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Abstract
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In this paper we will look at different ways to find covers with a large lowest modulus.

We found some conditions neccessary for a collection of congruence classes to cover the

integers. We determined that certain types of collections of congruence classes cannot

cover the integers. To compute a cover we created a program that uses a greedy

algorthm to create potential covers by covering the most remaining numbers with each

congruence class choosen. In the end, we have a cover with lowest modulus 14.



Introduction

A covering, defined formally below, is a set of congruence classes such that every integer is in

at least one of the congruence classes. A distinct cover (or simply a cover, for convenience)

is a cover all of whose moduli are distinct. Quite a bit of work has been done in studying

covers, and two major problems (posed by Erdős) have not yet been solved. The first, which

we will discuss, states that the smallest modulus of a distinct cover can be arbitrarily high.

The second, which we did not research as extensively, asks whether a cover exists with all

odd moduli. Our task, in this paper, is to construct a cover with a large smallest modulus

using computation. Now, some definitions:

Definition 1. A blankit, (a, m), is a collection of congruence classes

ai (mod mi) ,1 ≤ i ≤ k

We are interested in a particular type of blankit, those with distinct moduli and which include

every integer. These blankits are called covers or coverings. If a blankit is also a cover, we

say that it covers.

Definition 2. Arithmetic progressions

a1 (mod n1), a2 (mod n2), . . . , ak (mod nk),

where

1 < n1 < n2 < . . . < nk,

form a distinct covering system (or cover) if

∀m ∈ Z ∃i

such that

m ≡ ai (mod ni).



0.1 An Example of a Cover

The blankit {0 (mod 2), 0 (mod 3), 1 (mod 4), 1 (mod 6), 11 (mod 12)} is a cover. Proof:

Note that every number that is 0 mod 12 is also 0 mod 2. In fact, every number that is

2,4,6,8, or 10 mod 12 is also 0 mod 2. Furthermore, this applies to all residues mod divisors

of 12: if a is congruent to b mod c (c divides 12), then all numbers in a mod 12 are covered

by b mod c. Thus, to cover the integers (all of which are in one of the congruence classes

mod 12), we only need to cover the integers mod 12 using divisors of 12 as moduli. Checking

our example, we find that 0 mod 2 covers (0,2,4,6,8,10), 0 mod 3 covers (0,3,6,9), 1 mod 4

covers (1,5,9), 1 mod 6 covers (1,7), and 11 mod 12 covers (11). Thus, the example covers

the integers. We use this general idea to create covers. If we can cover the integers mod d

using only moduli that divide d, then we have covered the integers.

We do not attempt to prove the smallest modulus conjecture, but we establish some elemen-

tary conditions necessary for a blankit to be a cover.

Theorem 1. If a blankit covers, then the sum of the reciprocals of its moduli must be at least

1.

Proof. Let (a, m) be a cover with moduli m1, m2, . . . ,mk with corresponding residues a1, a2, . . . , ak,

and let M be the least common multiple of the moduli. In general, mi’s congruence class

will contain M
mi

numbers mod M .



Since, by assumption, every number 1, . . . ,M is covered, we have∣∣∣∣∣ ⋃
1≤i≤k

Si

∣∣∣∣∣ = M

where Si = {n|1 ≤ n ≤ M, n ≡ ai (mod mi)}.

This tells us
∑k

i=1
M
mi

≥ M . Dividing by M yields the desired result.

We will use this result to establish some results which show us where not to look when trying

to increase the size of our moduli.

Theorem 2. The “smallest modulus” problem is equivlent to the “minimum height” problem.

That is, the following are equivalent:

(i) Given any integer N , there exists a covering whose smallest modulus is larger than N .

(ii) Given any integer N , there exists a blankit, b, with the property that every integer belongs

to at least N of b’s congruence classes.

Proof. Suppose we can cover the integers with an arbitrarily high smallest modulus. Then

to cover the integers j times, we make a cover of the integers with smallest modulus n. This

has a highest modulus, m. We make a new cover of the integers using m+1 as the smallest

modulus. This has a highest modulus, repeat the process j times.

Suppose we can cover the integers arbitrarily many times. Such a multiple covering has a

lowest modulus. Since we cover everything the lowest congruence class covers more than

once, we can eliminate this congruence class. Repeat this process until we have the smallest

modulus as large as we like.



Material

In this research we will find covers from various mathematical and computional calculations.

This is done using Maple and C++. Maple is a program designed to help do computations

in a math friendly enviorment. C++ is an object-oriented programming language that is

mostly used for lage applications. In this problem we use Maple and C++ to create covers

with a given smallest modulus.

Methods

For a blankit to be a cover we conclude that sum of the reciprocals must be at least one.

More generally, the sum of the reciprocals of a set of moduli must be greater than 1+(the

sum of the reciprocals of the numbers in the set below n) in order to make a cover with lowest

modulus n, using members of the set as moduli. Thus, the divisors of n! must be greater

than or equal to 1+ log(n)+γ, to have a cover with lowest modulus n. Note that γ (gamma)

is the Euler-Mascheroni constant, the error term between log(n) and the harmonic series.

Proposition: The function σ−1, where σ−1(m) =
∑

d|m
1
d
, is multiplicative. That is, if natu-

rals m and n are relatively prime, then σ−1(mn) = σ−1(m)σ−1(n).

Proof. Note that for any integer m, we have that

σ−1(m) =
σ(m)

m

where σ(m) gives the sum of the divisors of m. We will show that σ is multiplicative.

Let m and n be positive integers. Let σ(m) = a0 + a1 + . . .+ ak and σ(n) = b0 + b1 + . . .+ bl.



Then

σ(m)σ(n) =
∑

0≤i≤k,0≤j≤l

aibj

Note that if ai|m and bj|n, then aibj|mn, so each of the summands is a divisor of mn.

Now suppose that some number d divides mn. Let c = gcd(m, d).

Then
d

c
|
(m

c
n
)

and gcd(m
c
, d

c
) = 1, so we must have thatd

c
divides n. That is, d

c
= bj for some j, and so d is

of the form aibj.

Let’s check that we have not added any divisor twice:

Suppose that aibj = apbq. Then ai|apbq, and since gcd(ai, bq) = 1, we must have ai|ap. A

similar argument shows ap|ai, and therefore ai = ap. It follows that bq = bj.

Note that

σ−1(mn) =
σ(mn)

mn
=

σ(m)σ(n)

mn
=

σ(m)

m

σ(n)

n
= σ−1(m)σ−1(n)

Theorem 3. σ−1(n!) ≥ 1 + log(n) + γ

Proof. To get the powers of the prime divisors in n!, add 1 for every multiple of p up to n, add

an additional 1 for every multiple of p2 up to n, continuing this pattern, finally addblogp(n)c

for the only multiple of pblogp(n)c up to n. The sum of the reciprocals of the divisors of each

of these prime powers is simply a geometric series

σ−1(p
k) = 1− (1/p)k+1/(1− 1/p).



Since we have the prime powers in n!, we will replace k with each of these.

kp =

logp(n)∑
i=1

⌊
n/pi

⌋
.

We approximate this by

kp =

logp(n)∑
i=1

n/pi − 1 = n

logp(n)∑
i=1

1/pi − logp(n).

The summation is a geometric series, so we have

n

logp(n)∑
i=1

1/pi − logp(n) = n(1/p)(1− (1/p)logp(n))/(1− (1/p))− logp(n) =

n(1/p)(1− (1/n))/(1− (1/p))− logp(n) = (n− 1)/(p− 1)− logp(n).

Since σ−1 is multiplicative, we can take σ−1 of the prime powers of n! and multiply these to

get

σ−1(n!).

σ−1(p
k), where k = Np(n!),

is the geometric series
k∑

i=0

1/pi = 1− (1/p)k+1/(1− (1/p)).

We replace k by

(n− 1)/(p− 1)− logp(n)

to get

(1− (1/p)(n−1)/(p−1)−logp(n)+1)/(1− (1/p)).

So

σ−1(n!) ≥
n∏

p=2

(1− n(p(1−n)/(p−1)−1))/(1− (1/p)).

Now, Merten’s theorem tells us that ∏
p≤n

(1− (1/p)−1)



is asymptotic to

eγlog(n).

Since the product of the numerator goes to 1, we have that

σ−1(n!)

is asymptotic to

eγlog(n),

which is greater than

1 + log(n) + γ.

0.2 Coverings we Can’t Make

Since we know what types of blankits can’t be covers, we know where not to check with

our computations. The common idea of the next two theorems tells us that if we are trying

to make a cover of the integers using certain moduli, we can check whether they can’t be

sufficient without checking every set of congruence classes we could use.

For instance, we can’t make a cover using powers of 2 because the sums of the reciprocals of

powers of 2 is always less than 1. We also know that we can’t make a cover using 2,3, and 4

as moduli.

Proof. : We can’t choose better congruence classes than 0 (mod 2), 0 (mod 3), and 1

(mod 4). We have to choose so that the congruence classes (mod 2) and (mod 3) intersect

every 6 integers, and so that the congruence classes of (mod 3) and (mod 4) intersect every

12 integers. By the Chinese Remainder Theorem, we can’t avoid that. But we can prevent

the congruence class (mod 4) from ever intersecting the congruence class (mod 2), and we

do that.



So this is the most efficient potential cover we can make using 2,3, and 4 as moduli. Checking

to see whether this covers the integers mod the lcm of these numbers, we find that it doesn’t.

Specificially, it does not cover 7 or 11 (mod 12).

Intuitively, the next proposition says that if we wish to find coverings of larger and larger

smallest modulus, we must also increase the number of prime divisors of the product of our

moduli. First, we need a new definition:

Definition 3. An integer is b− smooth if each of its prime divisors is at most b.

Theorem 4. For any integer b, there is an integer n such that no blankit,(a, m), satisfying:

(i)mi > n for all i

and

(ii)mi is b-smooth for all i

can be a covering.

Proof. We will show that given b, there is a number N with the property that the sum of

the reciprocals of b-smooth numbers greater than N is strictly less than 1.

Note that for each prime, p, the geometric series
∑∞

k=0

(
1
p

)k

converges absolutely to p
p−1

.



Note also that the product
∏

p≤b
p

p−1
is finite and equals the sum of the reciprocals of the

b-smooth numbers (plus 1).

Since all of these geometric series converge absolutely, so does their Cauchy product, as

well as any rearrangement of it. So, given b, consider the series
∑

1≤i
1
ai

, where {ai} is the

sequence of b-smooth numbers and is increasing.

By the convergence of this series, we can find n so large that
∑i=n

i=1
1
ai

is within 1 of the

limit (
(∏

p≤b
p

p−1

)
−1). It follows from Proposition 1 that no blankit with smallest modulus

an+1 or greater can cover.

Theorem 5. There does not exist a cover all of whose moduli are pairwise co-prime:

Proof. By the Chinese Remainder Theorem, we get just as many intersections up to the lcm

of the moduli among 2, 3, or more congruence classes with pairwise co-prime moduli, no

matter what congruence classes we choose.

Therefore, we cover just as many things no matter what congruence classes we choose. There-

fore, we can choose the congruence classes arbitrarily, and if we show that we can’t cover

using our arbitrary choice of congruence classes, then we can’t cover at all. We choose 0

(mod p) for all of the congruence classes. This obviously does not cover 1. Since we couldn’t

have choosen so as to get fewer intersections (and therefore cover more numbers), we always

get at least this many uncovered numbers.

Therefore, we always have at least 1 uncovered number, for any set of congruence classes

with pairwise co-prime moduli.

Theorem 6. There does not exist a cover whose moduli are all prime powers:

Proof. We can prevent two congruence classes in such a potential cover from intersecting if



they have not co-prime moduli. We do this by choosing 1 mod p, p mod p2, etc. For every

set of congruence classes with not co-prime moduli (the powers of a particular prime).

This prevents any intersections among those congruence classes because pn−1 is congruent

to 0 mod all the previous powers of the prime, but we choose pj−1 mod pj for all of those.

Therefore, to minimize (to 0) the amount of intersections among moduli that aren’t co-prime,

we can take pn−1 mod pn for every prime power we use.

Since we always get just as many intersections among congruence classes with relatively prime

moduli, we’ve minimized the number of intersections we can get. Therefore, if something

remains uncovered, we cannot make a covering in this way. 0 remains uncovered (since a

prime to an integer power is never 0). Therefore, we will always have at least 1 uncovered

number for a potential cover using congruence classes with prime power moduli. Therefore,

a cover with congruence classes with prime power moduli does not exist.

0.3 Covers we Can Make

On the other hand, some types of covers can be made that are convenient for computation.

For instance, covers mod n can be made using the divisors of n for certain types of numbers

(with many divisors). The integers mod n! can be covered using the divisors of n!. Considering

that we can cover the integers mod 12 using the divisors of 12, it should be apparent that

we can cover the integers mod 24 using its divisors, and any other multiple of 24 including

any higher factorial.

In fact, this method is so efficient that we found (up to a certain point, at least) that we can

cover the integers mod n! without using any of the divisors up to n as moduli. Unfortunately,

n! grows so quickly that it stopped being feasible to check for coverings of the integers mod

n!.

It should not surprise us that we can make a covering of the integers using the divisors of n!.

After all, the divisors of n! eventually will include every number.



However, there are some types of covers that can be made that we were not expecting to

find. For instance,making a covering of the integers using only square free numbers (numbers

without prime power factors other than p1). This first happens when we cover the integers

(mod 210) with its divisors. It also seems possible that we can cover the integers using

congruence classes that don’t intersect unless their moduli are relatively prime. We are

looking into this right now.

0.4 Writing the Code

Our aim is to produce a program whose input is a list of moduli (or a number whose divisors

will serve as moduli) and whose output is a potential cover. We also want this program

to tell us whether its output is a cover, or merely a blankit. So what should this program

do? First, it should use the greedy algorithm to choose an appropriate residue class for each

modulus (this will be discussed in greater detail later). Next, it should check whether or

not each integer less than or equal to the lcm of the moduli belongs to at least one of the

chosen congruence classes. Remember, a blankit with this property covers all the integers.

We are also interested in the number of distinct congruence classes to which each such integer

belongs, and in particular, the height of the blankit. This tells us how wasteful we are being

with our choices of congruence classes (greater height means we’ve wasted more potential

”‘eliminations”’ up to the LCM).

Now that we know the desired procedure, lets discuss how well implement it. In determining

residue classes, we used a greedy algorithm. A greedy algorithm is an algorithm that will

choose, at each stage, the local optimum. In the context of our problem, this means choosing

the residue class that contains the largest number of integers not already belonging to some

previously chosen congruence class. We used an array to keep track of the integers blanked

out by our collection of congruence classes. Due to the growth rate of the array used, the

original code had to be modified so that it would run within the memory restrictions.

The first program (Program 1) uses an array that allows us to tally the number of congruence



classes to which each integer belongs. It uses the Least Common Multiple (LCM) algorithm

given by Euclid to minimize the number of integers checked: we need only check the integers

less than or equal to the lcm of the moduli up to the one whose optimal residue were seeking.

After that, the behavior of the set of congruence classes repeats. This program will also

compute the sum of the reciprocals of the moduli, and the number of moduli used (it stops

once it has found a cover). This code contains a function, boolgreedy, which is not shown as

part of the results. In order to confirm that we do indeed have a cover, we run this function.

It simply goes through the array and prints the height at each number. The height at the

number n is the number of distinct congruence classes (of a given blankit) to which n belongs.

The height of the blankit is the maximum of these local heights.

The second program (program 2) took the array and converted it to a bit vector to use

one eighth as much memory. Now we will receive the same results as the first program but

more quickly, and we can run the program for higher numbers. In addition we added an

algorithm that uses random variables to decrease the time it takes to compute the code.

Instead of checking, at each modulus we could use, the number of things covered in the

entire array by each potential congruence class, we pick 100*the modulus random numbers

lower than the size of the big array (these should be approximately equi-distrubited among

the congruence classes), and we choose ”‘semi-greedily”’ whichever congruence class has the

most uncovered numbers in it among the ones randomly choosen. This allows us to remove

the array completely and just run through the loop inputting the random numbers, and

recording whether or not numbers are covered, instead of a list of all covered or uncovered

numbers.

Before running the code for these programs we chose to make the size of our arrray (N) to

be (n + 2)!. Thus, we our covering the numbers mod (n+2)! with congruence classes mod

its divisors. As noted above, this seems like a reasonable place to look for covers. In fact, it

allows us to eliminate low moduli by increasing the n. Furthermore, after running the code

for larger smallest modulus, we noted that we could begin using (n+1)!, and we’d still get a

cover. In fact, at lowest modulus 12 we find a cover using divisors of 12!. We suspect that



using the divisors of n! continues to create covers with lowest modulus n, but the size of the

array (13! at the next step) required more memory than we had.

To fix this problem we are looking at what happens to the sum of the reciprocals of the

divisors of numbers as we multiply by primes. We begin with 2, then multiply by 3 because

this increases σ−1(n) more than multiplying by any other prime. Then, we use another 2,

and so on. Later, instead of choosing greedily like this, we try to limit the size of our array by

multiplying by small primes instead of large ones, even though multiplying by the larger ones

might increase σ−1(n) more. Of course, by theorem 5, we must eventually multiply by new

primes in order to get a larger smallest modulus. So far, we have no algorithmic way of doing

this, and we’ve been checking various ways of forming numbers in this way that we think

will probably work for getting a cover with lowest modulus n, for arbitrarily chosen n. Most

recently, we have used N = 128∗27∗25∗49∗11∗13∗17, which we suspect will get us a cover

with smallest modulus 20. In order to get a cover with modulus greater than 20, however,

we probably have to multiply N by 19, which would take too long on one machine, given our

random algorithm. However, if we parallelize the code to run on 3 or more machines, we

might get it to work. Furthermore, multiplying N by 19 gets us so far that we can reduce the

size of some of our lower prime’s powers. Instead of using N = 128∗27∗25∗49∗11∗13∗17∗19

we might get away with N = 32 ∗ 27 ∗ 25 ∗ 49 ∗ 11 ∗ 13 ∗ 17 ∗ 19.



Procedure

Now lets look at the two codes used for solving this problem.

0.5 Program 1



0.6 Program 2



Results

0.7 Program 1

By using the Program 1 we were able to find a cover of least modulo 14.

The results (14div4.txt) shows a list of the blankit in its entirety. It also shows the total

cover height ,sum of the recprical, total number of moduli used, and the total time(seconds)

it took to run.

This results should be read in the following form:

(residue) mod (divisors) covers: (# ) holes up to (the lcm)



0.8 Program 2

We ran program 2 for a long time, and got no results. After choosing the first several

congruence classes, the program finds 100*the modulus (or less, for larger divisors) random

numbers up to the lcm of the numbers checked so far, and checks whether these are already

covered, and if they aren’t, which congruence classes contain them. However, if none of

the randomly choosen numbers are uncovered, we choose again. We suspect that when the

computer is close to making a cover, we have so few uncovered numbers left that we are not

likely to get any uncovered numbers from our random choices, and we continue to choose

randomly with very little chance of getting any further in the program. If we fix this problem,

program 2 should run in a decent amount of time.



Discussion

In the end we are now able to prove that there does exist a cover with lowest modolus 14.

Although this is not quite our goal of 25, we have a method that we think could work, if we

had computers with infinite memory and infinite processing speed. Given that we don’t have

these things, we will continue to work on improving our code until we reach our goal. Also,

we have begun writing code to search for a cover using odd moduli.
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