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Abstract

The aim of this research is to construct a basis for the space of mod-
ular forms with weight 3

2
. Building on the work of Serre and Stark (see

[7]), a modular form subspace is initially constructed with certain ternary
quadratic forms. These ternary forms result in theta series that are mod-
ular forms with weight 3

2
. At various levels N , the dimension of these

subspaces are compared with the dimension of the whole modular form
space. If necessary, different types of modular forms with weight 3

2
are

added to the subspace. Once the whole space is constructed for numerous
levels, a conjecture for the basis of the space is formed. 1

1 Introduction

In the work of Serre and Stark (see [7]) on modular forms of weight 1
2 , it is

suggested that dimension formulas for modular forms of weight 3
2 can be cal-

culated. The method we use to compute the dimension formulas in [7] was to
construct a basis of certain theta series with weight 1

2 . Clearly, once this basis
was known, the dimension of the space could be calculated. Although, formulas
for the dimension of the space of modular forms with weight 3

2 are known, it is
the goal of our paper to produce ‘nicer’ bases.

An intermediate goal is to explore the dimension of the space consisting of
special theta series with weight 3

2 . Note this is the subspace referred to for
the remainder of the paper. Also note that the space M 3

2
(N,χ0) where χ0 is

the trivial character is analyzed in this paper. Will this subspace be the whole
space of weight 3

2 modular forms? If so, is there a nice formula to compute the
dimension? Otherwise, what other forms of weight 3

2 will need to be added to
obtain the whole space?

1This research was funded by the National Science Foundation under Grant Numbers:
0139569 and 0244
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Nonetheless, our research was conducted during an eight week Research
Experience for Undergraduate program. Due to the length of the program, only
the intermediate goal mentioned above was completed, that is the exploration of
the subspace of modular forms with weight 3

2 constructed from certain ternary
quadratic forms.

First, modular forms, ternary quadratic forms, and the notions of ‘lifting’
and ‘twisting’ modular forms are discussed. With this information, a detailed
algorithm for the construction of the theta series subspace is given. A program
to implement the algorithm in MAPLE mathematical software is also provided
in the Appendix. Furthermore, the results of our research are presented in this
paper and further progress will be released at a later date.

2 Modular Forms

The following is a brief discussion on modular forms which was derived from [4].

Let the set of matrices
(

a b
c d

)
∈ SL2(Z) with c ≡ 0 mod(N) be denoted

by Γ0(N).

Definition 2.1. Let k be an integer, N , a natural number and χ be a Dirich-
let character modulo N . Denote the upper half complex plane by H = {τ ∈
C : Im(τ) > 0}. A modular form of weight k, level N and character χ is a
holomorphic function f : H→ C satisfying:

• f(aτ+b
cτ+d ) = χ(d)(cτ + d)kf(τ) for all τ ∈ H and all

(
a b
c d

)
∈ Γ0(N)

• f is holomorphic at all cusps of H/Γ0(N)

The space of such functions is denoted Mk(N,χ). If f vanishes at all cusps of
H/Γ0(N) then f is called a cusp form. The subspace of cusp forms is denoted
Sk(N,χ).

Example 2.2. (See [5] for more details.) Let k be an even integer greater than
2. For z ∈ H, define

Gk(z) :=
∑
m,n

m6=0,n 6=0

1
(mz + n)k

.

Gk(z) is called an Eisenstein series and is a modular form of weight 2k.

For the purpose of our research, a similar definition for modular forms of
half-integral weight is defined.

Definition 2.3. Let k be an odd integer, N , an integer divisible by 4 and χ be
a Dirichlet character modulo N . Denote the upper half complex plane by H =
{τ ∈ C : Im(τ) > 0}. A modular form of weight k

2 , level N and character χ is
a holomorphic function f : H→ C satisfying:

2



• f(aτ+b
cτ+d ) =

 χ(d)χc(d)ε−k
d (
√

cτ + d)kf(τ), if c 6= 0

χ(d)f(τ), otherwise

for all τ ∈ H and all
(

a b
c d

)
∈ Γ0(N)

where εd =
{

1 if d ≡ 1 (mod 4)
i if d ≡ 3 (mod 4)

• f is holomorphic at all cusps of H/Γ0(N)

The space of the functions is denoted M k
2
(N,χ) and if f vanishes at all cusps of

H/Γ0(N) then f is called a cusp form. The subspace of cusp forms is denoted
S k

2
(N,χ).

3 Ternary Quadratic Forms

One way of building modular forms with weight 3
2 is to use ternary quadratic

forms (see [4]). Let Q be the ternary quadratic form:

Q(x, y, z) = ax2 + by2 + cz2 + ryz + sxz + txy

with a, b, c, r, s, t ∈ Z. Furthermore, we will only utilize positive definite
ternary quadratic forms, that is Q(x, y, z) satisfying:

• Q(x, y, z) ≥ 0 for all x, y, z ∈ R

• Q(x, y, z) = 0 if and only if x = y = z = 0.

We will also restrict our attention to the forms that are reduced.

Definition 3.1. Given a ternary quadratic form Q(x, y, z) = ax2 + by2 + cz2 +
ryz + sxz + txy, Q is reduced if all of the following conditions hold:

• a ≤ b ≤ c,

• r, s and t are all positive or all non-positive,

• |t| ≤ a, |s| ≤ a and |r| ≤ b,

• a + b + r + s + t ≥ 0,

• If a + b + r + s + t = 0, then 2a + 2s + t ≤ 0,

• If a = −t, then s = 0; if a = −s, then t = 0; if b = −r, then t = 0,

• If a = b, then |r| ≤ |s|; if b = c, then |s| ≤ |t|,

• If a = t, then s ≤ 2r; if a = s, then t ≤ 2r; and if b = r, then t ≤ 2s.
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Proposition 3.2. Consider the following theta series

ΘQ(τ) =
∑

x,y,z∈Z
qQ(x,y,z)

where Q is a reduced positive definite ternary quadratic form and q = e2πiτ .
Furthermore, ΘQ(τ) ∈M 3

2
(NQ, χdQ

).

Proof.We will only prove the weight of ΘQ(τ) here. See [5] for more informa-
tion. From [7], the space of the Jacobi-Theta series,

Θ(τ) =
∑
n∈Z

qn2
where q = e2πiτ

is a space of modular forms with weight 1
2 . The theta series, ΘQ(τ) described

above can be constructed with Jacobi-Theta series:

ΘQ(τ) =
∑
n∈Z

qQ(x,y,z)

=
∑
n∈Z

qkx2+ly2+mz2

=
∑
k∈Z

qkx2
·
∑
l∈Z

qlx2
·
∑
m∈Z

qmx2

= Θ(kτ) ·Θ(lτ) ·Θ(mτ)

where kx2 + ly2 + mz2 is derived from Q by completing by square so k, l and
m ∈ Q.

The multiplication of the Jacobi-Theta series does not alter the fact that the
product (in this case ΘQ(τ)) is a modular form. Furthermore, since weights are
additive, ΘQ(τ) has weight 3

2 .

4 Lifting

Since an intermediate goal of this paper is to build a subspace of the mod-
ular form space with the previously described theta series, we implement the
following theorem to include more forms in the subspace:

Theorem 4.1. From [5], if d1d2 = N and f ∈ Mk(d1), then we have f ∈
Mk(N) and also g(z) := f(d2z) ∈Mk(N).

Proof.See [5].
This method of constructing new modular forms is referred to as ‘lifting’.
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5 Twisting

Given a level N , we also construct modular forms in M 3
2
(N) by ‘twisting’ forms

from space of lower level into M 3
2
(N).

Along with level N and weight k, a modular form is characterized by a
Dirichlet character, χ modulo N .

Definition 5.1. (adapted from [1]) Let t be a positive integer and G be the
group of reduced residue classes modulo t or the unit group U(Z/tZ). A char-
acter of G, χ̃ is defined as the homomorphism

χ̃ : G→ C where χ̃(m) = an order(m)th root of unity.

For each χ̃, define the function χ as follows

χ(m) = χ̃(m) if (m, t) = 1
χ(m) = 0 if (m, t) 6= 1

χ is called the Dirichlet character modulo t. Note if g ∈ G and ord(g) = j, then
(χ(g))j = χ(gj) = χ(1G) = 1. Thus, χ(g) is an jth root of unity.

Furthermore, χ is described by its conductor t.

Definition 5.2. (adapted from [1]) Let χ be a Dirichlet character modulo t and
s be any positive divisor of t. s is called an induced modulus for χ if χ(m)=1
whenever (m,t)=1 and m ≡ 1 (mod s). The smallest induced modulus s for χ
is called the conductor of χ.

Denote the conductor t for the remainder of the paper. Later in the section
on twisting, the notion of primitive characters is discussed.

Definition 5.3. (adapted from [1]) A character χ is said to be primitive mod
t if χ has no induced modulus s < t. This is the same as to say that for any
positive divisor s < t, there exists an integer m such that (m,t)=1, m ≡ 1 (mod
s) and χ(m) 6= 1.

Example 5.4. Given level N = 20, determine the primitive characters mod 20:
The unit group G is the set {1,3,7,9,11,13,17,19}. Now find the characters of

G, χ̃ : G → C. To do this, the cyclic decomposition of G must be determined,
which is Z/4Z × Z/2Z in this case. Furthermore, generators of each group must
be noted. Considering the orders of the elements of G, 3 and 19 are selected
as generators of Z/4Z and Z/2Z respectively. According to the definition of
Dirichlet character, χ(3) = {1,-1,i, or −i} and χ(19) = {1 or -1}. Now there
are eight possibilities for Dirichlet characters modulo 20.

Since χ is an homomorphism χ(3) and χ(19) determine where the rest of the
elements of G get mapped to. For instance, if χ(3) = i and χ(19) = −1, then
χ(7) = χ(33190) = (χ(3))3(χ(19))0 = i3(−1)0 = −i.
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Using the following information,

1 = 30190, 3 = 31190, 7 = 33190, 9 = 32190

11 = 32191, 13 = 33191, 17 = 31191, 19 = 30191

the following table is completed:



χ(3) χ(19) χ(1) χ(3) χ(7) χ(9) χ(11) χ(13) χ(17) χ(19)
χ1 1 1 1 1 1 1 1 1 1 1
χ2 1 −1 1 1 1 1 −1 −1 −1 −1
χ3 −1 1 1 −1 −1 1 1 −1 −1 1
χ4 −1 −1 1 −1 −1 1 −1 1 1 −1
χ5 i 1 1 i −i −1 −1 −i i 1
χ6 i −1 1 i −i −1 1 i −i −1
χ7 −i 1 1 −i i −1 −1 i −i 1
χ8 −i −1 1 −i i −1 1 −i i −1


Note that 1 is an induced modulus for χ1 and 10 is an induced modulus

for χ3 and χ8 so these are not primitive characters modulo 20. Moreover,
the remainder of the Dirichlet characters, χ2, χ4, χ5, χ6 and χ7 satisfy the
conditions to be primitive characters.

Theorem 5.5. From [5], if f =
∑

n≥0 anqn ∈ Mk(M,Ψ) and χ is a primitive
character modulo t, then g(z) :=

∑
n≥0 anχ(n)qn ∈Mk(Mt2,Ψχ2).

Proof.See [5].
Note that if no character is listed, then the trivial character is assumed.

6 Computation

Using the Theorems 4.1 and 5.5, the following subsections describe an algorithm
to determine the dimension of a subspace of modular forms for a given level N
with trivial character and weight 3

2 . We will construct forms directly and by
lifting and twisting.

M 3
2
(D,χ0)

−−−−→
lifting M 3

2
(N, χ0)

←−−−−−−−−−
twisting by χ M 3

2
(N

t2 , χ−2)

where D is a divisor of the level N and χ0 is the trivial character for the purposes
of this paper.

6.1 Building forms in M 3
2
(N) directly

CONSTRUCTING THE REDUCED POSITIVE DEFINITE TERNARY
QUADRATIC FORMS
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For a given level N , we construct all reduced positive definite ternary quadratic
forms (ternary forms for short) with Lehman’s algorithm (see [6]):

If Q(x, y, z) = ax2 + by2 + cz2 + ryz + sxz + txy is the desired ternary form,
then its discriminant is given by d = 4abc + rst − ar2 − bs2 − ct2 and its level
is given by N = 4d/m where m is the greatest common divisor of 4bc − r2,
4ac−s2, 4ab− t2, 2st−4bs, 2rt−4bs and 2rs−4ct. Since Q is positive definite,
each of a, b, c, 4bc− r2, 4ac− s2, 4ab− t2 and d is greater than 0.

1. Given N and d, let m = 4d/N and µ = 4N/m. If m and µ are not integers,
then there are no ternary forms of this level and discriminant.

2. Let a vary so that:

1 ≤ a ≤ b 3

√
d
2c and if µ is odd, then a ≡ 0 or −µ(mod 4).

3. For each such a, find g, u and v ∈ Z where g=gcd(4a,m) and
g = 4au + mv.

4. Let t vary so that:
0 ≤ t ≤ a, if m is even, then t is even and g|t2.

5. Let b vary so that:

b ≡ ut2

g (modm
g ), max(a, m

4a )≤ b ≤
√

d
2a and

if µ is odd, then b ≡ 0 or −µ (mod 4).

6. Let s vary so that:
0 ≤ s ≤ a, if m is even, then s is even and g|2st.

7. Let r vary so that:
r ≡ 2stu

g (modm
g ), |r| ≤ b, if m is even, then r is even and if st = 0, then

r ≤ 0.

8. For c:
Let c = d−rst+ar2+bs2

4ab−t2 . If c ∈ Z, then Q(x, y, z) = ax2 + by2 + cz2 + ryz +
sxz + txy is a candidate for the desired ternary form.

9. Double check to see if the coefficients satisfy the conditions to be a reduced
form (see section 3). Also, check if m is indeed the greatest common divisor
of 4bc− r2, 4ac− s2, 4ab− t2, 2st− 4bs, 2rt− 4bs and 2rs− 4ct and if µ
is odd, then c ≡ 0 or −µ(mod 4).

Since we are only using trivial characters, given N , consider only discriminants,
d, such that d|N2.

Example 6.1. Finding reduced positive definite ternary quadratic forms of
level N = 8 and discriminant d = 16:

1. Since m = 4d/N and µ = 4N/m, m = 8 and µ = 4 ∈ Z.
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2. The variable a would vary between 1 and b 3

√
d
2c = 2 so a=1 or 2 .

Furthermore, µ is even so the second condition on a does not apply. (The
a = 2 case will not be considered for the remainder of the example. It
fails at step 8.)

3. Now g = gcd(4, 8) = 4 so for 4 = 4au + mv, u = 1 and v = 0.

4. The variable t would vary such that 0 ≤ t ≤ 1 and since m is even, t is
even. t=0 is the only candidate which holds since 4|0.

5. For b, b ≡ 0( mod 2) so that b is between max(1, 2) = 2 and
√

8. Since µ
is even, the last condition on b does not apply so b=2 .

6. For s, s is between 0 and 1 and m being even implies the only candidate
is s = 0. Since 4|0, s=0 .

7. Now since r ≡ 0( mod 2), |r| ≤ 2 and m is even so r= -2, 0 or 2. Also,
st = 0 so r= -2 or 0 .

8. Given d, a, t, b, s and r, test if c = d−rst+ar2+bs2

4ab−t2 is an integer. With
r = −2, c = 5

4 /∈ Z, but with r = 0, c=2 ∈ Z.

9. Now Q(x, y, z) = x2 + 2y2 + 2z2 is a potential ternary form. In fact,
a, b, c, r, s and t satisfy the conditions for a reduced ternary form and
m = gcd(8, 8, 8, 0, 0, 0) = 8. So Q is the desired ternary form.

Now reduced positive definite ternary quadratic forms Q(x, y, z) of a given
level N are available. Consider the theta series

ΘQ(τ) =
∑

x,y,z∈Z
qQ(x,y,z) =

∑
n∈Z

rnqn

where Q(x, y, z) = n and rn are the Fourier coefficients of the modular form,
ΘQ(τ) ∈ M 3

2
(N). rn is also the number of ways x, y and z can represent n in

Q(x, y, z) = n. Since the coefficients rn uniquely determine the modular form,
it is sufficient to use only the rn’s to describe the space. The following explains
how the coefficients are calculated.

CALCULATING THE FOURIER COEFFICIENTS OF A MODULAR
FORM GIVEN A TERNARY FORM

Fortunately given the level N , the coefficients of the modular form only need
to be calculated up to a certain bound. The bound is given by the following
theorem:

Theorem 6.2. (see [4]) Suppose that f, g ∈ Mk/2(N,χ) where k is odd and
4|N . Suppose also that rn(f) = rn(g) for 0 ≤ n ≤ (k+1)N

24

∏
p|N (1 + 1

p ). Then
f=g.
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Therefore, the coefficients r0, r1, . . . rn where 0 ≤ n ≤ N
6

∏
p|N (1 + 1

p ) are
required to determine modular forms ∈Mk(N). The calculation goes as follows

1. Given the level N , calculate the upper bound for the coefficients,
N
6

∏
p|N (1 + 1

p ). Denote it B.

2. Determine the range for which x, y and z can represent n. The range is
given for x, y and z are

b−
√

B

α
c ≤ x ≤ d

√
B

α
e, b−

√
B

β
c ≤ y ≤ d

√
B

β
e,

and b−

√
B

γ
c ≤ z ≤ d

√
B

γ
e.

where α, β, and γ are defined as

α = −a(−4bc + r2) + ct2 + s(−rt + bs)
4bc− r2

,

β = −b(−4ac + s2) + ct2 + r(−st + ar)
4ac− s2

,

γ = −c(−4ba + t2) + ar2 + s(−rt + bs)
4ba− t2

3. Now for each n, store the coefficients rn,

[
n 0 1 . . . B
rn ∗ ∗ . . . ∗

]
Example 6.3. Continuing with Example 6.1, the Fourier coefficients of the
ternary form Q(x, y, z) = x2 +2y2 +2z2 are calculated to distinguish a modular
form in M 3

2
(8).

1. First, the number of coefficients needs to be determined by computing the
upper bound B. Since N = 8,

B =
8
6

∏
p|8

(1 +
1
p
) =

8
6
· (1 +

1
2
) = 2.

Thus, only r0, r1 and r2 are required.

2. Next, the ranges for x, y and z are needed.

α = − 1(−16 + 0) + 0 + 0
16− 0

= 1
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β = − 2(−8 + 0) + 0 + 0
8− 0

= 2

γ = − 2(−8 + 0) + 0 + 0
8− 0

= 2

Hence,
−2 ≤ x ≤ 2, − 1 ≤ y ≤ 1, and − 1 ≤ z ≤ 1.

3. With these defined bounds on x, y and z in Q(x, y, z) = x2+2y2+2z2 = n,
there is 1 way to represent 0, 2 ways to represent 1 and 4 ways to represent
2. So the modular form is stored in the array:[

n 0 1 2
rn 1 2 4

]

6.2 Lifting Modular Forms into M 3
2
(N)

Lifting modular forms can be executed in two fashions:

1. According to Theorems 4.1 and 6.2, for each D such that 4|D|N , M 3
2
(D) ⊆

M 3
2
(N). Therefore, build forms directly as in section 6.1 for each D such

that 4|D|N .

2. Furthermore by Theorem 4.1, g(z) := f(N
D z) ∈M 3

2
(N) for all D such that

4|D|N . If f(z) =
∑

n≥0 rnqn, then

f(
N

D
z) =

∑
n≥0

rn(q
N
D )n =

∑
n≥0

rn·D
N

qn.

Thus, the coefficients of f can be dispersed by a factor of N
D to obtain

another form in M 3
2
(N).

Example 6.4. Lifting modular forms into M 3
2
(8)

1. Modular forms in M 3
2
(D) are also in M 3

2
(8) where D = 4 or 8. Using

the method of producing modular forms described in subsection 6.1, the
following is generated:
D = 4 yields [

n 0 1 2
rn 1 6 12

]
and D = 8 yields [

n 0 1 2
rn 1 2 4

]
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2. Moreover, the ‘dispersement factor’ for D = 4 is N
D = 2 so the following

form can be accounted for [
n 0 1 2
rn 1 0 6

]
Since the ‘dispersement factor’ for D = 8 is 1, the form is already con-
structed using the direct method.

6.3 Twisting Modular Forms into M 3
2
(N)

Along with building forms in M 3
2
(N) directly and lifting forms from M 3

2
(D),

modular forms in M 3
2
(N) can be twisted up from a lower space. By theorem

5.2, forms in M 3
2
(N

t2 , χ−2) can be twisted by the character χ with conductor t

into M 3
2
(N).

To do this, we use the following algorithm:

1. For a given level N , choose s such that s2|N4 .

2. For each such s, find the cyclic decomposition of the unit group U(Z/sZ).
In other words, find n1, n2, . . . , nr such that U(Z/sZ) ∼= Z/n1Z×Z/n2Z×
· · · × Z/nrZ. This can be done by using the theorem:

Theorem 6.5. (see [3]). Let n = 2apa1
1 pa2

2 . . . pal

l be the prime decompo-
sition of n. Then

U(Z/nZ) ∼= U(Z/2aZ)× U(Z/pa1
1 Z)× · · · × U(Z/pal

l Z).

U(Z/pai
i Z) is a cyclic group of order pai−1

i (pi − 1). U(Z/2aZ) is cyclic of
order 1 or 2. If a = 1 and 2, respectively. If a ≥ 3, then it is the product
of two cyclic groups, one of order 2, the other of order 2a−2.

3. Find generators gi such that < gi >= Z/niZ (from step 2) for all i.

4. Develop a list of Dirichlet characters, χ̃ : U((Z/sZ) → C that satisfy
χ̃(gi) = (ni, 4)throot of unity.

5. Recall N
s2 is the new level of the current space. Now find discriminants d

such that d|N
2

t4 and where χ−2
j (m) =

(
d
m

)
for all m ∈ U(Z/sZ).

6. Compute the ternary forms and Fourier coefficients directly with level N
s2

and discriminants d for all d from previous step. This gives modular forms
in M 3

2
( N

s2 , χ−2).

7. For each modular form constructed, multiply rm by χ̃(m) if (m, s) =
1. Otherwise rm = 0. This multiplication twists the modular forms by
character χ into M 3

2
( N

s2 · t2) where t is the conductor of χ.
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8. If s equals the conductor t, then the twisted modular forms are in fact in
M 3

2
(N). However, if s does not equal t, then the forms must be lifted into

M 3
2
(N) (see section 4 and previous section on Lifting).

Due to the complexity of the twisting computation, a ‘nice’ example is not
provided in this paper. For an illustration of its implementation, see Appendix.

6.4 Determining the Dimension of the Subspace

Now that all of the Fourier coefficients are obtained, the dimension of the con-
structed ‘ternary form’ subspace of modular forms can be calculated as follows:

1. Input all of the Fourier coefficients from the previous step into a matrix
r10 r11 r12 . . . r1B

r20 r21 r22 . . . r2B

r30 r31 r32 . . . r3B

...
...

...
...

...
rt0 rt1 rt2 . . . rtB


where rij

is the jth coefficient of the ith modular form.

2. Use Gaussian elimination to find the rank, R, of this matrix. R is the
dimension of the subspace with the given level N .

Example 6.6. Using Examples 6.3 and 6.4, the dimension of the subspace of
modular forms derived by ternary forms will be computed for level N=8.

1. From building modular forms directly and lifting, the following forms were
constructed in M 3

2
(8):[

n 0 1 2
rn 1 6 12

]
,
[

n 0 1 2
rn 1 2 4

]
,
[

n 0 1 2
rn 1 0 6

]
Putting this coefficients into matrix produces: 1 6 12

1 2 4
1 0 6


2. Gaussian elimination yields  1 6 12

0 1 2
0 0 −1


which has rank 3. Therefore, the dimension of the subspace at level 8 is
3.

In this example twisting is not necessary because the dimension of the subspace
is equal to the dimension of M 3

2
(8) (see 0* in the figures of the Results section).
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7 Results

The data for the levels, N ≤ 200 is given in the tables. The dimensions for
the whole space of modular forms M 3

2
(N) was provided by [2]. Note that it

is assumed in [2] that the dimension exactly at N were calculated. Since our
interest is in the dimensions at levels dividing N for lifting and twisting, new
formulas were used for the data. Those new dimensions are in the columns
denoted “0*” in the following tables.

The following table shows our results of constructing the subspace of modular
forms directly without lifting or twisting. In only one case is the whole space
obtained which is at level 4. However, in most cases not even a quarter of the
whole space is formed. For instance at level 188, merely 6.7% of the space is
constructed via this method.

LEVEL 0* 1* 1*/0* LEVEL 0* 1* 1*/0*
4 1 1 100.0 104 18 4 22.2
8 3 1 33.3 108 25 8 32.0
12 4 2 50.0 112 32 8 25.0
16 7 3 42.9 116 10 1 10.0
20 4 1 25.0 120 48 9 18.8
24 11 4 36.4 124 11 1 9.1
28 5 1 20.0 128 39 14 35.9
32 13 5 38.5 132 25 5 20.0
36 10 5 50.0 136 21 4 19.0
40 12 3 25.0 140 24 5 20.8
44 6 1 16.7 144 67 19 28.4
48 25 7 28.0 148 12 1 8.3
52 6 1 16.7 152 23 3 13.0
56 14 4 28.6 156 27 4 14.8
60 17 5 29.4 160 54 14 25.9
64 23 8 34.8 164 13 1 7.7
68 7 1 14.3 168 56 9 16.1
72 29 10 34.5 172 14 1 7.1
76 8 1 12.5 176 39 11 28.2
80 28 7 25.0 180 47 14 29.8
84 20 5 25.0 184 26 3 11.5
88 17 3 17.6 188 15 1 6.7
92 9 1 11.1 192 85 22 25.9
96 47 13 27.7 196 25 9 36.0
100 16 6 37.5 200 48 12 25.0

Figure 1: 0*= dimension of M 3
2
(N)

1*= dimension of the subspace without lifting or twisting
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The data below depicts the dimensions of subspaces at various level N after
modular forms are constructed directly and lifted. Similarly, there are only a
few cases where the dimension of the subspace is the dimension of the whole
space (at levels 4, 8 and 12). The dimension of the subspace at level 188 still
relatively low with 20.0% of the space obtained.

LEVEL 0* 2* 2*/0* LEVEL 0* 2* 2*/0*
4 1 1 100.0 104 18 10 55.6
8 3 3 100.0 108 25 18 72.0
12 4 4 100.0 112 32 21 65.6
16 7 5 71.4 116 10 3 30.0
20 4 3 75.0 120 48 35 72.9
24 11 8 72.7 124 11 3 27.3
28 5 3 60.0 128 39 21 53.8
32 13 8 61.5 132 25 13 52.0
36 10 8 80.0 136 21 10 47.6
40 12 9 75.0 140 24 11 45.8
44 6 3 50.0 144 67 37 55.2
48 25 15 60.0 148 12 3 25.0
52 6 3 50.0 152 23 9 39.1
56 14 10 71.4 156 27 12 44.4
60 17 12 70.6 160 54 34 63.0
64 23 13 56.5 164 13 3 23.1
68 7 3 42.9 168 56 40 71.4
72 29 18 62.1 172 14 3 21.4
76 8 3 37.5 176 39 23 59.0
80 28 19 67.9 180 47 34 72.3
84 20 13 65.0 184 26 9 34.6
88 17 9 52.9 188 15 3 20.0
92 9 3 33.3 192 85 48 56.5
96 47 27 57.4 196 25 12 48.0
100 16 8 50.0 200 48 29 60.4

Figure 2: 0*= dimension of M 3
2
(N) ; 2*= dimension after lifting
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Figure 1: Levels N vs. Methods of Building Subspaces
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8 Future Work

Since the whole space was not obtained from the subspace at all levels N , levels
N > 200 will be investigated. Furthermore, we will also consider other modular
forms of weight 3

2 . For instance, we could use Eisenstein series (see Example
2.2). When the whole subspace is achieved through the addition of various
forms, bases and dimension formulas will be conjectured.

9 Appendix

The following is an algorithm for MAPLE mathematical software and results
for N ≤ 5000.

# formsandlift computes the dimension, r, (with or without lifting **)
# of a particular level N
# all computes the dimensions of all levels up to the level N

formsandlift:=proc(N)
local D,e,p,prod1,i,d,k,l,m,mu,j,ce,fl,divisor,div,ma,var1,i1,L2
,result,mtxval,
M,G,rank,sq,m1,m2,m3,m4,m5:
global a,b,c,r,s,t,u,v,g,R,upbound,q:
mtxval:=[]:
with(numtheory):
with(LinearAlgebra):

# For each D such that divides 4|D|N, calculate the modular forms
# of M(3/2)(D).
# This implements lifting.
# To get the information about a particular level, just go from
# N to N**
for D from 4 to N by 4 do
if (N mod D=0) then
q:=N/D:

#To get upper bound for n in r(n), N(k+1)/24*prod(1+1/p),
# where k=3
prod1:= 1:
for e from 1 to N do

if isprime(e) then
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if (N mod e = 0) then
p:=e:
prod1:= prod1 * (1 + (1/p)):

fi:
fi:

od:
upbound:=(N/6)*prod1:

#To get the reduced positive definite ternary forms,
# see section 6.1
d:=0:
divisor:=[]:
div:=tau(D^2):
divisor:=divisors(D^2):
#print(’discriminant’,divisors(D^2)):

# only consider the discriminants that are perfect
# squares which
# are associated with trivial characters
for i from 1 to div do
d:=divisor[i]:
sq:=sqrt(d):
if type(sq,integer) then
#for m and mu, step 1

m:=(4*d)/D:
mu:=(4*D)/m:
if type(m,integer) then
if type(mu,integer) then
ma:=floor((d/2)^(1/3)):

#for a, step 2:
for a from 1 to ma do
if mu mod 2=0 or a mod 4=0 or -a mod 4 =(mu) then
var1:=4*a:
euclid(var1,m):

#for t, step 4:
for t from 0 to a do
if( (m mod 2=0 and t mod 2=0 ) or m mod 2=1 ) then
if t^2 mod g=0 then

#for b, step 5:
ce:=ceil(max(a,m/(4*a))):

17



fl:=floor(sqrt(d/(2*a))):
for k from ce to fl do
if k mod (m/g) = (u*t^2/g) then
b:=k:
if (b >= ce and b <= fl) then
if ((mu mod 2 =0) or (b mod 4=0) or

(-b mod 4 =(mu)) )then

#for s, step 6:
for s from 0 to a do
if (((m mod 2 =0) and (s mod 2=0 )) or
(m mod 2 =1)) then
if (((2*s*t) mod g)=0) then

#for r, step 7:
for l from -b to b do:
if (l mod (m/g) = (2*s*t*u)/g) then
if (((m mod 2=0) and (l mod 2=0) ) or
(m mod 2=1)) then
if (((s=0 or t=0) and l<= 0) or
(s <> 0 and t <> 0)) then
r:=l:

#for c, step 8:
c:=(d - r*s*t + a*r^2 + b*s^2)/(4*a*b - t^2):
result:=check(a,b,c,r,s,t):
if type(c,integer) and result=1 then
if mu mod 2=0 or c mod 4=0 or
-c mod 4 =(mu) then

# step 9:
m1:=gcd(4*b*c-r^2,4*a*c-s^2):
m2:=gcd(4*a*b-t^2,2*s*t-4*a*r):
m3:=gcd(2*r*t-4*b*s,2*r*s-4*c*t):
m4:=gcd(m1,m2):
m5:=gcd(m3,m4):
if m=m5 then
rns(upbound):
mtxval:=[op(mtxval),mtxval1,mtxval2]:

fi:
fi:

fi:
fi:
fi:

fi:
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od: (l)

fi:
fi:
od: (s)

fi:
fi:

fi:
od: (k)

fi:
fi:
od: (t)

fi:
od: (a)

fi:
fi:

fi:
od: (i)

fi:
od:
M:=convert(mtxval,Matrix):
G:=GaussianElimination(M):
R:=Rank(G):
print(R):
end:

#=================================================================================
# to do several levels
all:=proc(q):

for N from 1 to q do
if N mod 4 = 0 then
print(’N’,N):
formsandlift(N):
fi:

od:
end:
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#================================================================================
#THE EXTERNAL PROGRAMS
#Step 9 , double checking the 15 conditions
# for a reduced form
check:=proc(a,b,c,r,s,t)
local sum:
if a<=b and b<=c then
if (r>0 and s>0 and t>0 ) or (r<=0 and s<=0 and t<=0) then
if (abs(r)<=b and abs(s)<=a and abs(t)<=a)then
sum:=a+b+r+s+t:

if (sum>=0) then
if ((sum =0 and (2*a + 2*s + t) <=0) or (sum<>0) )then
if ((a=b and abs(r)<=abs(s)) or a<>b) then
if ((b=c and abs(s)<=abs(t)) or b<>c) then
if ((a=(-t) and s=0) or a<>-t) then
if ((a=(-s) and t=0) or a<>-s) then
if ((b=(-r) and t=0) or b<>-r) then
if ((a=t and s<=2*r) or a<>t) then
if ((a=s and t<=2*r) or a<>s) then
if ((b=r and t<=2*s) or b<>r) then
return 1:
else return 0:
fi:
fi:
fi:
fi:
fi:
fi:
fi:
fi:
fi:
fi:
fi:
fi:
fi:
end:

# to produce the Fourier coefficients in an array
rns:=proc(upbound)
global a,b,c,r,s,t,L2,q,mtxval1,mtxval2,alpa,betha,
gama,e1,e2,e3,e4,e5,e6,u1:
local j,minu1,maxu1,n,rn,x1,y1,z1,n1,l,i,var,R,k:
mtxval1:=[]:
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mtxval2:=[]:

#to calculate the Fourier coefficients, r(n)
u1:=floor(upbound):
alpa:= -(a*(-4*b*c+r^2)+c*t^2+s*(-r*t+b*s))/(4*b*c-r^2):
betha:= -(b*(-4*a*c+s^2)+c*t^2+r*(-s*t+a*r))/(4*a*c-s^2):
gama:= -(c*(-4*b*a+t^2)+a*r^2+s*(-r*t+b*s))/(4*b*a-t^2):
e1:=floor(-sqrt(upbound/alpa)):
e2:=ceil(sqrt(upbound/alpa)):
e3:=floor(-sqrt(upbound/betha)):
e4:=ceil(sqrt(upbound/betha)):
e5:=floor(-sqrt(upbound/gama)):
e6:=ceil(sqrt(upbound/gama)):

R:=array(1..2,1..u1+1):
L2:=array(1..2,1..u1+1):
for n from 0 to u1 do
rn:=0:
for x1 from e1 to e2 do
for y1 from e3 to e4 do
for z1 from e5 to e6 do
n1:=a*x1^2+b*y1^2+c*z1^2+r*y1*z1+s*x1*z1+t*x1*y1:
if (n1=n) then
rn:=rn + 1:

fi:
od:

od:
od:
R[1,n+1]:=n:
R[2,n+1]:=rn:
mtxval1:=[op(mtxval1),rn]:

od:
for i from 1 to u1+1 do
L2[1,i]:=i-1:
L2[2,i]:=0:

od:
for j from 1 to u1+1 do
var:=R[1,j]*q:
if var=0 then
L2[2,1]:=R[2,1]:
elif var<>0 and var <= u1 then
L2[2,var+1]:=R[2,j]:

fi:
od:
for k from 1 to u1+1 do
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mtxval2:=[op(mtxval2),L2[2,k]]:
od:
# mtxval1 and mtxval2 are the Fourier coefficients
# to put into the final matrix to be Gaussian eliminated

end:

#Euclidean Algorithm (from Dr. Nigel Byott, University of Exeter)
euclid:=proc(a1,b1)
local b,q,r,x1,x,y1,y:
global g,u,v:
g:=abs(a1):
b:=abs(b1):
u:=sign(a1):
x1:=0:
v:=0:
y1:=sign(b1):
while b<>0 do
q:=iquo(g,b):
r:=g-q*b:
g:=b;b:=r:
x:=u-x1*q:
u:=x1:
x1:=x:
y:=v-y1*q:
v:=y1:
y1:=y:
od:

end:

22



Here is data for 200 ≤ N ≤ 1000:

Level 1* 2* Level 1* 2* Level 1* 2* Level 1* 2*
204 4 12 404 1 3 604 1 3 804 4 12
208 6 21 408 8 37 608 16 42 808 4 10
212 1 3 412 1 3 612 14 35 812 5 11
216 14 43 416 15 39 616 11 45 816 25 82
220 5 11 420 15 53 620 4 10 820 3 9
224 13 37 424 4 10 624 29 80 824 3 9
228 4 12 428 1 3 628 1 3 828 19 42
232 4 10 432 43 81 632 3 9 832 29 74
236 1 3 436 1 3 636 4 12 836 8 14
240 26 67 440 10 40 640 46 108 840 27 160
244 1 3 444 4 12 644 7 13 844 1 3
248 3 9 448 26 63 648 30 92 848 8 23
252 14 37 452 1 3 652 1 3 852 4 12
256 19 35 456 11 38 656 8 23 856 3 9
260 3 9 460 4 10 660 15 54 860 3 9
264 10 39 464 8 23 664 3 9 864 76 160
268 1 3 468 13 34 668 1 3 868 6 12
272 7 22 472 3 9 672 40 146 872 4 10
276 5 13 476 5 11 676 10 13 876 4 12
280 9 40 480 41 135 680 11 39 880 32 100
284 1 3 484 11 14 684 13 34 884 5 11
288 35 65 488 4 10 688 8 21 888 8 37
292 1 3 492 4 12 692 1 3 892 1 3
296 4 10 496 12 25 696 9 38 896 45 113
300 17 42 500 12 24 700 19 43 900 49 108
304 8 21 504 23 104 704 35 78 904 4 10
308 7 13 508 1 3 708 4 12 908 1 3
312 7 36 512 34 53 712 4 10 912 21 84
316 1 3 516 4 12 716 1 3 916 1 3
320 28 62 520 10 38 720 68 175 920 11 39
324 16 34 524 1 3 724 1 3 924 15 59
328 4 10 528 21 88 728 10 43 928 14 43
332 1 3 532 6 12 732 4 12 932 1 3
336 21 76 536 3 9 736 17 52 936 32 110
340 3 9 540 25 78 740 3 9 940 4 10
344 3 9 544 16 42 744 10 37 944 14 27
348 4 12 548 1 3 748 7 13 948 4 12
352 16 46 552 11 40 752 17 30 952 11 44
356 1 3 556 1 3 756 26 83 956 1 3
360 26 92 560 28 91 760 10 40 960 74 243
364 5 11 564 4 12 764 1 3 964 1 3
368 13 26 568 3 9 768 53 140 968 19 49
372 4 12 572 6 12 772 1 3 972 41 75
376 3 9 576 58 117 776 4 10 976 6 21
380 5 11 580 3 9 780 15 48 980 20 51
384 39 83 584 4 10 784 37 81 984 8 37
388 1 3 588 18 51 788 1 3 988 6 12
392 15 42 592 6 21 792 28 113 992 18 51
396 15 38 596 1 3 796 1 3 996 4 12
400 28 55 600 29 118 800 57 108 1000 25 83
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[2] H. Cohen and J. Oesterlé, Dimensions des Espaces de Formes Modulaires,
International Summer School on Modular Functions, 1976.

[3] K. Ireland and M. Rosen, A Classical Introduction to Modern Number
Theory, Graduate Texts in Math. No. 84, Springer-Verlag, New York,
Second Edition, 1990.

[4] K. James, On Congruences for the Coefficients of Modular Forms and
Some Applications, Dissertation submitted for Doctorate of Philosophy
in Mathematics, University of Georgia Athens, 1997.

[5] N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Graduate
Texts in Math. No. 97, Springer-Verlag, New York, Second edition, 1993.

[6] J. L. Lehman, Levels of Positive Definite Ternary Quadratic Forms,
Mathematics of Computation 58 (1992), 399–417.

[7] J. P. Serre and H. M. Stark, Modular Forms of Weight 1/2, International
Summer School on Modular Functions, 1976.

24


