NUMBER OF RANK *r* SYMMETRIC MATRICES OVER FINITE FIELDS

ABSTRACT. We determine the number of $n \times n$ symmetric matrices over $GF(p^k)$ that have rank r for $0 \le r \le n$.

In [BM2] Brent and McKay determine the number of $n \times n$ symmetric matrices over \mathbb{Z}_p that have determinant zero. Thus they determine the number of $n \times n$ symmetric matrices over \mathbb{Z}_p that have rank n. We extend their result to symmetric matrices over $GF(p^k)$ and we determine the number of matrices that have rank r for any r.

The problem when the matrix is not required to be symmetric was treated in [BM1] and in [GR]. In these papers the number of $(n + \Delta) \times n$ matrices over \mathbb{Z}_p with rank r is determined for all r and $\Delta \geq 0$.

Let $I(n, r, p^k)$ be the number of $n \times n$ symmetric matrices over $GF(p^k)$ with rank r. Furthermore, let $q(n, p^k)$ be the probability that an $n \times n$ symmetric matrix over $GF(p^k)$ is invertible. Define $q(0, p^k)$ to be 1. Also note that $q(1, p^k) = (1 - \frac{1}{p^k})$.

Theorem 0.1. In the notation given above, $q(n, p^k)$ satisfies the recurrence

(0.1)
$$q(n, p^k) = \left(1 - \left(\frac{1}{p^k}\right)\right)q(n-1, p^k) + \left(\frac{1}{p^k}\right)\left(1 - \left(\frac{1}{p^k}\right)^{n-1}\right)q(n-2, p^k)$$

for all $n \geq 2$. Furthermore, this recurrence gives

$$q(n, p^k) = \prod_{j=0}^{s} \left(1 - \left(\frac{1}{p^k}\right)^{2j-1} \right),$$

where $s = \lfloor \frac{n}{2} \rfloor$.

In particular, the number of invertible symmetric $n \times n$ matrices over $GF(p^k)$ is

(0.2)
$$I(n,n,p^k) = (p^k)^{\binom{n}{2}} q(n,p^k) = (p^k)^{\binom{n}{2}} \prod_{j=0}^s \left(1 - \left(\frac{1}{p^k}\right)^{2j-1}\right).$$

Before we prove this result we will give a couple of Lemmas.

Lemma 0.2. Suppose $A = (a_{ij})_{1 \le i,j \le n}$ is a symmetric $n \times n$ matrix over $GF(p^k)$ and that $a_{11} \ne 0$. Additionally, define the $n \times n$ matrix $\Lambda = (\lambda_{ij})_{1 \le i,j \le n}$ with

$$\lambda_{ij} = \begin{cases} 1 & \text{if } i = j \neq 1 \\ -a_{11}^{-1}a_{1j} & \text{if } i = 1 \\ 0 & \text{otherwise} \end{cases}$$

Date: August 8, 2004.

Then

$$\Lambda^{T} A \Lambda = \begin{pmatrix} a_{11} & 0 & 0 & \dots & 0 \\ 0 & b_{11} & b_{12} & \dots & b_{1(n-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & b_{(n-1)1} & b_{(n-1)2} & \cdots & b_{(n-1)(n-1)} \end{pmatrix}$$

where the matrix $B = (b_{ij})_{1 \le i,j \le (n-1)}$ is a symmetric $(n-1) \times (n-1)$ matrix. Furthermore, if A is random then so is B.

Proof. By doing the multiplication we see that $\Lambda A \Lambda^T$ has the desired form. Furthermore, $b_{ij} = -a_{11}a_{1(i+1)}a_{1(j+1)} + a_{(i+1)(j+1)}$. Thus $b_{ij} = b_{ji}$. So *B* is symmetric. Furthermore, if *A* is a random matrix, then matrix *B* is random.

Lemma 0.3. Suppose $A = (a_{ij})_{1 \le i,j \le n}$ is a symmetric $n \times n$ matrix over $GF(p^k)$, $a_{11} = 0$ and $a_{12} \ne 0$. Additionally, let $n \times n$ matrix $\Gamma = (\gamma_{ij})_{1 \le i,j \le n}$ with

$$\gamma_{ij} = \begin{cases} 1 & \text{if } i = j \\ -a_{12}^{-1}a_{1j} & \text{if } i = 2 \text{ and } j \ge 3 \\ a_{12}^{-2}a_{22}a_{1j} - a_{12}^{-1}a_{2j} & \text{if } i = 1 \text{ and } j \ge 3 \\ 0 & \text{otherwise} \end{cases}.$$

Then

$$\Gamma^{T} A \Gamma = \begin{pmatrix} 0 & a_{12} & 0 & \dots & 0 \\ a_{12} & a_{22} & 0 & \dots & 0 \\ 0 & 0 & c_{11} & \dots & c_{1(n-2)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & c_{(n-2)1} & \cdots & c_{(n-2)(n-2)} \end{pmatrix}$$

where the matrix $C = (c_{ij})_{1 \le i,j \le (n-2)}$ is a symmetric $(n-2) \times (n-2)$ matrix. Furthermore, if A is random then so is C.

Proof. The proof is similar to the proof of the previous Lemma. Doing the multiplication we see that the matrix has the desired form and that $c_{ij} = ??$. So C is a symmetric matrix. As in the previous Lemma C will be random if A is random.

We are now prepared to prove the first of our two main theorems.

Proof. Proof of Theorem 0.1 We begin by deriving 0.1. Let A be a random symmetric $n \times n$ matrix over $GF(p^k)$ with $n \ge 2$. Throughout the proof we use the fact that A is invertible if and only if $det(A) \ne 0$. We derive the recursion by considering the two cases when $a_{11} \ne 0$ and when $a_{11} = 0$.

First suppose $a_{11} \neq 0$ this happens with probability $1 - 1/p^k$. With the notation of Lemma 0.2 and using the fact $det(\Lambda) = det(\Lambda^T) = 1$, we see that $det(A) = det(\Lambda)det(A)det(\Lambda^T) = det(\Lambda A\Lambda^T) = a_{11}det(B)$. Since A was random B is a random symmetric $(n-1) \times (n-1)$ matrix. Hence, if $a_{11} \neq 0$ then the probability that A is invertible is $\left(1 - \frac{1}{p^k}\right)q(n-1,p^k)$.

Next suppose that $a_{11} = 0$. If $a_{1j} = 0$ for all j, then det(A) = 0. So, A is not invertible. Suppose that there exists at least one $j \neq 1$ such that $a_{1j} \neq 0$. This happens with probability $\frac{1}{p^k} \left(1 - \left(\frac{1}{p^k}\right)^{n-1}\right)$. Switching the j^{th} column with the 2nd column and switching the j^{th} row with the 2nd row keeps A a symmetric matrix. Furthermore, whether or not the determinant is 0 is not changed. Thus we may assume without loss of generality that $a_{12} \neq 0$.

With the notation of Lemma 0.3 and using the fact $det(\Gamma) = det(\Gamma^T) = 1$, we see that $det(A) = det(\Gamma)det(A)det(\Gamma^T) = det(\Gamma A \Gamma^T) = a_{12}a_{22}det(C)$. Since A was random C is a random symmetric $(n-2) \times (n-2)$ matrix. Hence, if $a_{11} = 0$ then the probability that A is invertible is $\frac{1}{p^k} \left(1 - \left(\frac{1}{p^k}\right)^{n-1}\right) q(n-2,p^k)$. Summing the two probabilities gives 0.1.

From this recursion it is easy to deduce that

$$q(n, p^k) = \prod_{j=0}^{s} \left(1 - \left(\frac{1}{p^k}\right)^{2j-1} \right),$$

where $s = \lfloor \frac{n}{2} \rfloor$.

We are will give a couple of Lemmas before stating and proving the main result.

Proposition 0.4. An $n \times n$ matrix M is symmetric if and only if $v^T M = (Mv)^T$ for all vectors v.

Lemma 0.5. Let A be a symmetric $n \times n$ matrix and let B be an $n \times n$ matrix. Then $B^T A B$ is a symmetric matrix.

Proof. To prove this we will show that for all $\vec{v} \in Z_2^n$, $v^T B^T A B = (B^T A B v)^T$. If we establish this, then the result follows from Proposition 0.4.

It is well known that $v^T B^T = (Bv)^T$. Using this twice and Proposition 0.4 we have

$$v^{T}B^{T}AB = (Bv)^{T}AB = (ABv)^{T}(B^{T})^{T} = (B^{T}ABv)^{T},$$

as desired.

Let $d(n, j, p^k)$ be the number of j dimensional subspaces of $GF(p^k)^n$. Define $\prod_n (q) = (1-q)(1-q^2)\dots(1-q^n)$. It is well known, see [BM1], that

$$d(n, j, p^k) = \frac{\prod_n (p^k)}{\prod_{n-j} (p^k) \prod_j (p^k)}$$

Theorem 0.6. In the notation above,

$$\begin{split} I(n, n - j, p^k) =& d(n, j, p^k) I(n - j, n - j, p^k) \\ =& \frac{\prod_n (p^k)}{\prod_{n-j} (p^k) \prod_j (p^k)} I(n - j, n - j, p^k). \end{split}$$

Proof. We will prove this theorem in three steps. Say that e_j is the *n* dimensional vector over $GF(p^k)^n$ that has a 0 in each entry except for the j^{textth} entry.

Step 1. Let $E = \text{span} \{e_1, \ldots, e_j\}$. Then there are $I(n-j, n-j, p^k)$ rank $n-j \ n \times n$ matrices that take exactly E to zero.

To see this we begin by noting that Me_m is the *m*th column of the matrix M. Therefore, if A is a symmetric matrix with $Ae_m = \vec{0}$ then the *m*th column and *m*th row of A must be zero. Furthermore, A has rank n - j if and only if n - j of the column vectors are independent.

Let A be a symmetric $n \times n$ matrix with rank n - j that takes E to zero. Since the first j columns of A are zero, if A has rank n - j we must have that the final n - j column vectors of A are linearly independent. Since the first j rows of A are also the zero, A will send

 e_1, \ldots, e_j to $\vec{0}$ and have rank n - j if and only if the symmetric $(n - j) \times (n - j)$ submatrix $A^* = (a_{ij})_{(j+1) \le i,j \le n}$ has linearly independent column vectors. That is if and only if A^* is invertible.

Therefore, there are $I(n-j, n-j, p^k)$ symmetric $n \times n$ matrices of rank n-j that send e_1, \ldots, e_j to $\vec{0}$.

Step 2. Let S be any j dimensional subspace of $GF(p^k)^n$ with basis $\{v_1, \dots, v_j\}$. Also let $\mathcal{S} = \{ \text{ all } n \times n \text{ symmetric matrices of rank } n-j \text{ that take } S \text{ to zero} \}$ and let $\mathcal{E} = \{ \text{ all } n \times n \text{ symmetric matrices of rank } n-j \text{ that take } E \text{ to zero} \}$. I will show that there is a 1-1 onto map from \mathcal{S} to \mathcal{E} , thus these sets have the same size. The result follows, since the subspace S was arbitrarily chosen and there are I(n-j, n-j) elements in \mathcal{E} .

It remains to demonstrate the 1-1 onto map. There exists k_1, \ldots, k_{n-j} such that $\{v_1, \ldots, v_j, e_{k_1}, \ldots, e_{k_{n-j}}\}$ is a basis for $GF(p^k)^n$. Let B be the change of basis matrix such that $e_s \mapsto v_s$ for $1 \leq s \leq j$ and $e_{j+t} \mapsto e_{k_t}$ for $1 \leq t \leq (n-j)$.

Define the map $\phi : S \to \mathcal{E}$ by $\phi(A) = B^T A B$. Since *B* is invertible so is B^T . Thus, $B^T A B v = \vec{0}$ if and only if $A B v = \vec{0}$. But $A B v = \vec{0}$ if and only if $B v \in S$. Since *B* is the change of basis matrix from $\{e_1, \ldots, e_j\}$ and $\{v_1, \ldots, v_j\}$ we have $B^T A B v = \vec{0}$ if and only if $v \in E$. Therefore, the map is well defined onto the spaces indicated.

Furthermore, ϕ is 1-1, since B and B^T are both invertible. To show that ϕ is onto let $X \in \mathcal{E}$ be arbitrary and $Y = (B^T)^{-1}XB^{-1}$. Since $\phi(Y) = B^TYB = B^T(B^T)^{-1}XB^{-1}B = X$, it is enough to show that $Y \in \mathcal{S}$. Since B^T is invertible $Yv = \vec{0}$ if and only if $XB^{-1}v = \vec{0}$. Furthermore, since $X \in \mathcal{E}$, $XB^{-1}v = \vec{0}$ if and only if $B^{-1}v \in E$. But B^{-1} is the change of basis matrix from $\{v_1, \ldots, v_j\}$ to $\{e_1, \ldots, e_j\}$, thus $Yv = \vec{0}$ if and only if $v \in S$. So $Y \in \mathcal{S}$.

This completes the proof that $I(n, n - j, p^k) = d(n, j, p^k)I(n - j, n - j, p^k)$. To finish the proof we use the well known result about $d(n, j, p^k)$ discussed above.

References

- [BM1] R. P. Brent and B. D. McKay, Determinants of and rank of random matrices over \mathbb{Z}_m , Discrete Math., 66 (1987) 35 49.
- [BM2] R. P. Brent and B. D. McKay, On determinants of random symmetric matrices over \mathbb{Z}_m , ARS Combinatoria, **26A** (1988) 57 64.
- [GR] J. Goldman and G.-C. Rota, On the foundations of combinatorial theory IV: Finite vector spaces and Eulerian generating functions, Stud. Appl. Math. 49(3) (1970) 239 - 258.