod_{n \in H} (1-x^{n})^{-1}$$

From this equation, it is relatively simple to define the infinite product generating function for the ℓ -regular partition function. If we let $H = \{a \in \mathbb{N} : \ell \nmid a\}$, then the partition function $p(H, n) = b_{\ell}(n)$. The generating function for $b_{\ell}(n)$ then follows from (10). For example, if $\ell = 3$, $H = \{1, 2, 4, 5, 7, 8, \ldots\}$, and so $b_3(n)$ would have generating function

(11)
$$\sum_{n=0}^{\infty} b_3(n) x^n = \frac{(1-x^3)(1-x^6)(1-x^9)(1-x^{12})(1-x^{15})\cdots}{(1-x)(1-x^2)(1-x^3)(1-x^4)(1-x^5)\cdots} \\ = \frac{\prod_{i=1}^{\infty} (1-x^i)^{-1}}{\prod_{j=1}^{\infty} (1-x^{3j})^{-1}} = \frac{P(x)}{P(x^3)}$$

where $P(x) = \prod_{n=1}^{\infty} (1 - x^n)^{-1}$ is the generating function for the unrestricted partition function. This derivation works for every choice of ℓ , so in general, $b_{\ell}(n)$ has generating function:

(12)
$$\sum_{n=0}^{\infty} b_{\ell}(n) x^n = \frac{P(x)}{P(x^{\ell})}$$

Using (12) and the Pentagonal Number Theorem (7), we can construct a recurrence similar to the Euler recurrence for p(n).

(13)
$$f(x) = \frac{P(x)}{P(x^{\ell})} \Longrightarrow \left(\sum_{j \neq 0} (-1)^j x^{\frac{3j^2 + j}{2}}\right) \left(\sum_{n=0}^{\infty} b_{\ell}(n) x^n\right) = \sum_{j \neq 0} (-1)^j x^{\ell \frac{3j^2 + j}{2}}$$

Then, solving for the coefficient of x^n , we get:

(14)
$$\sum_{\frac{3j^2+j}{2} \le n} (-1)^j b_\ell \left(n - \frac{3j^2+j}{2} \right) = \begin{cases} (-1)^k & \text{if } n = \ell \left(\frac{3k^2+k}{2} \right) \\ 0 & \text{otherwise} \end{cases}$$

Then if we define a correction factor $\chi_{\ell}(n)$, with

(15)
$$\chi_{\ell}(n) = \begin{cases} (-1)^k & \text{if } n = \ell\left(\frac{3k^2 + k}{2}\right) \\ 0 & \text{otherwise} \end{cases}$$

we can solve for $b_{\ell}(n)$ to get the recurrence:

(16)
$$b_{\ell}(n) = \sum_{\frac{3j^2+j}{2} \le n-1} (-1)^{j+1} b_{\ell} \left(n - \frac{3j^2+j}{2} \right) + \chi_{\ell}(n)$$

This recurrence is identical to the Euler recurrence for the unrestricted partition function p(n), only with the addition of the $\chi_{\ell}(n)$ term. Calculating $b_{\ell}(n)$ is then the same as calculating p(n) with this extra term.

3. A Natural Algorithm for Calculating $b_\ell(n)$

4. Data

References

- G. E. Andrews, *The Theory of Partitions*, Reprint of the 1976 original, Cambridge Univ. Press, Cambridge, 1998.
- [2] I. Niven, H. S. Zuckerman and H. L. Montgomery, An Introduction to the Theory of Numbers, Fifth edition, Wiley, New York, 1991.
- [3] K. Ono and D. Penniston, The 2-adic Behavior of the Number of Partitions into Distinct Parts, J. Combin. Theory Ser. A 92 (2000), no. 2, 138–157.
- [4] D. Penniston, The p^a-Regular Partition Function Modulo p^j, J. Number Theory 94 (2002), no. 2, 320–325.
- [5] D. Penniston, personal communication.

DEPARTMENT OF MATHEMATICAL SCIENCES, CLEMSON UNIVERSITY, BOX 340975, CLEMSON, SC 29634-0975, USA

E-mail address: christian_bruun@hmc.edu