
CALCULATING THE `-REGULAR PARTITION FUNCTION

CHRISTIAN BRUUN

Abstract. For positive integer n, an `-regular partition of n is a partition of n in
which no part is divisible by `. The `-regular partition function b`(n) counts the
number of `-regular partitions of n. This paper examines the calculation of b`(n),
and gives data evidence for some conjectures about b`(n).

1. Introduction

A partition of a positive integer n is a non-increasing sequence that sums to n,
and a partition function counts the number of partitions of n. In this paper, we will
examine the partition function b`(n), the number of partitions of n into parts not
divisible by `.

As stated above, a partition of a positive integer n is a non-increasing sequence of
positive integers that sums to n For example, the possible partitions of 5 are:

5

4 + 1

3 + 2

3 + 1 + 1

2 + 2 + 1

2 + 1 + 1 + 1

1 + 1 + 1 + 1 + 1

The (unrestricted) partition function p(n) counts the number of partitions of n, so
for this example, p(5) = 7.

Similarly, we can define other partition functions by limiting what parts are allow-
able. In particular, we can specify that no part may be divisible by a number `. For
` > 1, an `-regular partition of a positive integer n is a partition in which none of the
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parts is divisible by `. For example, the 3-regular partitions of 5 are:

5

4 + 1

2 + 2 + 1

2 + 1 + 1 + 1

1 + 1 + 1 + 1 + 1

The `-regular partition function b`(n) counts the number of `-regular partitions of a
positive integer n [4]. From the above example, we can see that b3(5) = 5.

2. Generating Functions for b`(n)

One of the most useful tools in studying partition functions is generating functions.
A generating function for a sequence {an} is a function f such that

(1) f(x) =
∞∑

n=0

anx
n

For example, the sequence {i}∞i=1 has generating sequence
f(x) = x + 2x2 + 3x3 + 4x4 + 5x5 + · · ·

The partition function describes a sequence {p(n)}∞n=0, with p(0) = 1, p(1) = 1,
p(2) = 2, p(3) = 3, p(4) = 5, p(5) = 7, p(6) = 11, p(7) = 15, p(8) = 22, . . . , so p(n)
can be written as a generating function as well. Let P (x) be the generating function
for {p(n)}∞n=0, so

(2) P (x) =
∞∑

n=0

p(n)xn = 1 + x + 2x2 + 3x3 + 5x4 + 7x5 + 11x6 + 15x7 + · · ·

We can write this sum more succinctly as in infinite product by considering the
partition function combinatorially. For example, for the partitions of n into distinct
parts, we have the generating function

(3) f(x) = (1 + x)(1 + x2)(1 + x3)(1 + x4) · · · =
∞∏

n=1

(1 + xn)

since the coefficient of xn gives the number of ways to write n as the sum of distinct
parts. Similarly, we can write
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(4)

P (n) = (1 + x + x2 + · · · )(1 + x2 + x4 + · · · )(1 + x3 + x6 + · · · ) · · ·

=
∞∏

n=1

(1 + xn + x2n + x3n + · · · )

where the first term counts the ways to have 0 ones, 1 one, 2 ones, etc., the second
term counts the ways to have 0 twos, 1 two, 2 twos, and so on, so that the coefficient
of xn gives the partition function p(n). Then, given the identity

(5)
1

1− xn
= 1 + xn + x2n + x3n + x4n + · · ·

this becomes

(6) P (n) =
∞∏

n=1

(1− xn)−1

We can simplify this further by utilizing Euler’s Pentagonal Number Theorem[2]:

(7)

∞∏
n=1

(1− xn) = 1 +
∞∑

j=1

(−1)j

(
x

3j2+j
2 + x

3j2−j
2

)
=

∞∑
j=−∞

(−1)jx
3j2−j

2

This gives the identity

(8)

{
∞∑

j=−∞

(−1)jx
3j2−j

2

}
∞∑

n=0

p(n)xn = 1

{1− x− x2 + x5 + x7 − x12 − x15 + · · · }
∞∑

n=0

p(n)xn = 1

Solving for the coefficient of xn then gives Euler’s identity[2]

(9)

p(n) = p(n− 1) + p(n− 2)− p(n− 5)− p(n− 7) + p(n− 12) + · · ·

=
∑
j∈Z

(−1)j+1p

(
n− 3j2 + j

2

)
+
∑
j∈Z

(−1)j+1p

(
n− 3j2 − j

2

)
Then using this recurrence, we can calculate p(n) from its initial values. This gives

us a reasonable way to calculate larger values of the partition function.
We can define similar generating functions for more general partition functions.

For example, we may restrict the parts to a specific set, say H, and require that
every partition of n be composed of elements of H. Let p(H, n) be the partition
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function defined in this way. Using the same argument as for the unrestricted partition
function, this gives the following generating function[1]:

(10)
∞∑
i=0

p(H, i)xi =
∏
n∈H

(1− xn)−1

From this equation, it is relatively simple to define the infinite product generating
function for the `-regular partition function. If we let H = {a ∈ N : ` - a}, then
the partition function p(H, n) = b`(n). The generating function for b`(n) then follows
from (10). For example, if ` = 3, H = {1, 2, 4, 5, 7, 8, . . .}, and so b3(n) would have
generating function

(11)

∞∑
n=0

b3(n)xn =
(1− x3)(1− x6)(1− x9)(1− x12)(1− x15) · · ·
(1− x)(1− x2)(1− x3)(1− x4)(1− x5) · · ·

=

∏∞
i=1(1− xi)−1∏∞

j=1(1− x3j)−1
=

P (x)

P (x3)

where P (x) =
∏∞

n=1(1− xn)−1 is the generating function for the unrestricted par-
tition function. This derivation works for every choice of `, so in general, b`(n) has
generating function:

(12)
∞∑

n=0

b`(n)xn =
P (x)

P (x`)

Using (12) and the Pentagonal Number Theorem (7), we can construct a recurrence
similar to the Euler recurrence for p(n).

(13) f(x) =
P (x)

P (x`)
=⇒

(∑
j 6=0

(−1)jx
3j2+j

2

)(
∞∑

n=0

b`(n)xn

)
=
∑
j 6=0

(−1)jx` 3j2+j
2

Then, solving for the coefficient of xn, we get:

(14)
∑

3j2+j
2
≤n

(−1)jb`

(
n− 3j2 + j

2

)
=

{
(−1)k if n = `

(
3k2+k

2

)
0 otherwise

Then if we define a correction factor χ`(n), with

(15) χ`(n) =

{
(−1)k if n = `

(
3k2+k

2

)
0 otherwise
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we can solve for b`(n) to get the recurrence:

(16) b`(n) =
∑

3j2+j
2
≤n−1

(−1)j+1b`

(
n− 3j2 + j

2

)
+ χ`(n)

This recurrence is identical to the Euler recurrence for the unrestricted partition
function p(n), only with the addition of the χ`(n) term. Calculating b`(n) is then the
same as calculating p(n) with this extra term.

3. A Natural Algorithm for Calculating b`(n)

4. Data
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