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Abstract

In this paper, we are counting natural subsets of graphs subject to local restrictions,
such as counting independent sets of vertices, dominating sets of vertices, and inde-
pendent sets of edges. We will discuss the following counting problems: The number
of configurations in each problem grows rapidly, leading to the development of bounds
and a discussion of entropy.

1 Introduction

In this section of our paper, we explore the number of different ways to place non-
independent kings on a chessboard with infinite dimensions such that every space on the
board is dominated; that is, every space on the board either contains a king or can be
attacked by one. Any configuration of kings that meets these conditions is called a domi-
nating configuration. In our dominating configurations we allow non-independent or non-
attacking kings; that is, we allow configurations where two kings can be placed adjacent
to one another. First, we define a recursive formula for generating adjacency matrices for
dominating configurations of kings on chessboards with various numbers of rows. Next,
we develop rough bounds for the number of different dominating configurations on a kxn

board. Finally, we work out upper and lower bounds for an entropy constant that tells us
how quickly the number of dominating configurations is growing as the values of k and n

increase towards infinity.
The kings problem has been researched extensively. Although we have not found any pre-
vious work related to dominating configurations of kings, a variety of articles on counting
independent sets of kings proved useful in guiding our thoughts and approaches regarding
dominating sets.

2 Developing a Recursive Definition

In order to study the number of dominating configurations on a k by n chessboard, we
create adjacency matrices. First, we construct boards of size k by 2, one for each possible
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configuration of kings on a k by 2 chessboard (since we are allowing non-attacking kings,
all possible configurations are acceptable).

Labeling Configurations:
In order to keep our adjacency matrices consistent, we create a labeling system that des-
ignates a number to each possible configuration of kings on a k by 2 board. We label
each board using binary code in such a way that the first two places in the binary number
refer to the top two squares (the top row) of a board, the second two places in the binary
number refer to the second two squares (the second row) of a board, and so on. A zero
designates a blank square and a 1 designates a king in the corresponding square of a board.
For example, the binary number 0011010011 would designate the 5 by 2 board:

K K

K

K K

The binary numbers range from 0 (which designates the blank board) to 22k-1 (which
designates a k by 2 board filled with kings).

Overlapping Boards:
Although we vary the number of rows k, the boards always need to be 2 columns wide be-
cause any given spot can be dominated from a column ahead or a column behind. To take
this into account, we create our adjacency matrices considering only overlapping boards;
that is, for any row i there will only be a 1 in the ith jth entry of the matrix if the left
hand column of j is identical to the right hand column of i AND this overlapping col-
umn is dominated. Therefore, in our adjacency matrices we are considering boards of
size k by 3 and we are only concerned with domination in the middle column. We are
not concerned with the outer 2 columns being dominated because they could be domi-
nated from a column ahead or a column behind. These outer columns will be the middle
column in other overlapping boards, and will be taken care of at other entries in the matrix.

Let Ak refer to the overlapping adjacency matrix for boards with k rows. Because all
possible configurations are considered, Ak is always a square matrix of the size 22k by 22k.

A1 =









0 1 0 0
0 0 1 1
1 1 0 0
0 0 1 1
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A2 =



























































0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1



























































Since, Ak grows very quickly as k increases, it is important to develop a recursive def-
inition for finding Ak for large values of k. To do this, we first consider a simpler set of
matrices, denoted Bk.

An Important Side Note:
Before we begin, it is important to note that the following recursive definition will not hold
for small values of k. The first adjacency matrices are unusual because the boards being
considered are so small. For instance, on a 2 by 2 board all of the spots will be dominated
if there is a king anywhere on the board, giving us a zero only in the 00 entry. Therefore,
any recursion that we can define for Ak will not make sense until k > 2. Although we
will define some other matrices recursively starting at values of k ≤ 2, it is important to
remember that the recursion will not hold for Ak until k = 3. Now, on to generating a
recursion:

Let Bk refer to a matrix of size 22k by 22k. If i and j overlap (the right hand column
of i is identical to the left hand column of j) then there will be a 1 in the ithjth entry of
Bk. It is easy to work with Bk because it follows a simple recursion:

B1 =









1 1 0 0
0 0 1 1
1 1 0 0
0 0 1 1
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B2 =









B1 B1 0 0
0 0 B1 B1

B1 B1 0 0
0 0 B1 B1









And in General

Bk =









Bk−1 Bk−1 0 0
0 0 Bk−1 Bk−1

Bk−1 Bk−1 0 0
0 0 Bk−1 Bk−1









Next, we consider another set of matrices of the size 22k by 22k which also follow a nice
recursion. We will denote this set of matrices by Ek since it generates much of the error
term between Bk and Ak.

E2 =



























































1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



























































E3 =









E2 E2 0 0
0 0 E2 E2

E2 E2 0 0
0 0 E2 E2
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And in General

Ek =









Ek−1 Ek−1 0 0
0 0 Ek−1 Ek−1

Ek−1 Ek−1 0 0
0 0 Ek−1 Ek−1









By subtracting Ek from Bk we take care of most of the zeros that appear in Ak in
positions that overlap but fail to dominate. However, we must consider another set of
matrices that can be defined recursively to account for a growing block of zeros in the top
left corner of our overlapping adjacency matrices.

Because of the way we labeled our k by 2 boards, any boards designated by lower numbers
will only have kings clumped in the bottom rows, thus failing to dominate the upper rows.
Therefore, as k increases we must reach larger and larger numbers before all rows can be
dominated, resulting in a growing block of zeros in the upper left hand corner of Ak. Be-
cause the top rows of the board must be dominated by a king in one of the top 4 squares,
the growing block of zeros is of the size 22k−4 by 22k−4.

Let Jk be a matrix of ones of the size 22k−4 by 22k−4. We can think of Jk as being
defined recursively:

J2 =
(

1
)

J3 =









1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1









And in General

Jk =









Jk−1 Jk−1 Jk−1 Jk−1

Jk−1 Jk−1 Jk−1 Jk−1

Jk−1 Jk−1 Jk−1 Jk−1

Jk−1 Jk−1 Jk−1 Jk−1
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So that we can use matrix addition and subtraction we need to define Jk within a larger
matrix of all zeros. Let Dk be a matrix of size 22k by 22k such that:

D2 =

(

J2 0
0 0

)

D3 =

(

J3 0
0 0

)

And in General

Dk =

(

Jk 0
0 0

)

When we subtract out Dk from Bk-Ek we do not get the desired grid of zeros in the
top left corner of Ak; some negative numbers appear because Ek and Dk compensate for
the same zeros in this top corner. To fix this, we create a final matrix of size 22k by 22k

with all zero entries outside the top left corner, denoted Ck:

C3 = a 64 x 64 zero matrix with a 1 in the C00 entry

C4 =

(

E2 0
0 0

)

And in General

Ck =

(

Ek−2 0
0 0

)

Our final formula for Ak, based on the recursive definitions of Bk, Ek, Dk, and Ck is:

Ak = Bk − Ek − Dk + Ck
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3 Calculating Bounds for Dominating Configurations

Let f(k, n) denote the number of dominating configurations on a k by n chessboard. We
can calculate f(k, n) by summing the entries in Ak. However, we know a dominated chess-
board can not begin or end with a blank k by 2 board, so we must ignore the zero row and
the zero column in our sums. For this section on dominating kings, whenever we refer to
summing the entries of a matrix we are not including the entries in the zero row or zero
column in our sum.

Thinking Graphically:
It may be easier at this point to think of the possible boards as vertices in a graph. There
is an edge between vertices i and j (a one in the ithjth entry of the adjacency matrix) if the
boards i and j overlap and dominate. Therefore, we can refer to a dominated chessboard
made up of n columns as a walk of length n around the graph. In terms of the kings prob-
lem, this would be all dominating configurations with n columns that include somewhere
the overlapping boards i and j.

The number in the ithjth entry of the adjacency matrix refers to the number of walks
of the graph that use the edge connecting i and j. When we take powers of Ak, we get
walks of greater and greater length. Because Ak is made up of two k by 2 boards with
an overlapping column, the sum of the entries in Ak gives us the number of dominating
configurations for a k by 3 chessboard (the number of walks of length 3). Summing the
entries in A2

k gives us the number of dominating configurations for a k by 4 board (the
number of walks of length 4). In general, the sum of the entries in An

k will give us the
number of dominating configurations on a k by n + 2 chessboard (the number of walks of
length n + 2).

Walks of Length n

n k = 1 k = 2 k = 3 k = 4 k = 5

5 17 891 29,789 963,657 30,947,346

10 355 857,871 871,651,255 8.9410 ∗ 1011 9.1881 ∗ 1014

15 7,473 826,346,529 2.5505 ∗ 1013 8.2959 ∗ 1017 2.7281 ∗ 1022

20 157,305 7.9598 ∗ 1011 7.4632 ∗ 1017 7.6974 ∗ 1023 8.1000 ∗ 1029

100 7.9067 ∗ 1026 4.3727 ∗ 1059 2.1557 ∗ 1089 2.3229 ∗ 10119 2.9551 ∗ 10149

200 2.3064 ∗ 1053 2.0680 ∗ 10119 4.5646 ∗ 10178 5.1956 ∗ 10238 8.3787 ∗ 10298

3.1 Adding Dominated Chessboards Together

As you can see, the number of dominating configurations for a k by n board increases
rapidly as k and n increase towards infinity. Therefore, it will be helpful to consider other
ways of calculating f(k, n) for large values of k and n. For instance, take two dominated
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chessboards which both have k rows, one with n columns and the other with m columns. If
we add a dominated column (with k rows) inbetween these two boards, then we can create
a larger chessboard that must also be dominated. Because the column dominates itself,
it should be obvious that the newly created board of size k by (n + m + 1) must also be
dominated. The following visual might be of use:

k

n m

Because it is difficult to find the exact number of dominating configurations as k in-
creases, it is useful to find bounds for f(k, n + m + 1).

3.1.1 Upper Bound:

Keeping in mind that f(k, n) ∗ f(k, m) ∗ f(k, 1) = f(k, n + m + 1), we can find bounds for
f(k, n + m + 1) by bounding f(k, 1). We know that the total possible number of ways to
place kings in a column with k rows is 2k. Because the total number of configurations must
be greater than or equal to the number of configurations that dominate, it follows that:

f(k, n + m + 1) ≤ f(k, n + m)2k

This gives us a nice upper bound for f(k, n + m + 1).

3.1.2 Lower Bound:

To get a lower bound, we must find δ such that:

f(k, n) ∗ f(k, m) ∗ δ ≤ f(k, n + m + 1)

8



To do so, we must first introduce some notation regarding the single column we are adding
in. Let:
k = number of rows in the single column
ak = total number of dominating configurations in the column
bk = number of dominating configurations with a king in the bottom square
ck = number of dominating configurations without a king in the bottom square
It should follow quite simply that:

ak = bk + ck

We also know that the last two squares of any column can not both be blank if we want
it to be dominated by itself. In the case of the single column, therefore, any dominating
configuration that does not have a king in the last square must have a king in the square
directly before it. It follows that:

cn = bn−1

Also, we know that if there is a king in the final square, then it does not matter whether
or not there is a king in the square directly before it as long as there is a king within the
previous 3 spaces. In other words,

bn = an−1 + bn−3

Using the above three equations, we can easily prove that ak is the kth tribonacci
number.

ak = bk + ck

= ak−1 + bk−3 + bk−1

= bk−1 + ck−1 + bk−3 + bk−1

= ak−2 + bk−4 + ck−1 + bk−3 + bk−1

= ak−2 + ck−3 + ck−1 + bk−3 + bk−1

= (bk−1 + ck−1) + ak−2 + (bk−3 + ck−3)

= ak−1 + ak−2 + ak−3

Initial Conditions:
It is simple to get the initial conditions for ak by hand:
-For a0, there is only one way to dominate no squares – having no squares. So, a0 = 1.
-For a1 consider adding a square to nothing. There are only two ways to add a block (add
a blank square or add a king). Therefore, there is only one dominating configuration and
a0 = 1.
-For a2 consider adding a square to a single square. This time, lets calculate bk and ck

separately. The only way to have a blank square at the end of two squares and still have
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both squares dominated is to have a king in the first square. Therefore ck = 1. On the
other hand, if there is a king in the second square, there are two options for the first square:
either it has a king or it doesn’t. Because the king in the second square will dominate both
squares independent of the first square, we have bk = 2. Since we know ak = bk + ck, it
follows that a2 = 3.

Thus, the initial conditions are the first terms of the tribonacci sequence:
a0 = 1
a1 = 1
a2 = 3

Therefore, one estimate for δ that gives us a lower bound is

δ = ak

where ak denotes the kth tribonacci number.

4 Calculating Bounds for an Entropy Constant

Another way of thinking about how rapidly the number of dominating configurations in-
creases as k and n increase towards infinity is to calculate an entropy constant. An entropy
constant will help us grasp how fast the number of dominating configurations is growing
and if there are bounds on its rate of increase. The entropy constant η gives us information
on what percentage of all possible boards have valid dominating configurations of kings.
To calculate η we look at f(k, n)

1

kn as n and k increase towards infinity. Because there is
not a simple way to calculate η we will again search for upper and lower bounds.

To calculate bounds for the entropy constant we must imagine that the chessboard is
a torres. That is, a chessboard where the top of each column wraps around and connects
to the bottom of each corresponding column, and the right side of each row wraps around
and connects to the left side of each corresponding row. When imagining a torres, it is
usually helpful to envision a donut.

Next, because any 3x3 block of squares is dominated if there is a king in the center, we can
imagine tiling the chessboard with overlapping 3x3 blocks. Interestingly, domination in any
given block of 3x3 is only affected by the 24 overlapping blocks of 3x3 immediately around
it; the probability of it being dominated is independent of the rest of the chessboard.
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4.1 Lovasz Local Lemma

According to Lovasz Local Lemma:

Pr(Ai) ≤ xi

m
∏

j

(1 − xj)

and

Pr(∧Ām) ≥

m
∏

i=1

(1 − xi)

Notation:
Pr(Ai) refers to the probability that a given event Ai will occur. In our case, Pr(Ai) is
the probability that no kings will appear in a given 3x3 block. So, Pr(Ai) = 1

29 .

Pr(∧Ām) is the probability that A never occurs over a given m. In our case, Pr(∧Ām)
is the probability that no 3x3 block is empty of a king. We let m = nk, so Pr(∧Ām) is
the probability that every 3x3 block on an k by n board contains a king. In other words,
Pr(∧Ām) is the probability of a dominating configuration for a k by n board.

xi refers to the probability that a given event will occur independent of other events.
xj (for j from 1 to m) refers to the probabilities of the m events that can affect xi. In
terms of our problem, xi is the probability that a given 3x3 block contains no kings. xj

ranges from 1 to 24, and is the probability that there will not be a king in each of the
24 surrounding 3x3 blocks. Since the probability of there being no king in a 3x3 block is
always the same, xi = xj = 1

29 for all j in our problem.

4.2 An Upper Bound for η

We can get an upper bound for η using the Local Lemma if we assume that Pr(Ai) is
completely independent of all other 3x3 blocks on a chessboard.

Pr(∧Ām) ≥
m
∏

i=1

(1 − xi) ≥ η

Because xi remains constant in our problem (xi = 1

29 ), the middle product can be rewritten
as (1 − xi)

m. Now, from the above inequality we can generate another:

f(k, n) ≥

(

1 −
1

29

)m

∗ 2m
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We multiply the probability of getting a dominating configuration by the total number of
ways to fill a k by n box to give us the actual number of dominating configurations. Some
algebra on the right hand side of this inequality reveals:

(

1 −
1

29

)m

∗ 2m =

(

29 − 1

29

)m

∗ 2m

=

(

29 − 1

28

)m

=

(

2 −
1

28

)m

Therefore,

f(k, n) ≥

(

2 −
1

28

)m

Recall that we calculate η by taking f(n, k)
1

nk . Since m = nk, we can raise both sides of
the above inequality to the 1

nk
and the inequality gives us our upper bound:

η ≤

(

2 −
1

28

)

≈ 1.99609375

4.3 A Lower Bound for η

To calculate a lower bound for η, we will look at the other equation in Lovasz Local Lemma:

Pr(Ai) ≤ xi

m
∏

j

(1 − xj)

Recall that in our problem, xi = xj for all j. So, the inequality becomes:

Pr(Ai) ≤ xi(1 − xi)
m

So for our problem, in order to get our lower bound we want to find the smallest possible
xi such that:

1

29
≤ xi(1 − xi)

24

Our upper bound relies on
(

1 −
1

29

)m
∗ 2m, where xi is 1

29 , and we want our bounds to
be as close as possible. Therefore, we want to get xi for the lower bound slightly less than
1

28 , since:
1

29
<

1

28

which would make
(

1 −
1

29

)m

∗ 2m >

(

1 −
1

28

)m

∗ 2m
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To find such a value for xi, we defined a function f :

f = x(1 − x)24 −
1

29

and solved for the smallest values of x that gave us a positive output.

Using Matlab, we were able to get x as small as .5252685547. Plugging this value of x

back into our inequality from the Local Lemma, we get:

Pr(Ai) ≤ (1 − xi)
m

≤ (1 − .5252685547)m

As before, we multiply both sides of the inequality (the probabilities of dominating
configurations) by the total possible number of configurations to get the actual number of
dominating configurations:

f(k, n) ≤ (1 − .5252685547)m
∗ 2m = (2 − 2(.5252685547))m

Again, η comes from f(k, n)
1

nk and m = nk. By taking both sides of the inequality to the
1

nk
power, we get our lower bound:

η ≥ (2 − 2(.5252685547)) ≈ 1.995896367

5 Conclusions

There is still a great deal to learn about dominating configurations of kings on a chessboard.
In the future, we would like to investigate the eigenvalues of different powers of adjacency
matrices. In particular, we think the Perron-Frobenius theorem could be applied because
the adjacency matrices are square, regular, and non-negative. Also, more work on the
recursive definition of Ak could be done, including investigations similar to those done on
the recursive definition for the knights problem. In addition, the bounds for both η and δ

could be improved upon.
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