
ANALYZING THE QUADRATIC SIEVE ALGORITHM

KIM BOWMAN, NEIL CALKIN, ZACH COCHRAN, AND KEVIN JAMES

Abstract. We will discuss random vector models related to the
quadratic sieve. We will introduce a new model for binary vectors,
suggesting that we can cut the running time of the quadratic sieve.
Also, we will prove an upper bound for the number of vectors
needed to create a dependency.

1. Introduction

Over the years, mathematicians have used several methods to try
to factor large numbers. Originally, one of the only known ways to
factor was to do so by trial division. Fermat came up with the technique
of writing a number as the difference between two squares, i.e.
n = a2 − b2. This works since:

n = a2 − b2 = (a + b)(a− b)

Therefore, (a + b) and (a − b) are factors of n. Fermat’s method is
a step, but its still a lengthy process. Kraitchik improved this method
later by saying that n did not need to equal a2−b2, but it was sufficient
enough to say that a2 ≡ b2 mod n, meaning a2− b2 = tn for some inte-
ger t. Now, compute the GCD(n, a− b). This may not always result in
a factor, but the probability for finding one is fairly high. In search for
the a’s and b’s, Kraitchik said to find squares that were greater than n
and compute them in an equation a2 − n. [3]

After Kraitchik devised this idea, Dixon took it a step further again.
Dixon’s idea was to take several ri values, where ri >

√
n, and in-

put them in the equation g(r) = r2 mod n. Next, one would take
the g(ri) values and attempt to completely factor these by trial di-
viding for primes up to some bound B. Then, Dixon said to find a
set, {R1, R2, . . . , Rm}, of various g(ri)’s such that the exponents of the
primes in the factorization of the product of these g(ri)’s are all even.
This means that

∏m
i=1 g(Ri) is a square.

One of the easiest ways to find this combination is to put each g(ri)’s
exponential powers modulo two in a binary matrix where each column
represents a different prime and each row is a different g(ri). This gives
you a matrix of zeros and ones that is fairly sparse, meaning there are

1

2 KIM BOWMAN, NEIL CALKIN, ZACH COCHRAN, AND KEVIN JAMES

few ones. To find the aforementioned set, one can perform Gaussian
elimination on the newly formed matrix. The essence of Gaussian elim-
ination is to perform elementary row operations on the matrix until a
row of all zeros exists. This indicates that a linear dependency exists
in the matrix. By knowing this, we know that we can find a product
of g(r)’s where all the powers of the primes are even. So, we know
that there’s a set of Rn’s such that the product of g(Ri)’s is a square
modulo n. We can then let a =

∏m
i=1 Ri and b2 =

∏m
i=1 g(Ri). Then,

we know that a2 ≡ b2 mod n. So, going back to Fermat and Kraitchik,
we can try to compute the GCD(n, a− b) and see if we get a factor.

2. Quadratic Sieve

Created in 1981 by Carl Pomerance[2], the quadratic sieve, or QS,
is an algorithm to factor numbers that extends the ideas of Kraitchik
and Dixon. One way this sieve improves their ideas is by choosing the
ri values to take. In the QS, one takes an interval of ri values between√

n and
√

2n. Also, instead of the aforementioned g(r) function, the
QS uses f(ri) = r2

i −n and places them in an array as in the one shown
below.

f(r1) f(r2) f(r3) . . . f(rn)

Now, as before, this algorithm starts with a set of primes less than
some bound B. However, one needs to compute the Legendre symbol
(n

pi
)for each pi, where n is the number to be factored. The Legendre

symbol,
(

n
p

)
is:

1 if a is a square mod p

−1 if a is not a square mod p

0 if p | n
The primes that have a Legendre symbol equal to one are kept and the
others are discarded. This reduced set of primes is known as the factor
base. We use these primes because primes outside our factor base will
not divide f(r). The reason for this is that given any prime p, in order
for p to divide r2 − n, n musct be a quadratic residue modulo p. This
is the exact condition that the Legendre symbol, (n

p
) = 1.

The next step is called the sieving process and involves dividing
each entry in the array by each prime as many times as possible. After
doing this for every prime in the factor base, we find all the entries
A(j), j = f(ri) for some ri, such that A(j) = 1. This set becomes the
(R1, R2, R3, . . . , Rm) set discussed earlier. The prime factorizations of

ANALYZING THE QUADRATIC SIEVE ALGORITHM 3

these entries are recorded, and the powers of the exponents of this set
are put into the binary matrix for Gaussian elimination.

As stands, the QS is a time consuming algorithm. The lengthiest
part of the algorithm is the sieving process itself, especially for the
small primes used. The Gaussian elimination process is also a lengthy
process. If there are k primes in our factor base, then there will be k
columns in our matrix. This means we will need k +1 vectors, or k +1
f(ri) values, to find a dependency. This is because having more rows
than columns in the matrix will guarantee a dependency.

So, if the problem is the time that it takes, then the question that
arises is if the algorithm can be shortened in any way. The idea is to
view the problem in a probabilistic manner. To go about this, we can
look at the probability that a dependency is found in a binary vector
set, where each vector has a one in an entry with a probability that is
similar to the probabilities produced by the QS. By looking at when
dependency occurs, we may be able to improve the algorithm by being
able to use less vectors in the Gaussian elimination, which means the
interval we are sieving can be shortened.

3. Constant Weight Vectors

Since the vectors used in Gaussian elimination are sparse, it was
originally thought that a good way to model theses vectors was to as-
sign a constant weight to each vector, meaning each vector has l ones
from some fixed l. For this, we devised a computer program that would
produce random k dimensional vectors with weight three, and calculate
how many vectors were needed before a dependency was found. The
program used Gaussian elimination to determine this.

Using this model, we got a threshold function for the probability
that shows that you need as many vectors as is 92% to 93% of the di-
mension, or number of columns. It was previously shown by the second

author in this paper, that, roughly, if m is much less than k(1− e−l

log2
),

then as k →∞, the probability taht m vectors are linearly dependent
tends to zero.[1]

Figure 1 is an example of a weight three binary vector probability
graph for dimension five hundred. Only the top eighty-five to ninety-
five percentiles are pictured. As you can see, the lower bound for a high
probability for dependency occurs when there are about 465 vectors,
which is about 92%.

4 KIM BOWMAN, NEIL CALKIN, ZACH COCHRAN, AND KEVIN JAMES

Figure 1. Probability Distribution for Weight 3 Dim
500 Vectors

4. Independent Weight Vectors

The constant weight binary vector model, in essence, says that
it is as likely for there to be a one in the first column as it is the
hundredth column. When relating back to the quadratic sieve, this
model is saying that it is as equally likely for a number to be divisible
by an odd power of two as it would be by an odd power of forty-three.
Since this seems not to be true, this model should be altered so that it
is closer to modeling what happens in reality.

The way that we decided to do this would be to have each entry
have a different probability of having a one. So, the probability of
getting an odd power of two is different from the probability of getting
and odd power of three and so forth. The probability for each is as
follows: Let pi represent the prime associated with the ith column of
the matrix. Then the probability that the ith column has a one in it
is the probability that p− i divides some number n to the first power
minus the probability that pi divides some number n to the second
power (even power) and so forth and is shown below.

ANALYZING THE QUADRATIC SIEVE ALGORITHM 5

=
1

pi

− 1

p2
i

+
1

p3
i

− 1

p4
i

+ . . .

= (
1

pi

+
1

p3
i

+
1

p5
i

+ . . .)− (
1

p2
i

+
1

p4
i

+
1

p6
i

+ . . .)

= (
1

pi

)(1 +
1

p2
i

+
1

p4
i

+ . . .)− (
1

p2
i

)(1 +
1

p2
i

+
1

p4
i

+ . . .)

= (
1

pi

− 1

p2
i

)(1 +
1

p2
i

+
1

p4
i

+ . . .)

= (
pi − 1

p2
i

)(
1

1− 1
p2

i

)

=
pi − 1

p2
i − 1

=
1

pi + 1

Given this, we edited our computer algorithm from the constant
weight vector experiment to randomly generate these vectors with in-
dependent probabilities. This model gave us a dependency much earlier
than before. In fact, for a dimension up through 25000 we got a de-
pendency with less than 100 vectors. This is very different from the
92% we were getting earlier.

..

Figure 2. Probability of Dependency for first 100 vectors

A good upper bound for this model would be to find an upper bound
for when a trivial dependency is found. A trivial dependency occurs
when we have more vectors than the number of columns with a one in

6 KIM BOWMAN, NEIL CALKIN, ZACH COCHRAN, AND KEVIN JAMES

some row. Our data shows that nontrivial dependencies occur before
trivial dependencies. Therefore, having an upper bound for depen-
dency occurring related to the trivial dependencies is appropriate. We
know that since the probability that an entry in a vector has a one is

1
pi+1

, we can deduce that the probability of getting a zero is 1 − 1
pi+1

.

Then the expected number of columns with no ones, where j is the
number of rows, is:

k∑
i=1

(
1− 1

pi + 1

)j

'
k∑

i=1

1− e
−j

pi+1

Thus, we want to find a function, f(k), where k is the dimension of
the vectors and f(k) is the number of vectors in the vector space such
that:

f(k) +
k∑

i=1

e
−f(k)
pi+1 > k

Due to the data we collected from our experiment, we believe this
upper bound to be somewhere around

√
n for n large enough, but this

is what we’re trying to prove....

References

[1] Calkin, Neil. ”Dependent Sets of Constant Weight Binary Vectors.” Combin.
Probab. Comput. 6, no.3, 263-271 (1997).

[2] Landquist, Eric. ”The Quadratic Sieve Factoring Algorithm.”
¡http://www.math.uiuc.edu/ landquis/quadsieve.pdf¿, Dec 14, 2001 (veri-
fied July 8, 2004).

[3] Pomerance, Carl. ”The Tale of Two Sieves.” Notices Amer. Math. Soc. 43, no.
12, 1473-1485 (1996).

