
NUMBER OF RANK r SYMMETRIC MATRICES
OVER FINITE FIELDS

Abstract. We determine the number of n×n symmetric matrices over GF (pk) that have
rank r for 0 ≤ r ≤ n.

In [BM2] Brent and McKay determine the number of n × n symmetric matrices over Zp

that have determinant zero. Thus they determine the number of n× n symmetric matrices
over Zp that have rank n. We extend their result to symmetric matrices over GF (pk) and
we determine the number of matrices that have rank r for any r.

The problem when the matrix is not required to be symmetric was treated in [BM1] and in
[GR]. In these papers the number of (n+∆)×n matrices over Zp with rank r is determined
for all r and ∆ ≥ 0.

Let I(n, r, pk) be the number of n × n symmetric matrices over GF (pk) with rank r.
Furthermore, let q(n, pk) be the probability that an n× n symmetric matrix over GF (pk) is
invertible. Define q(0, pk) to be 1. Also note that q(1, pk) = (1− 1

pk ).

Theorem 0.1. In the notation given above, q(n, pk) satisfies the recurrence

(0.1) q(n, pk) =

(
1−

(
1

pk

))
q(n− 1, pk) +

(
1

pk

) (
1−

(
1

pk

)n−1
)

q(n− 2, pk)

for all n ≥ 2. Furthermore, this recurrence gives

q(n, pk) =
s∏

j=0

(
1−

(
1

pk

)2j−1
)

,

where s = bn
2
c.

In particular, the number of invertible symmetric n× n matrices over GF (pk) is

(0.2) I(n, n, pk) =
(
pk

)(n
2) q(n, pk) =

(
pk

)(n
2)

s∏
j=0

(
1−

(
1

pk

)2j−1
)

.

Before we prove this result we will give a couple of Lemmas.

Lemma 0.2. Suppose A = (aij)1≤i,j≤n is a symmetric n × n matrix over GF (pk) and that

a11 6= 0. Additionally, define the n× n matrix Λ = (λij)1≤i,j≤n with

λij =





1 if i = j 6= 1

−a−1
11 a1j if i = 1

0 otherwise

.
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Then

ΛT AΛ =




a11 0 0 . . . 0
0 b11 b12 . . . b1(n−1)
...

...
...

. . .
...

0 b(n−1)1 b(n−1)2 · · · b(n−1)(n−1)




where the matrix B = (bij)1≤i,j≤(n−1) is a symmetric (n− 1)× (n− 1) matrix. Furthermore,

if A is random then so is B.

Proof. By doing the multiplication we see that ΛAΛT has the desired form. Furthermore,
bij = −a11a1(i+1)a1(j+1) + a(i+1)(j+1). Thus bij = bji. So B is symmetric. Furthermore, if A is
a random matrix, then matrix B is random. ¤
Lemma 0.3. Suppose A = (aij)1≤i,j≤n is a symmetric n × n matrix over GF (pk), a11 = 0

and a12 6= 0. Additionally, let n× n matrix Γ = (γij)1≤i,j≤n with

γij =





1 if i = j

−a−1
12 a1j if i = 2 and j ≥ 3

a−2
12 a22a1j − a−1

12 a2j if i = 1 and j ≥ 3

0 otherwise

.

Then

ΓT AΓ =




0 a12 0 . . . 0
a12 a22 0 . . . 0
0 0 c11 . . . c1(n−2)
...

...
...

. . .
...

0 0 c(n−2)1 · · · c(n−2)(n−2)




where the matrix C = (cij)1≤i,j≤(n−2) is a symmetric (n− 2)× (n− 2) matrix. Furthermore,

if A is random then so is C.

Proof. The proof is similar to the proof of the previous Lemma. Doing the multiplication
we see that the matrix has the desired form and that cij =??. So C is a symmetric matrix.
As in the previous Lemma C will be random if A is random. ¤

We are now prepared to prove the first of our two main theorems.

Proof. Proof of Theorem 0.1 We begin by deriving 0.1. Let A be a random symmetric n×n
matrix over GF (pk) with n ≥ 2. Throughout the proof we use the fact that A is invertible if
and only if det(A) 6= 0. We derive the recursion by considering the two cases when a11 6= 0
and when a11 = 0.

First suppose a11 6= 0 this happens with probability 1−1/pk. With the notation of Lemma
0.2 and using the fact det(Λ) = det(ΛT ) = 1, we see that det(A) = det(Λ)det(A)det(ΛT ) =
det(ΛAΛT ) = a11det(B). Since A was random B is a random symmetric (n − 1) × (n − 1)

matrix. Hence, if a11 6= 0 then the probability that A is invertible is
(
1− 1

pk

)
q(n− 1, pk).

Next suppose that a11 = 0. If a1j = 0 for all j, then det(A) = 0. So, A is not invertible.
Suppose that there exists at least one j 6= 1 such that a1j 6= 0. This happens with probability

1
pk

(
1−

(
1
pk

)n−1
)

. Switching the jth column with the 2nd column and switching the jth row
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with the 2nd row keeps A a symmetric matrix. Furthermore, whether or not the determinant
is 0 is not changed. Thus we may assume without loss of generality that a12 6= 0.

With the notation of Lemma 0.3 and using the fact det(Γ) = det(ΓT ) = 1, we see that
det(A) = det(Γ)det(A)det(ΓT ) = det(ΓAΓT ) = a12a22det(C). Since A was random C is a
random symmetric (n− 2)× (n− 2) matrix. Hence, if a11 = 0 then the probability that A

is invertible is 1
pk

(
1−

(
1
pk

)n−1
)

q(n− 2, pk). Summing the two probabilities gives 0.1.

From this recursion it is easy to deduce that

q(n, pk) =
s∏

j=0

(
1−

(
1

pk

)2j−1
)

,

where s = bn
2
c. ¤

We are will give a couple of Lemmas before stating and proving the main result.

Proposition 0.4. An n × n matrix M is symmetric if and only if vT M = (Mv)T for all
vectors v.

Lemma 0.5. Let A be a symmetric n×n matrix and let B be an n×n matrix. Then BT AB
is a symmetric matrix.

Proof. To prove this we will show that for all ~v ∈ Zn
2 , vT BT AB = (BT ABv)T . If we establish

this, then the result follows from Proposition 0.4.
It is well known that vT BT = (Bv)T . Using this twice and Proposition 0.4 we have

vT BT AB = (Bv)T AB = (ABv)T (BT )T = (BT ABv)T ,

as desired. ¤
Let d(n, j, pk) be the number of j dimensional subspaces of GF (pk)n. Define

∏
n(q) =

(1− q)(1− q2) . . . (1− qn). It is well known, see [BM1], that

d(n, j, pk) =

∏
n(pk)∏

n−j(p
k)

∏
j(p

k)
.

Theorem 0.6. In the notation above,

I(n, n− j, pk) =d(n, j, pk)I(n− j, n− j, pk)

=

∏
n(pk)∏

n−j(p
k)

∏
j(p

k)
I(n− j, n− j, pk).

Proof. We will prove this theorem in three steps. Say that ej is the n dimensional vector
over GF (pk)n that has a 0 in each entry except for the jtextth entry.

Step 1. Let E = span {e1, . . . , ej}. Then there are I(n−j, n−j, pk) rank n−j n×n matrices
that take exactly E to zero.

To see this we begin by noting that Mem is the mth column of the matrix M . Therefore, if
A is a symmetric matrix with Aem = ~0 then the mth column and mth row of A must be zero.
Furthermore, A has rank n− j if and only if n− j of the column vectors are independent.

Let A be a symmetric n×n matrix with rank n− j that takes E to zero. Since the first j
columns of A are zero, if A has rank n− j we must have that the final n− j column vectors
of A are linearly independent. Since the first j rows of A are also the zero, A will send
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e1, . . . , ej to ~0 and have rank n− j if and only if the symmetric (n− j)× (n− j) submatrix
A∗ = (aij)(j+1)≤i,j≤n has linearly independent column vectors. That is if and only if A∗ is

invertible.
Therefore, there are I(n− j, n− j, pk) symmetric n× n matrices of rank n− j that send

e1, . . . , ej to ~0.

Step 2. Let S be any j dimensional subspace of GF (pk)n with basis {v1, · · · , vj}. Also let
S = { all n×n symmetric matrices of rank n− j that take S to zero} and let E = { all n×n
symmetric matrices of rank n− j that take E to zero}. I will show that there is a 1-1 onto
map from S to E , thus these sets have the same size. The result follows, since the subspace
S was arbitrarily chosen and there are I(n− j, n− j) elements in E .

It remains to demonstrate the 1-1 onto map. There exists k1, . . . , kn−j such that {v1, . . . , vj,
ek1 , . . . , ekn−j

} is a basis for GF (pk)n. Let B be the change of basis matrix such that es 7→ vs

for 1 ≤ s ≤ j and ej+t 7→ ekt for 1 ≤ t ≤ (n− j).
Define the map φ : S → E by φ(A) = BT AB. Since B is invertible so is BT . Thus,

BT ABv = ~0 if and only if ABv = ~0. But ABv = ~0 if and only if Bv ∈ S. Since B is the
change of basis matrix from {e1, . . . , ej} and {v1, . . . , vj} we have BT ABv = ~0 if and only if
v ∈ E. Therefore, the map is well defined onto the spaces indicated.

Furthermore, φ is 1-1, since B and BT are both invertible. To show that φ is onto let
X ∈ E be arbitrary and Y = (BT )−1XB−1. Since φ(Y ) = BT Y B = BT (BT )−1XB−1B = X,

it is enough to show that Y ∈ S. Since BT is invertible Y v = ~0 if and only if XB−1v = ~0.
Furthermore, since X ∈ E , XB−1v = ~0 if and only if B−1v ∈ E. But B−1 is the change of
basis matrix from {v1, . . . , vj} to {e1, . . . , ej}, thus Y v = ~0 if and only if v ∈ S. So Y ∈ S.

This completes the proof that I(n, n− j, pk) = d(n, j, pk)I(n− j, n− j, pk). To finish the
proof we use the well known result about d(n, j, pk) discussed above.

¤
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