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1 Introduction

The coupon collector’s problem (CCP) considers the probability of having one
copy of all n coupons after t trials, if a trial is defined as collecting one of the n
coupons with uniform probability.

The baseball card collector’s problem (BCCP) extends this problem to the
case where instead of collecting one coupon at a time, r distinct coupons are
collected at a time.

This problem may be further generalized by considering it a problem of
three variables. The general problem is defined for (n, r, c) where n is the total
number of cards to collect, r is the number of cards drawn per trial, and c is
the number of copies each card in the set you want. The problem is then to
describe the probability at time t of having c copies of all n cards (P(n,r,c)(t)).

2 Coupon Collector’s Problem

First, a review of a solution to the CCP using inclusion-exclusion.
Define S as the set of all distributions of coupons. Then the size of S,

N(S) = nt. Define Ek as the event that k coupons are not collected. Then the
size of E1, N(E1) =

(
n
1

)
(n− 1)t, as there are

(
n
1

)
ways to choose which coupon

to not collect, (n− 1) coupons from which to choose, and t choices to be made
. Similarly, N(E2) =

(
n
2

)
(n− 2)t, and in general N(Ek) =

(
n
k

)
(n− k)t.

We are interested in counting the number of ways that every coupon is
collected. We may count this by counting all possible ways of collecting coupons
and subtracting off all ways of not collecting at least one coupon. By inclusion-
exclusion, we get:

n∑
k=0

(−1)k

(
n

k

)
(n− k)t

as the number of ways of collecting t coupons so we get at least one copy of
every coupon.
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Thus to find the probability of this occurring we divide by the size of our
event space, S:

P(n,1,1) =
n∑

k=0

(−1)k

(
n

k

)(
1− k

n

)t

3 Baseball Card Collector’s Problem

A generalization of the CCP is to consider the case of collecting r distinct
coupons at a time. Thus for each trial, we can collect one of

(
n
r

)
packs of

coupons at a time, which bears a resemblance to collecting packs of baseball
cards. Thus N(S) =

(
n
r

)t.
If we again define Ek as the event that k coupons are not collected, we find

that there are
(
n
k

)
ways of choosing which k coupons to not collect, and then(

n−k
r

)t
ways of choosing t packs, none of which contain any of the k coupons.

Again applying the principle of inclusion-exclusion, we determine that the
probability of collecting all n coupons after t trials is equal to∑n

k=0(−1)k
(
n
k

)(
n−k

r

)t(
n
r

)t
which equals

P(n,r,1) =
n∑

k=0

(−1)k

(
n

k

)((n−k
r

)(
n
r

) )t

3.1 Asymptotics

We investigate the (n−k
r )

(n
r)

term in the equation.

(
n−k

r

)(
n
r

) =
(n− k)...(n− k − r + 1)
n(n− 1)...(n− r + 1)

= (
n− k

n
)r

(1− 0
n−k )...(1− r−1

n−k )

(1− 0
n )...(1− r−1

n )

Since 1− x
n ' e

−x
n , we have:

= (
n− k

n
)r e−

k
n e−

k+1
n ...e−

k+r−1
n

e−
1
n e−

2
n ...e−

r−1
n

Note that for small k, (n−k
n )r goes toward 1 and this term drops out.

We sum the exponents in the numerator from 1 to r − 1.

= −
r−1∑
i=0

k + i

n
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= −(
k

n

r−1∑
i=0

1 +
1
n

r−1∑
i=0

i)

= −kr

n
− (r − 1)(r − 2)

2n
We now sum the exponents of the denominator.

= −
r−1∑
i=1

i

n

= − (r − 1)(r − 2)
2n

Subtract this from the sum of the exponents in the numerator.

= −kr

n
− (r − 1)(r − 2)

2n
− (− (r − 1)(r − 2)

2n
)

= −kr

n

So we have e
−kr

n . Let’s put this result into our original probability formula.
n∑

k=0

(−1)k

(
n

k

)
e
−krt

n

For k sufficiently small, the k’s drop out and we have:

(1− e
−rt

n )n

(if k is large, the sum tends to go toward 0.) Now, let’s set e
−rt

n ' x
n . Then we

have:
(1− e

−rt
n )n ' e−x

If x = e−c, we have:

e
−rt

n =
e−c

n

Then, (1− e
−rt

n )n ' e−e−c

e
−rt

n =
e−c

n

log(e
−rt

n ) = log(
e−c

n
)

log(e
−rt

n ) = log(e−c)− log(n)
−rt

n
= −c− log(n)

−rt

n
+ log(n) = −c

So we get the following formula for c:
rt

n
− log(n) = c
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4 Greedy Baseball Card
Collector’s Problem (c = 2)

Next we consider the further generalization of the baseball card collector’s prob-
lem to what could be termed a “greedy” baseball card collector’s problem, in
that we want more than one copy of each card.

Specifically here we consider the case c = 2, where we want at least two
copies of each card.

4.1 Inclusion-Exclusion

Here we will develop a formulation for the probability we seek with inclusion-ex
clusion. To do so, we will first count all the ways of having fewer than 2 copies
of 0 cards, then subtract all the ways of having fewer than 2 copies of 1 card,
and so on up to n− r. The value n− r is chosen because after sufficiently many
draws, we are guaranteed t o have at least 2 copies of each n − r cards. Thus
we only need to consider the ways of not h aving at least c copies of i cards for
0 ≤ i ≤ n− r.

For the general case of counting the number of ways of not getting at least
2 copies of i cards, we consider all the possible ways of getting 0 copies of some
subset of those i cards and 1 copy for the remaining cards.

For this purpose, define

Ps,u = The number of ways of picking t packs with 0 copies of s− u cards and 1 copy of u cards

Then for each s ∈ {0, 1, . . . , n− r}, there are
(
n
s

)
ways of selec ting s cards.

For each of these sets of size s, we wish to consider how many ways there are to
get less than 2 copies of each card in the set. Thus you can get 0 copies of all
s cards, 0 copi es of s − 1 cards and 1 copy of 1 card, and in general 0 copies
of s− u cards and 1 copy of u c ards for 0 ≤ u ≤ s. Note also that for each u,
there are

(
s
u

)
ways of picking the u card s we get 1 copy of.

Applying the principle of inclusion-exclusion to our problem, we thus get
that t he probability of having all n cards at time t is given by the following:

Pn,r,2(t) =
n−r∑
s=0

(−1)s

(
n

s

) s∑
u=0

(
s

u

)
Ps,u

We thus have merely to find a formula for Ps,u. Unfortunately, this is some-
what complicated as it involves the ways of partition ing u.

Let us consider the case where s and u are fixed. As mentioned, there are(
s
u

)
ways of choosing which cards among the s can be chosen to have 1 copy of

each card. The posi tions of these cards do not change the number of ways t
packs can be chosen with 0 copies of s− u car ds and 1 copy of u cards.

Because we may place the u cards in more than one pack, we must consider
all p ossible partitions of u and consider placing each part into a separate pack.
Thus to calculate Ps,u we will iterate over all partitions of u and consider the
ways of placing the u cards into packs according to the parts.
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We will assume that the partitions of u may be indexed in some fashion, and
de fine the vth partition of u as Pn(u, v), and thus the kth part of the partition
as Pn(u, v)k. Also, |Pn(u, v)| will be the number of parts in that partition of u.
Finally, defi ne NO(Pn(u, v), p) as the number of occurrences of p in Pn(u, v).
Our formula i s thus:

Ps,u =
p(u)∑
v=1

(
t

|Pn(u, v)|

)
(|Pn(u, v)|)!∏

!p∈Pn(u,v) NO(Pn(u, v), p)!

(
n− s

r

)t−|Pn(u,v)|

|Pn(u,v)|∏
k=1

(∑|Pn(u,v)|
j=k+1 Pn(u, v)j

Pn(u, v)k

)(
n− s

r − Pn(u, v)k

)

4.2 Markov Chains

We may also approach this problem using Markov chains. We define the state
(c1, c2) to be the state in which we have c1 cards with at least 1 copy and c2

cards with at least 2 copies.

4.2.1 Transition Matrix

We can define the probability of moving from state (j1, j2) to state (i1, i2) as

Pr((j1, j2) → (i1, i2)) =

(
n−j1
i1−j1

)(
j1−j2
i2−j2

)(
j2

r−(i1+i2−j1−j2)

)(
n
r

)
An explanation of the formula: i1−j1 is the number of cards you will see for

the first time in this pack and you are choosing them from n−j1 total cards you
have not seen; you are also choosing i2− j2 cards that you have seen before but
of which you are now getting your first duplicate, and you are picking those from
the j1−j2 cards you have seen only once; finally, that leaves r−(i1−j1+i2−j2)
cards to fill the pack of r cards, and you are choosing these from the j2 cards
you have already seen at least twice before. To get a probability, we divide by
the

(
n
r

)
possible packs.

Using this formula, we can create a transition matrix giving the probabilities
of moving from one state to the next.

First we need a way of converting from a pair (i, j) to a pair of states
((i1, i2), (j1, j2)) by which to index our matrix. Since certain pairs do not make
sense, we do not need to consider a full n2 matrix: for a given pair (j1, j2), we
must have that j2 ≤ j1, so we only need to consider

(
n2 + 3n + 2

)
/2 entries.

Working closely with Maple, we developed the following two procedures for
converting from a matrix index i to a state (i1, i2)

majind := proc (n)
local i, sum;
sum := 0: i := 0:
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while sum < n do
sum := sum + i :
i := i + 1 :

end do :
i - 2 ;

end proc ;

and

minind := proc (n)
n - sum (i, i=1..majind(n)) - 1;

end proc;

These two procedures are used to map a specific row or column to a coor-
dinate: n 7→ (majind(n),minind(n)). Thus the transition matrix is assigned
entries according to:

Pij = P r((majind(j),minind(j)) → (majind(i),minind(i)))

Note: this matrix is 1-indexed to agree with the way in which Maple ad-
dresses elements in a matrix.

4.3 Eigenvalues and Eigenvectors

Of particular interest to our problem are the eigenvectors for the nonzero eigen-
values. The eigenvectors contain the binomial coefficients and are dependent on
the multiplicity of the eigenvalue, not the actual eigenvalue.
i is the index of the eigenvector starting from the bottom row (we set i of the
bottom row equal to zero.
x is the multiplicity of the eigenvalue λ.
For the

((
n2+3n+2

2

)
− i
)
th to the

(
n2+3n+2

2

)
th entries in the eigenvector, the

entry is given by

(−1)i

(
x− 1

i

)
That is,

i eigenvector(
n2+3n+2

2

)
− 1 0(

n2+3n+2
2

)
− 2 0

...
...

x− 1 (−1)i
(
x−1
x−1

)
x− 2 ∗ (−1)i

(
x−1
x−2

)
...

...
i (−1)i

(
x−1

i

)
...

...
0

(
x−1

0

)
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Proof: Shannon is working on it.

5 First Order Preimages

Calculations for the first order preimages are given as follows. Note that for this
vector, we index the vector from the top instead of the bottom and we begin
indexing at 1 instead of zero.

i preimage
1 0
2 0
...

...
(n−1)2+3(n−1)+2

2 − (x− 2) (−1)i
(
λr 1

n−x

)−1 (
x−2
x−2

)
(n−1)2+3(n−1)+2

2 − (x− 3) (−1)i
(
λr 1

n−x

)−1 (
x−2
x−3

)
...

...
(n−1)2+3(n−1)+2

2 − (x− t), 2 ≤ t ≤ x (−1)i
(
λr 1

n−x

)−1 (
x−2
x−t

)
...

...
(n−1)2+3(n−1)+2

2 (−1)i
(
λr 1

n−x

)−1 (
x−2

0

)
(n−1)2+3(n−1)+2

2 + 1 0
...

...
(n−1)2+3(n−1)+2

2 + (n− x) + 1 0
... Free

n2+3n+2
2 V ariables

The general form for the
(
frac(n− 1)2 + 3(n− 1) + 22− (x− 2)

)
th to the

(
(n−1)2+3(n−1)+2

2

)
th

entries in the vector are given by:

(−1)i

(
λr

1
n− x

)−1(
x− 2
x− t

)

so that 2 ≤ t ≤ x.
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5.1 Second Order Preimages

The second order preimages appear to be of the form:
i preimage
1 0
2 0
...

...
(n−2)2+3(n−2)+2

2 − (x− 3) (−1)i
(
λc
∑n−r−1

z=1
(z+1)2

z(z+2)

)−1 (
x−3
x−3

)
(n−2)2+3(n−2)+2

2 − (x− 4) (−1)i
(
λc
∑n−r−1

z=1
(z+1)2

z(z+2)

)−1 (
x−3
x−4

)
...

...
(n−2)2+3(n−2)+2

2 − (x− t), 3 ≤ t ≤ x (−1)i
(
λc
∑n−r−1

z=1
(z+1)2

z(z+2)

)−1 (
x−3
x−t

)
...

...
(n−2)2+3(n−2)+2

2 (−1)i
(
λc
∑n−r−1

z=1
(z+1)2

z(z+2)

)−1 (
x−3

0

)
(n−2)2+3(n−2)+2

2 + 1 Zeros
... Free

n2+3n+2
2 V ariables

The general form for the
(
frac(n− 2)2 + 3(n− 2) + 22− (x− 3)

)
th to the

(
(n−2)2+3(n−2)+2

2

)
th

entries in the vector are given by:

(−1)i

(
λc

n−r−1∑
z=1

(z + 1)2

z(z + 2)

)−1(
x− 3
x− t

)

so that 3 ≤ t ≤ x.
c is unknown. It may either be a constant, a variable, or some value dependent
on n and/or r.

5.2 Jordan Block Form

Discuss how eigenvalues and eigenvectors fill in, etc.

5.3 Double-sum formula

We are interested in the probability of going from having 0 cards to having
2 copies of all n cards, so we are interested in the ((n2 + 3n + 2)/2, 1) entry
of PJ tP−1. Having found the Jordan form of the matrix, we can find this
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probability by

n−r∑
i=0

mult(λi)−1∑
k=0

cλi,k · λt−k
i ·

(
t

k

)

where λi =

(
i
r

)(
n
r

) (1)

which represents what the answer will look like for sufficiently large t (here, the
t must be larger than the largest block of 0 eigenvalues so that those blocks play
no role in the probability.

After having computed many cλ,k values, we compared the actual probabil-
ities with those found by using∑

λi

cλi,mult(λi)−1 · λ
t−mult(λi)+1
i ·

(
t

mult(λi)− 1

)
and ∑

λi

mult(λi)−1∑
k=mult(lambda)−2

cλi,k · λt−k
i ·

(
t

k

)
Our results indicate that the first is a good upper bound, while the second is
an extremely close fit (see Figure 1).

Figure 1: Comparing actual probabilities with those using a subset of clambda,k

values

We have done some analysis of the resulting values of cλ,k, and have spotted
some patterns.

By looking at Equation 1 and at ref to P(n,r,2)(t) here, we were able to
determine that for the case when k = mult(λi)− 1

cλi,k =
(−1)i

(
n
i

)(
n−i
r−1

)i
i!(

n
r

)i
and for the case when k = mult(λi)− 2

cλi,k =
(−1)i

(
n
i

) (
(i− 1)!

(
i
2

)(
n−i
r−2

)(
n−i
r−1

)i−2
+
(

i
1

)
(i− 1)!

(
n−i
r−1

)i−1
)

(
n
r

)i−1

This should lead to some nice asymptotics when we get around to it (hope-
fully).
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6 Misc

6.1 r=2, r=3

We’ve written some specific versions for r = 2 and r = 3. We can fill those in
here if there’s any particular reason to do so.

Okay, here’s what we’ve got for r = 2:

P(n,2,2) =

∑n−2
s=0 (−1)s

(
n
s

)∑s
u=0

(
s
u

)∑bu
2 c

n2=0

( t
u−n2

)(u−n2)!(n−s
r )t−u+n2u!(n−s)u−2n2

n2!(u−2n2)!2n2(
n
r

)t
The r = 3 case is a bit more complex, but follows a similar pattern. I’ll

refrain from giving it for just now.

7 Future Work

What’s left to be done. This paper, for example.

8 Conclusion

It’s been a lot of fun.
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